You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

423 lines
14 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Additional permissions under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "cyPhysics.h"
#include "pyKey.h"
#include "pyGeometry3.h"
#include "pyMatrix44.h"
#include <python.h>
// glue functions
PYTHON_CLASS_DEFINITION(ptPhysics, cyPhysics);
PYTHON_DEFAULT_NEW_DEFINITION(ptPhysics, cyPhysics)
PYTHON_DEFAULT_DEALLOC_DEFINITION(ptPhysics)
PYTHON_INIT_DEFINITION(ptPhysics, args, keywords)
{
PYTHON_RETURN_INIT_OK;
}
PYTHON_METHOD_DEFINITION(ptPhysics, netForce, args)
{
char forceFlag;
if (!PyArg_ParseTuple(args, "b", &forceFlag))
{
PyErr_SetString(PyExc_TypeError, "netForce requires a boolean argument");
PYTHON_RETURN_ERROR;
}
self->fThis->SetNetForce(forceFlag != 0);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, enable, args)
{
char stateFlag = 1;
if (!PyArg_ParseTuple(args, "|b", &stateFlag))
{
PyErr_SetString(PyExc_TypeError, "enable expects an optional boolean argument");
PYTHON_RETURN_ERROR;
}
self->fThis->EnableT(stateFlag != 0);
PYTHON_RETURN_NONE;
}
PYTHON_BASIC_METHOD_DEFINITION(ptPhysics, disable, Disable)
PYTHON_BASIC_METHOD_DEFINITION(ptPhysics, disableCollision, DisableCollision)
PYTHON_BASIC_METHOD_DEFINITION(ptPhysics, enableCollision, EnableCollision)
PYTHON_METHOD_DEFINITION(ptPhysics, warp, args)
{
PyObject *positionObject = NULL;
if (!PyArg_ParseTuple(args, "O", &positionObject))
{
PyErr_SetString(PyExc_TypeError, "warp expects a ptPoint3 or ptMatrix44 object");
PYTHON_RETURN_ERROR;
}
if (pyPoint3::Check(positionObject))
{
pyPoint3 *pos = pyPoint3::ConvertFrom(positionObject);
self->fThis->Warp(*pos);
PYTHON_RETURN_NONE;
}
else if (pyMatrix44::Check(positionObject))
{
pyMatrix44 *mat = pyMatrix44::ConvertFrom(positionObject);
self->fThis->WarpMat(*mat);
PYTHON_RETURN_NONE;
}
PyErr_SetString(PyExc_TypeError, "warp expects a ptPoint3 or ptMatrix44 object");
PYTHON_RETURN_ERROR;
}
PYTHON_METHOD_DEFINITION(ptPhysics, warpObj, args)
{
PyObject *keyObject = NULL;
if (!PyArg_ParseTuple(args, "O", &keyObject))
{
PyErr_SetString(PyExc_TypeError, "warpObj expects a ptKey");
PYTHON_RETURN_ERROR;
}
if (!pyKey::Check(keyObject))
{
PyErr_SetString(PyExc_TypeError, "warpObj expects a ptKey");
PYTHON_RETURN_ERROR;
}
pyKey *key = pyKey::ConvertFrom(keyObject);
self->fThis->WarpObj(*key);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, move, args)
{
PyObject *directionObject = NULL;
float distance;
if (!PyArg_ParseTuple(args, "Of", &directionObject, &distance))
{
PyErr_SetString(PyExc_TypeError, "move expects a ptVector3 and float");
PYTHON_RETURN_ERROR;
}
if (!pyVector3::Check(directionObject))
{
PyErr_SetString(PyExc_TypeError, "move expects a ptVector3 and float");
PYTHON_RETURN_ERROR;
}
pyVector3 *direction = pyVector3::ConvertFrom(directionObject);
self->fThis->Move(*direction, distance);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, rotate, args)
{
float radians;
PyObject *axisObject = NULL;
if (!PyArg_ParseTuple(args, "fO", &radians, &axisObject))
{
PyErr_SetString(PyExc_TypeError, "rotate expects a float and ptVector3");
PYTHON_RETURN_ERROR;
}
if (!pyVector3::Check(axisObject))
{
PyErr_SetString(PyExc_TypeError, "rotate expects a float and ptVector3");
PYTHON_RETURN_ERROR;
}
pyVector3 *axis = pyVector3::ConvertFrom(axisObject);
self->fThis->Rotate(radians, *axis);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, force, args)
{
PyObject *forceObject = NULL;
if (!PyArg_ParseTuple(args, "O", &forceObject))
{
PyErr_SetString(PyExc_TypeError, "force expects a ptVector3");
PYTHON_RETURN_ERROR;
}
if (!pyVector3::Check(forceObject))
{
PyErr_SetString(PyExc_TypeError, "force expects a ptVector3");
PYTHON_RETURN_ERROR;
}
pyVector3 *force = pyVector3::ConvertFrom(forceObject);
self->fThis->Force(*force);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, forceWithOffset, args)
{
PyObject *forceObject = NULL;
PyObject *offsetObject = NULL;
if (!PyArg_ParseTuple(args, "OO", &forceObject, &offsetObject))
{
PyErr_SetString(PyExc_TypeError, "forceWithOffset expects a ptVector3 and a ptPoint3");
PYTHON_RETURN_ERROR;
}
if ((!pyVector3::Check(forceObject)) || (!pyPoint3::Check(offsetObject)))
{
PyErr_SetString(PyExc_TypeError, "forceWithOffset expects a ptVector3 and a ptPoint3");
PYTHON_RETURN_ERROR;
}
pyVector3 *force = pyVector3::ConvertFrom(forceObject);
pyPoint3 *offset = pyPoint3::ConvertFrom(offsetObject);
self->fThis->ForceWithOffset(*force, *offset);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, torque, args)
{
PyObject *torqueObject = NULL;
if (!PyArg_ParseTuple(args, "O", &torqueObject))
{
PyErr_SetString(PyExc_TypeError, "torque expects a ptVector3");
PYTHON_RETURN_ERROR;
}
if (!pyVector3::Check(torqueObject))
{
PyErr_SetString(PyExc_TypeError, "torque expects a ptVector3");
PYTHON_RETURN_ERROR;
}
pyVector3 *torque = pyVector3::ConvertFrom(torqueObject);
self->fThis->Torque(*torque);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, impulse, args)
{
PyObject *forceObject = NULL;
if (!PyArg_ParseTuple(args, "O", &forceObject))
{
PyErr_SetString(PyExc_TypeError, "impulse expects a ptVector3");
PYTHON_RETURN_ERROR;
}
if (!pyVector3::Check(forceObject))
{
PyErr_SetString(PyExc_TypeError, "impulse expects a ptVector3");
PYTHON_RETURN_ERROR;
}
pyVector3 *force = pyVector3::ConvertFrom(forceObject);
self->fThis->Impulse(*force);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, impulseWithOffset, args)
{
PyObject *forceObject = NULL;
PyObject *offsetObject = NULL;
if (!PyArg_ParseTuple(args, "OO", &forceObject, &offsetObject))
{
PyErr_SetString(PyExc_TypeError, "impulseWithOffset expects a ptVector3 and a ptPoint3");
PYTHON_RETURN_ERROR;
}
if ((!pyVector3::Check(forceObject)) || (!pyPoint3::Check(offsetObject)))
{
PyErr_SetString(PyExc_TypeError, "impulseWithOffset expects a ptVector3 and a ptPoint3");
PYTHON_RETURN_ERROR;
}
pyVector3 *force = pyVector3::ConvertFrom(forceObject);
pyPoint3 *offset = pyPoint3::ConvertFrom(offsetObject);
self->fThis->ImpulseWithOffset(*force, *offset);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, angularImpulse, args)
{
PyObject *forceObject = NULL;
if (!PyArg_ParseTuple(args, "O", &forceObject))
{
PyErr_SetString(PyExc_TypeError, "angularImpulse expects a ptVector3");
PYTHON_RETURN_ERROR;
}
if (!pyVector3::Check(forceObject))
{
PyErr_SetString(PyExc_TypeError, "angularImpulse expects a ptVector3");
PYTHON_RETURN_ERROR;
}
pyVector3 *force = pyVector3::ConvertFrom(forceObject);
self->fThis->AngularImpulse(*force);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, damp, args)
{
float damp;
if (!PyArg_ParseTuple(args, "f", &damp))
{
PyErr_SetString(PyExc_TypeError, "damp expects a float");
PYTHON_RETURN_ERROR;
}
self->fThis->Damp(damp);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, shiftMass, args)
{
PyObject *offestObject = NULL;
if (!PyArg_ParseTuple(args, "O", &offestObject))
{
PyErr_SetString(PyExc_TypeError, "shiftMass expects a ptVector3");
PYTHON_RETURN_ERROR;
}
if (!pyVector3::Check(offestObject))
{
PyErr_SetString(PyExc_TypeError, "shiftMass expects a ptVector3");
PYTHON_RETURN_ERROR;
}
pyVector3 *offset = pyVector3::ConvertFrom(offestObject);
self->fThis->ShiftMass(*offset);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, suppress, args)
{
char doSuppress;
if (!PyArg_ParseTuple(args, "b", &doSuppress))
{
PyErr_SetString(PyExc_TypeError, "suppress expects a boolean");
PYTHON_RETURN_NONE;
}
self->fThis->Suppress(doSuppress != 0);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, setLinearVelocity, args)
{
PyObject *velocity = NULL;
if (!PyArg_ParseTuple(args, "O", &velocity))
{
PyErr_SetString(PyExc_TypeError, "setVelocity expects a ptVector3");
PYTHON_RETURN_ERROR;
}
if (!pyVector3::Check(velocity))
{
PyErr_SetString(PyExc_TypeError, "setVelocity expects a ptVector3");
PYTHON_RETURN_ERROR;
}
pyVector3 *velocityVec = pyVector3::ConvertFrom(velocity);
self->fThis->SetLinearVelocity(*velocityVec);
PYTHON_RETURN_NONE;
}
PYTHON_METHOD_DEFINITION(ptPhysics, setAngularVelocity, args)
{
PyObject *velocity = NULL;
if (!PyArg_ParseTuple(args, "O", &velocity))
{
PyErr_SetString(PyExc_TypeError, "setAngularVelocity expects a ptVector3");
PYTHON_RETURN_ERROR;
}
if (!pyVector3::Check(velocity))
{
PyErr_SetString(PyExc_TypeError, "setAngularVelocity expects a ptVector3");
PYTHON_RETURN_ERROR;
}
pyVector3 *velocityVec = pyVector3::ConvertFrom(velocity);
self->fThis->SetAngularVelocity(*velocityVec);
PYTHON_RETURN_NONE;
}
PYTHON_START_METHODS_TABLE(ptPhysics)
PYTHON_METHOD(ptPhysics, netForce, "Params: forceFlag\nSpecify whether this object needs to use messages that are forced to the network\n"
"- This is to be used if your Python program is running on only one client\n"
"Such as a game master, only running on the client that owns a particular object"),
PYTHON_METHOD(ptPhysics, enable, "Params: state=1\nSets the physics enable state for the sceneobject attached"),
PYTHON_BASIC_METHOD(ptPhysics, disable, "Disables physics on the sceneobject attached"),
PYTHON_BASIC_METHOD(ptPhysics, disableCollision, "Disables collision detection on the attached sceneobject"),
PYTHON_BASIC_METHOD(ptPhysics, enableCollision, "Enables collision detection on the attached sceneobject"),
PYTHON_METHOD(ptPhysics, warp, "Params: position\nWarps the sceneobject to a specified location.\n"
"'position' can be a ptPoint3 or a ptMatrix44"),
PYTHON_METHOD(ptPhysics, warpObj, "Params: objkey\nWarps the sceneobject to match the location and orientation of the specified object"),
PYTHON_METHOD(ptPhysics, move, "Params: direction,distance\nMoves the attached sceneobject the specified distance in the specified direction"),
PYTHON_METHOD(ptPhysics, rotate, "Params: radians,axis\nRotates the attached sceneobject the specified radians around the specified axis"),
PYTHON_METHOD(ptPhysics, force, "Params: forceVector\nApplies the specified force to the attached sceneobject"),
PYTHON_METHOD(ptPhysics, forceWithOffset, "Params: forceVector,offsetPt\nApplies the specified offsetted force to the attached sceneobject"),
PYTHON_METHOD(ptPhysics, torque, "Params: torqueVector\nApplies the specified torque to the attached sceneobject"),
PYTHON_METHOD(ptPhysics, impulse, "Params: impulseVector\nAdds the given vector to the attached sceneobject's velocity"),
PYTHON_METHOD(ptPhysics, impulseWithOffset, "Params: impulseVector,offsetPt\nAdds the given vector to the attached sceneobject's velocity\n"
"with the specified offset"),
PYTHON_METHOD(ptPhysics, angularImpulse, "Params: impulseVector\nAdd the given vector (representing a rotation axis and magnitude) to\n"
"the attached sceneobject's velocity"),
PYTHON_METHOD(ptPhysics, damp, "Params: damp\nReduce all velocities on the object (0 = all stop, 1 = no effect)"),
PYTHON_METHOD(ptPhysics, shiftMass, "Params: offsetVector\nShifts the attached sceneobject's center to mass in the specified direction and distance"),
PYTHON_METHOD(ptPhysics, suppress, "Params: doSuppress\nCompletely remove the physical, but keep it around so it\n"
"can be added back later."),
PYTHON_METHOD(ptPhysics, setLinearVelocity, "Params: velocityVector\nSets the objects LinearVelocity to the specified vector"),
PYTHON_METHOD(ptPhysics, setAngularVelocity, "Params: velocityVector\nSets the objects AngularVelocity to the specified vector"),
PYTHON_END_METHODS_TABLE;
// Type structure definition
PLASMA_DEFAULT_TYPE(ptPhysics, "Plasma physics class");
// required functions for PyObject interoperability
PyObject *cyPhysics::New(PyObject *sender, PyObject *recvr)
{
ptPhysics *newObj = (ptPhysics*)ptPhysics_type.tp_new(&ptPhysics_type, NULL, NULL);
if (sender != NULL)
{
pyKey *senderKey = pyKey::ConvertFrom(sender);
newObj->fThis->SetSender(senderKey->getKey());
}
if (recvr != NULL)
{
pyKey *recvrKey = pyKey::ConvertFrom(recvr);
newObj->fThis->AddRecvr(recvrKey->getKey());
}
newObj->fThis->SetNetForce(false);
return (PyObject*)newObj;
}
PYTHON_CLASS_CHECK_IMPL(ptPhysics, cyPhysics)
PYTHON_CLASS_CONVERT_FROM_IMPL(ptPhysics, cyPhysics)
///////////////////////////////////////////////////////////////////////////
//
// AddPlasmaClasses - the python module definitions
//
void cyPhysics::AddPlasmaClasses(PyObject *m)
{
PYTHON_CLASS_IMPORT_START(m);
PYTHON_CLASS_IMPORT(m, ptPhysics);
PYTHON_CLASS_IMPORT_END(m);
}