You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

348 lines
8.8 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "plRegistryKeyList.h"
#include "plRegistryHelpers.h"
#include "hsStream.h"
#include <algorithm>
plRegistryKeyList::plRegistryKeyList(UInt16 classType)
{
fClassType = classType;
fReffedStaticKeys = 0;
fLocked = 0;
fFlags = 0;
}
plRegistryKeyList::~plRegistryKeyList()
{
hsAssert(fLocked == 0, "Key list still locked on delete");
for (int i = 0; i < fStaticKeys.size(); i++)
{
plKeyImp* keyImp = fStaticKeys[i];
if (!keyImp->ObjectIsLoaded())
delete keyImp;
}
}
// Special dummy key that lets us set the return value of the GetName call.
// Makes it easier to do STL searches.
class plSearchKeyImp : public plKeyImp
{
public:
const char* fSearchKeyName;
const char* GetName() const { return fSearchKeyName; }
};
plKeyImp* plRegistryKeyList::FindKey(const char* keyName)
{
static plSearchKeyImp searchKey;
searchKey.fSearchKeyName = keyName;
// Search the static key list
if (fFlags & kStaticUnsorted)
{
// We're unsorted, brute force it. May do a separate search table in the
// future if this is a bottlneck
for (int i = 0; i < fStaticKeys.size(); i++)
{
plKeyImp* curKey = fStaticKeys[i];
if (curKey && hsStrCaseEQ(keyName, curKey->GetName()))
return curKey;
}
}
else
{
// We're sorted, do a fast lookup
StaticVec::const_iterator it = std::lower_bound(fStaticKeys.begin(), fStaticKeys.end(), &searchKey, KeySorter());
if (it != fStaticKeys.end() && hsStrCaseEQ(keyName, (*it)->GetName()))
return *it;
}
// Search the dynamic key list
DynSet::const_iterator dynIt = fDynamicKeys.find(&searchKey);
if (dynIt != fDynamicKeys.end())
return *dynIt;
return nil;
}
plKeyImp* plRegistryKeyList::FindKey(const plUoid& uoid)
{
UInt32 objectID = uoid.GetObjectID();
// Key is dynamic or doesn't know it's index. Do a find by name.
if (objectID == 0)
return FindKey(uoid.GetObjectName());
// Direct lookup
if (objectID <= fStaticKeys.size())
{
#ifdef PLASMA_EXTERNAL_RELEASE
return fStaticKeys[objectID-1];
#else
// If this is an internal release, our objectIDs might not match
// because of local data. Verify that we have the right key by
// name, and if it's wrong, do the slower find-by-name.
plKeyImp *keyImp = fStaticKeys[objectID-1];
if (!hsStrCaseEQ(keyImp->GetName(), uoid.GetObjectName()))
return FindKey(uoid.GetObjectName());
else
return keyImp;
#endif // PLASMA_EXTERNAL_RELEASE
}
// If we got here it probably means we just deleted all our keys of the matching type
// because no one was using them. No worries. The resManager will catch this and
// reload our keys, then try again.
return nil;
}
void plRegistryKeyList::ILock()
{
fLocked++;
}
void plRegistryKeyList::IUnlock()
{
fLocked--;
if (fLocked == 0)
IRepack();
}
bool plRegistryKeyList::IterateKeys(plRegistryKeyIterator* iterator)
{
ILock();
for (int i = 0; i < fStaticKeys.size(); i++)
{
plKeyImp* keyImp = fStaticKeys[i];
if (keyImp != nil)
{
if (!iterator->EatKey(plKey::Make(keyImp)))
{
IUnlock();
return false;
}
}
}
DynSet::const_iterator it;
for (it = fDynamicKeys.begin(); it != fDynamicKeys.end(); it++)
{
plKeyImp* keyImp = *it;
hsAssert(keyImp, "Shouldn't ever have a nil dynamic key");
if (!iterator->EatKey(plKey::Make(keyImp)))
{
IUnlock();
return false;
}
}
IUnlock();
return true;
}
void plRegistryKeyList::AddKey(plKeyImp* key, LoadStatus& loadStatusChange)
{
loadStatusChange = kNoChange;
hsAssert(fLocked == 0, "Don't currently support adding keys while locked");
if (fLocked == 0 && key != nil)
{
// If this is the first key added, we just became loaded
if (fDynamicKeys.empty())
loadStatusChange = kDynLoaded;
hsAssert(fDynamicKeys.find(key) == fDynamicKeys.end(), "Key already added");
fDynamicKeys.insert(key);
}
}
void plRegistryKeyList::SetKeyUsed(plKeyImp* key)
{
// If this is a static key, mark that we used it. Otherwise, just ignore it.
UInt32 id = key->GetUoid().GetObjectID();
if (id > 0)
fReffedStaticKeys++;
}
bool plRegistryKeyList::SetKeyUnused(plKeyImp* key, LoadStatus& loadStatusChange)
{
loadStatusChange = kNoChange;
// Clones never officially get added to the key list (they're maintained by
// the original key), so just ignore them
if (key->GetUoid().IsClone())
{
delete key;
return true;
}
// Check if it's a static key
UInt32 id = key->GetUoid().GetObjectID();
hsAssert(id <= fStaticKeys.size(), "Bad static key id");
if (id != 0 && id <= fStaticKeys.size())
{
fReffedStaticKeys--;
if (fLocked == 0)
IRepack();
// That was our last used static key, we're static unloaded
if (fReffedStaticKeys == 0)
loadStatusChange = kStaticUnloaded;
return true;
}
// Try to find it in the dynamic key list
DynSet::iterator dynIt = fDynamicKeys.find(key);
if (dynIt != fDynamicKeys.end())
{
hsAssert(fLocked == 0, "Don't currently support removing dynamic keys while locked");
if (fLocked == 0)
{
fDynamicKeys.erase(dynIt);
delete key;
// That was our last dynamic key, notify of dynamic unloaded
if (fDynamicKeys.empty())
loadStatusChange = kDynUnloaded;
return true;
}
return false;
}
hsAssert(0, "Couldn't find this key, what is it?");
return false;
}
//// IRepack /////////////////////////////////////////////////////////////////
// Frees the memory for our static key array if none of them are loaded
void plRegistryKeyList::IRepack()
{
if (fReffedStaticKeys == 0 && !fStaticKeys.empty())
{
for (int i = 0; i < fStaticKeys.size(); i++)
delete fStaticKeys[i];
fStaticKeys.clear();
}
}
void plRegistryKeyList::PrepForWrite()
{
// If we have any static keys already, we were read in. To keep from
// invalidating old key indexes any new keys have to go on the end, hence we're
// unsorted now.
if (!fStaticKeys.empty())
fFlags |= kStaticUnsorted;
// If a dynamic keys doesn't have an object assigned to it, we're not writing
// it out. Figure out how many valid keys we have.
int numDynKeys = 0;
DynSet::const_iterator cIt;
for (cIt = fDynamicKeys.begin(); cIt != fDynamicKeys.end(); cIt++)
{
plKeyImp* key = *cIt;
// We're only going to write out keys that have objects
if (key->ObjectIsLoaded())
numDynKeys++;
}
// Start our new object id's after any already created ones
UInt32 objectID = fStaticKeys.size()+1;
// Make room for our new keys
fStaticKeys.resize(fStaticKeys.size()+numDynKeys);
DynSet::iterator it = fDynamicKeys.begin();
while (it != fDynamicKeys.end())
{
plKeyImp* key = *it;
it++;
// If we're gonna use this key, tag it with it's object id and move it to the static array.
if (key->ObjectIsLoaded())
{
key->SetObjectID(objectID);
fStaticKeys[objectID-1] = key;
objectID++;
fReffedStaticKeys++;
fDynamicKeys.erase(key);
}
}
}
void plRegistryKeyList::Read(hsStream* s)
{
UInt32 keyListLen = s->ReadSwap32();
if (!fStaticKeys.empty())
{
s->Skip(keyListLen);
return;
}
fFlags = s->ReadByte();
UInt32 numKeys = s->ReadSwap32();
fStaticKeys.resize(numKeys);
for (int i = 0; i < numKeys; i++)
{
plKeyImp* newKey = TRACKED_NEW plKeyImp;
newKey->Read(s);
fStaticKeys[i] = newKey;
}
}
void plRegistryKeyList::Write(hsStream* s)
{
// Save space for the length of our data
UInt32 beginPos = s->GetPosition();
s->WriteSwap32(0);
s->WriteByte(fFlags);
int numKeys = fStaticKeys.size();
s->WriteSwap32(numKeys);
// Write out all our keys (anything in dynamic is unused, so just ignore those)
for (int i = 0; i < numKeys; i++)
{
plKeyImp* key = fStaticKeys[i];
key->Write(s);
}
// Go back to the start and write the length of our data
UInt32 endPos = s->GetPosition();
s->SetPosition(beginPos);
s->WriteSwap32(endPos-beginPos-sizeof(UInt32));
s->SetPosition(endPos);
}