You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
5.7 KiB
204 lines
5.7 KiB
4 years ago
|
|
||
|
vs.1.1
|
||
|
|
||
|
dcl_position v0
|
||
|
dcl_color v5
|
||
|
dcl_texcoord0 v7
|
||
|
|
||
|
|
||
|
// Store our input position in world space in r6
|
||
|
m4x3 r6, v0, c25; // v0 * l2w
|
||
|
// Fill out our w (m4x3 doesn't touch w).
|
||
|
mov r6.w, c16.z;
|
||
|
|
||
|
//
|
||
|
|
||
|
// Input diffuse v5 color is:
|
||
|
// v5.r = overall transparency
|
||
|
// v5.g = reflection strength (transparency)
|
||
|
// v5.b = overall wave scaling
|
||
|
//
|
||
|
// v5.a is:
|
||
|
// v5.w = 1/(2.f * edge length)
|
||
|
// So per wave filtering is:
|
||
|
// min(max( (waveLen * v5.wwww) - 1), 0), 1.f);
|
||
|
// So a wave effect starts dying out when the wave is 4 times the sampling frequency,
|
||
|
// and is completely filtered at 2 times sampling frequency.
|
||
|
|
||
|
// We'd like to make this autocalculated based on the depth of the water.
|
||
|
// The frequency filtering (v5.w) still needs to be calculated offline, because
|
||
|
// it's dependent on edge length, but the first 3 filterings can be calculated
|
||
|
// based on this vertex.
|
||
|
// Basically, we want the transparency, reflection strength, and wave scaling
|
||
|
// to go to zero as the water depth goes to zero. Linear falloffs are as good
|
||
|
// a place to start as any.
|
||
|
//
|
||
|
// depth = waterlevel - r6.z => depth in feet (may be negative)
|
||
|
// depthNorm = depth / depthFalloff => zero at watertable, one at depthFalloff beneath
|
||
|
// atten = minAtten + depthNorm * (maxAtten - minAtten);
|
||
|
// These are all vector ops.
|
||
|
// This provides separate ramp ups for each of the channels (they reach full unfiltered
|
||
|
// values at different depths), but doesn't provide separate controls for where they
|
||
|
// go to zero (they all go to zero at zero depth). For that we need an offset. An offset
|
||
|
// in feet (depth) is probably the most intuitive. So that changes the first calculation
|
||
|
// of depth to:
|
||
|
// depth = waterlevel - r6.z + offset
|
||
|
// = (waterlevel + offset) - r6.z
|
||
|
// And since we only need offsets for 3 channels, we can make the waterlevel constant
|
||
|
// waterlevel[chan] = watertableheight + offset[chan],
|
||
|
// with waterlevel.w = watertableheight.
|
||
|
//
|
||
|
// So:
|
||
|
// c30 = waterlevel + offset
|
||
|
// c31 = (maxAtten - minAtten) / depthFalloff
|
||
|
// c32 = minAtten.
|
||
|
// And in particular:
|
||
|
// c30.w = waterlevel
|
||
|
// c31.w = 1.f;
|
||
|
// c32.w = 0;
|
||
|
// So r4.w is the depth of this vertex in feet.
|
||
|
|
||
|
// Dot our position with our direction vectors.
|
||
|
mul r0, c8, r6.xxxx;
|
||
|
mad r0, c9, r6.yyyy, r0;
|
||
|
|
||
|
//
|
||
|
// dist = mad( dist, kFreq.xyzw, kPhase.xyzw);
|
||
|
mul r0, r0, c5;
|
||
|
add r0, r0, c6;
|
||
|
//
|
||
|
// // Now we need dist mod'd into range [-Pi..Pi]
|
||
|
// dist *= rcp(kTwoPi);
|
||
|
rcp r4, c15.wwww;
|
||
|
add r0, r0, c15.zzzz;
|
||
|
mul r0, r0, r4;
|
||
|
// dist = frac(dist);
|
||
|
expp r1.y, r0.xxxx
|
||
|
mov r1.x, r1.yyyy
|
||
|
expp r1.y, r0.zzzz
|
||
|
mov r1.z, r1.yyyy
|
||
|
expp r1.y, r0.wwww
|
||
|
mov r1.w, r1.yyyy
|
||
|
expp r1.y, r0.yyyy
|
||
|
// dist *= kTwoPi;
|
||
|
mul r0, r1, c15.wwww;
|
||
|
// dist += -kPi;
|
||
|
sub r0, r0, c15.zzzz;
|
||
|
|
||
|
//
|
||
|
// sincos(dist, sinDist, cosDist);
|
||
|
// sin = r0 + r0^3 * vSin.y + r0^5 * vSin.z
|
||
|
// cos = 1 + r0^2 * vCos.y + r0^4 * vCos.z
|
||
|
mul r1, r0, r0; // r0^2
|
||
|
mul r2, r1, r0; // r0^3 - probably stall
|
||
|
mul r3, r1, r1; // r0^4
|
||
|
mul r4, r1, r2; // r0^5
|
||
|
mul r5, r2, r3; // r0^7
|
||
|
|
||
|
mul r1, r1, c14.yyyy; // r1 = r0^2 * vCos.y
|
||
|
mad r2, r2, c13.yyyy, r0; // r2 = r0 + r0^3 * vSin.y
|
||
|
add r1, r1, c14.xxxx; // r1 = 1 + r0^2 * vCos.y
|
||
|
mad r2, r4, c13.zzzz, r2; // r2 = r0 + r0^3 * vSin.y + r0^5 * vSin.z
|
||
|
mad r1, r3, c14.zzzz, r1; // r1 = 1 + r0^2 * vCos.y + r0^4 * vCos.z
|
||
|
|
||
|
// r0^7 & r0^6 terms
|
||
|
mul r4, r4, r0; // r0^6
|
||
|
mad r2, r5, c13.wwww, r2;
|
||
|
mad r1, r4, c14.wwww, r1;
|
||
|
|
||
|
// Calc our depth based filtering here into r4 (because we don't use it again
|
||
|
// after here, and we need our filtering shortly).
|
||
|
sub r4, c30, r6.zzzz;
|
||
|
mul r4, r4, c31;
|
||
|
add r4, r4, c32;
|
||
|
// Clamp .xyz to range [0..1]
|
||
|
min r4.xyz, r4, c16.zzzz;
|
||
|
max r4.xyz, r4, c16.xxxx;
|
||
|
|
||
|
// Calc our filter (see above).
|
||
|
mul r11, v5.wwww, c29;
|
||
|
max r11, r11, c16.xxxx;
|
||
|
min r11, r11, c16.zzzz;
|
||
|
|
||
|
//mov r2, r1;
|
||
|
// r2 == sinDist
|
||
|
// r1 == cosDist
|
||
|
// sinDist *= filter;
|
||
|
mul r2, r2, r11;
|
||
|
// sinDist *= kAmplitude.xyzw
|
||
|
mul r2, r2, c7;
|
||
|
// height = dp4(sinDist, kOne);
|
||
|
// accumPos.z += height; (but accumPos.z is currently 0).
|
||
|
dp4 r8.x, r2, c16.zzzz;
|
||
|
|
||
|
// Smooth the approach to the shore.
|
||
|
/*
|
||
|
sub r10.x, r6.z, c30.w; // r10.x = height
|
||
|
mul r10.x, r10.x, r10.x; // r10.x = h^2
|
||
|
mul r10.x, r10.x, c10.x; // r10.x = -h^2 * k1 / k2^2
|
||
|
add r10.x, r10.x, c10.y; // r10.x = k1 + -h^2 * k1 / k2^2
|
||
|
max r10.x, r10.x, c16.xxxx; // Clamp to >= zero
|
||
|
add r8.x, r8.x, r10.x; // r8.x += del
|
||
|
*/
|
||
|
|
||
|
mul r8.y, r8.x, r4.z;
|
||
|
add r8.z, r8.y, c30.w;
|
||
|
max r6.z, r6.z, r8.z;
|
||
|
// r8.x == wave height relative to 0
|
||
|
// r8.y == dampened wave relative to 0
|
||
|
// r8.z == dampened wave height in world space
|
||
|
// r6.z == wave height clamped to never go beneath ground level
|
||
|
//
|
||
|
// cosDist *= filter;
|
||
|
mul r1, r1, r11;
|
||
|
|
||
|
// Pos = (in.x + S, in.y + R, r6.z)
|
||
|
// S = sum(k Dir.x A cos())
|
||
|
// R = sum(k Dir.y A cos())
|
||
|
// c17 = k Dir.x A
|
||
|
// c18 = k Dir.y A
|
||
|
// S = sum(cosDist * c17);
|
||
|
dp4 r7.x, r1, c17;
|
||
|
dp4 r7.y, r1, c18;
|
||
|
|
||
|
add r6.xy, r6.xy, r7.xy;
|
||
|
|
||
|
// Initialize r0.w
|
||
|
mov r0.w, c16.zzzz;
|
||
|
|
||
|
//##dp3 r0.x, r3, r3;
|
||
|
//##rsq r0.x, r0.x;
|
||
|
//##mul r3, r3, r0.xxxw;
|
||
|
|
||
|
|
||
|
//
|
||
|
// // Transform position to screen
|
||
|
//
|
||
|
//
|
||
|
//m4x3 r6, v0, c25; // HACKAGE
|
||
|
//mov r6.w, c16.z; // HACKAGE
|
||
|
//m4x4 oPos, r6, c0; // ADDFOG
|
||
|
m4x4 r9, r6, c0;
|
||
|
add r10.x, r9.w, c11.x;
|
||
|
mul oFog, r10.x, c11.y;
|
||
|
mov oPos, r9;
|
||
|
|
||
|
|
||
|
// Color
|
||
|
mul oD0, c4, v5.xxxx;
|
||
|
|
||
|
// UVW0
|
||
|
// This layer just stays put. The motion's in the texture
|
||
|
// U = transformed U
|
||
|
// V = transformed V
|
||
|
dp4 r0.x, v7, c19;
|
||
|
dp4 r0.y, v7, c20;
|
||
|
//mul r0.y, r0.y, -c16.z;
|
||
|
//add r0.y, r0.y, c16.z;
|
||
|
//add r0.y, r0.y, c16.z;
|
||
|
//add r0.y, r0.y, c16.y;
|
||
|
mov oT0, r0.xyww;
|
||
|
mov oT1, r0.xyww;
|
||
|
mov oT2, r0.xyww;
|
||
|
|