You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

611 lines
24 KiB

/* This file is part of Korman.
*
* Korman is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Korman is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Korman. If not, see <http://www.gnu.org/licenses/>.
*/
#include "texture.h"
#include "PyHSPlasma_private.h"
#ifdef _WIN32
# define WIN32_LEAN_AND_MEAN
# define NOMINMAX
# include <windows.h>
#endif // _WIN32
#include <cmath>
#include <GL/gl.h>
#include <PRP/Surface/plMipmap.h>
#define TEXTARGET_TEXTURE_2D 0
// ===============================================================================================
static inline void _ensure_copy_bytes(PyObject* parent, PyObject*& data) {
// PyBytes objects are immutable and ought not to be changed once they are returned to Python
// code. Therefore, this tests to see if the given bytes object is the same as one we're holding.
// If so, a new copy is constructed seamlessly.
if (parent == data) {
Py_ssize_t size;
char* buf;
PyBytes_AsStringAndSize(parent, &buf, &size);
data = PyBytes_FromStringAndSize(buf, size);
Py_DECREF(parent);
}
}
template<typename T>
static T _ensure_power_of_two(T value) {
return static_cast<T>(std::pow(2, std::floor(std::log2(value))));
}
static void _flip_image(size_t width, size_t dataSize, uint8_t* data) {
// OpenGL returns a flipped image, so we must reflip it.
size_t row_stride = width * 4;
uint8_t* sptr = data;
uint8_t* eptr = data + (dataSize - row_stride);
uint8_t* temp = new uint8_t[row_stride];
do {
memcpy(temp, sptr, row_stride);
memcpy(sptr, eptr, row_stride);
memcpy(eptr, temp, row_stride);
} while ((sptr += row_stride) < (eptr -= row_stride));
delete[] temp;
}
static inline bool _get_float(PyObject* source, const char* attr, float& result) {
if (source) {
PyObjectRef pyfloat = PyObject_GetAttrString(source, attr);
if (pyfloat) {
result = (float)PyFloat_AsDouble(pyfloat);
return PyErr_Occurred() == NULL;
}
}
return false;
}
static inline int _get_num_levels(size_t width, size_t height) {
int num_levels = (int)std::floor(std::log2(std::max((float)width, (float)height))) + 1;
// Major Workaround Ahoy
// There is a bug in Cyan's level size algorithm that causes it to not allocate enough memory
// for the color block in certain mipmaps. I personally have encountered an access violation on
// 1x1 DXT5 mip levels -- the code only allocates an alpha block and not a color block. Paradox
// reports that if any dimension is smaller than 4px in a mip level, OpenGL doesn't like Cyan generated
// data. So, we're going to lop off the last two mip levels, which should be 1px and 2px as the smallest.
// This bug is basically unfixable without crazy hacks because of the way Plasma reads in texture data.
// "<Deledrius> I feel like any texture at a 1x1 level is essentially academic. I mean, JPEG/DXT
// doesn't even compress that, and what is it? Just the average color of the whole
// texture in a single pixel?"
// :)
return std::max(num_levels - 2, 2);
}
static void _scale_image(const uint8_t* srcBuf, const size_t srcW, const size_t srcH,
uint8_t* dstBuf, const size_t dstW, const size_t dstH) {
float scaleX = static_cast<float>(srcW) / static_cast<float>(dstW);
float scaleY = static_cast<float>(srcH) / static_cast<float>(dstH);
float filterW = std::max(scaleX, 1.f);
float filterH = std::max(scaleY, 1.f);
size_t srcRowspan = srcW * sizeof(uint32_t);
size_t dstIdx = 0;
for (size_t dstY = 0; dstY < dstH; ++dstY) {
float srcY = dstY * scaleY;
ssize_t srcY_start = std::max(static_cast<ssize_t>(srcY - filterH),
static_cast<ssize_t>(0));
ssize_t srcY_end = std::min(static_cast<ssize_t>(srcY + filterH),
static_cast<ssize_t>(srcH - 1));
float weightsY[16];
for (ssize_t i = srcY_start; i <= srcY_end && i - srcY_start < arrsize(weightsY); ++i)
weightsY[i - srcY_start] = 1.f - std::abs((i - srcY) / filterH);
for (size_t dstX = 0; dstX < dstW; ++dstX) {
float srcX = dstX * scaleX;
ssize_t srcX_start = std::max(static_cast<ssize_t>(srcX - filterW),
static_cast<ssize_t>(0));
ssize_t srcX_end = std::min(static_cast<ssize_t>(srcX + filterW),
static_cast<ssize_t>(srcW - 1));
float weightsX[16];
for (ssize_t i = srcX_start; i <= srcX_end && i - srcX_start < arrsize(weightsX); ++i)
weightsX[i - srcX_start] = 1.f - std::abs((i - srcX) / filterW);
float accum_color[] = { 0.f, 0.f, 0.f, 0.f };
float weight_total = 0.f;
for (size_t i = srcY_start; i <= srcY_end; ++i) {
float weightY;
if (i - srcY_start < arrsize(weightsY))
weightY = weightsY[i - srcY_start];
else
weightY = 1.f - std::abs((i - srcY) / filterH);
if (weightY <= 0.f)
continue;
size_t srcIdx = ((i * srcRowspan) + (srcX_start * sizeof(uint32_t)));
for (size_t j = srcX_start; j <= srcX_end; ++j, srcIdx += sizeof(uint32_t)) {
float weightX;
if (j - srcX_start < arrsize(weightsX))
weightX = weightsX[j - srcX_start];
else
weightX = 1.f - std::abs((j - srcX) / filterW);
float weight = weightX * weightY;
if (weight > 0.f) {
for (size_t k = 0; k < sizeof(uint32_t); ++k)
accum_color[k] += (static_cast<float>(srcBuf[srcIdx+k]) / 255.f) * weight;
weight_total += weight;
}
}
}
for (size_t k = 0; k < sizeof(uint32_t); ++k)
accum_color[k] *= 1.f / weight_total;
// Whew.
for (size_t k = 0; k < sizeof(uint32_t); ++k)
dstBuf[dstIdx+k] = static_cast<uint8_t>(accum_color[k] * 255.f);
dstIdx += sizeof(uint32_t);
}
}
}
// ===============================================================================================
PyObject* scale_image(PyObject*, PyObject* args, PyObject* kwargs) {
static char* kwlist[] = { _pycs("buf"), _pycs("srcW"), _pycs("srcH"),
_pycs("dstW"), _pycs("dstH"), NULL };
const uint8_t* srcBuf;
int srcBufSz;
uint32_t srcW, srcH, dstW, dstH;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "y#IIII", kwlist, &srcBuf, &srcBufSz, &srcW, &srcH, &dstW, &dstH)) {
PyErr_SetString(PyExc_TypeError, "scale_image expects a bytes object, int, int, int int");
return NULL;
}
int expectedBufSz = srcW * srcH * sizeof(uint32_t);
if (srcBufSz != expectedBufSz) {
PyErr_Format(PyExc_ValueError, "buf size (%i bytes) incorrect (expected: %i bytes)", srcBufSz, expectedBufSz);
return NULL;
}
PyObject* dst = PyBytes_FromStringAndSize(NULL, dstW * dstH * sizeof(uint32_t));
uint8_t* dstBuf = reinterpret_cast<uint8_t*>(PyBytes_AS_STRING(dst));
_scale_image(srcBuf, srcW, srcH, dstBuf, dstW, dstH);
return dst;
}
// ===============================================================================================
enum {
TEX_DETAIL_ALPHA = 0,
TEX_DETAIL_ADD = 1,
TEX_DETAIL_MULTIPLY = 2,
};
enum {
kOpaque = 0,
kOnOff = 1,
kFull = 2,
};
typedef struct {
PyObject_HEAD
PyObject* m_blenderImage;
PyObject* m_textureKey;
PyObject* m_imageData;
GLint m_width;
GLint m_height;
bool m_bgra;
bool m_imageInverted;
} pyGLTexture;
// ===============================================================================================
static void pyGLTexture_dealloc(pyGLTexture* self) {
Py_CLEAR(self->m_textureKey);
Py_CLEAR(self->m_blenderImage);
Py_CLEAR(self->m_imageData);
Py_TYPE(self)->tp_free((PyObject*)self);
}
static PyObject* pyGLTexture_new(PyTypeObject* type, PyObject* args, PyObject* kwds) {
pyGLTexture* self = (pyGLTexture*)type->tp_alloc(type, 0);
self->m_blenderImage = NULL;
self->m_textureKey = NULL;
self->m_imageData = NULL;
self->m_width = 0;
self->m_height = 0;
self->m_bgra = false;
self->m_imageInverted = false;
return (PyObject*)self;
}
static int pyGLTexture___init__(pyGLTexture* self, PyObject* args, PyObject* kwds) {
static char* kwlist[] = { _pycs("texkey"), _pycs("image"), _pycs("bgra"), _pycs("fast"), NULL };
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OObb", kwlist, &self->m_textureKey, &self->m_blenderImage,
&self->m_bgra, &self->m_imageInverted)) {
PyErr_SetString(PyExc_TypeError, "expected a korman.exporter.material._Texture or a bpy.types.Image");
return -1;
}
if (!self->m_blenderImage && !self->m_textureKey) {
PyErr_SetString(PyExc_TypeError, "expected a korman.exporter.material._Texture or a bpy.types.Image");
return -1;
}
Py_XINCREF(self->m_blenderImage);
Py_XINCREF(self->m_textureKey);
if (!self->m_blenderImage) {
self->m_blenderImage = PyObject_GetAttrString(self->m_textureKey, "image");
}
if (!self->m_blenderImage) {
PyErr_SetString(PyExc_RuntimeError, "Could not fetch Blender Image");
return -1;
}
// Done!
return 0;
}
static PyObject* pyGLTexture__enter__(pyGLTexture* self) {
// Is the image already loaded?
PyObjectRef bindcode = PyObject_GetAttrString(self->m_blenderImage, "bindcode");
// bindcode changed to a sequence in 2.77. We want the first element for a 2D texture.
// Why did we make this change, exactly?
if (PySequence_Check(bindcode)) {
bindcode = PySequence_GetItem(bindcode, TEXTARGET_TEXTURE_2D);
}
// Now we should have a GLuint...
if (!PyLong_Check(bindcode)) {
PyErr_SetString(PyExc_TypeError, "Image bindcode isn't a long?");
return NULL;
}
GLint prevImage;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &prevImage);
GLuint image_bindcode = PyLong_AsUnsignedLong(bindcode);
bool ownit = image_bindcode == 0;
// Load image into GL
if (ownit) {
PyObjectRef new_bind = PyObject_CallMethod(self->m_blenderImage, "gl_load", NULL);
if (!new_bind)
return NULL;
if (!PyLong_Check(new_bind)) {
PyErr_SetString(PyExc_TypeError, "gl_load() did not return a long");
return NULL;
}
ssize_t result = PyLong_AsSize_t(new_bind);
if (result != GL_NO_ERROR) {
PyErr_Format(PyExc_RuntimeError, "gl_load() error: %d", result);
return NULL;
}
bindcode = PyObject_GetAttrString(self->m_blenderImage, "bindcode");
if (PySequence_Check(bindcode)) {
bindcode = PySequence_GetItem(bindcode, TEXTARGET_TEXTURE_2D);
}
// Now we should have a GLuint...
if (!PyLong_Check(bindcode)) {
PyErr_SetString(PyExc_TypeError, "Image bindcode isn't a long?");
return NULL;
}
image_bindcode = PyLong_AsUnsignedLong(bindcode);
}
// Set image as current in GL
bool changedState = prevImage != image_bindcode;
if (changedState)
glBindTexture(GL_TEXTURE_2D, image_bindcode);
// Now we can load the image data...
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, &self->m_width);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, &self->m_height);
size_t bufsz = self->m_width * self->m_height * sizeof(uint32_t);
self->m_imageData = PyBytes_FromStringAndSize(NULL, bufsz);
char* imbuf = PyBytes_AS_STRING(self->m_imageData);
GLint fmt = self->m_bgra ? GL_BGRA_EXT : GL_RGBA;
glGetTexImage(GL_TEXTURE_2D, 0, fmt, GL_UNSIGNED_BYTE, reinterpret_cast<GLvoid*>(imbuf));
// OpenGL returns image data flipped upside down. We'll flip it to be correct, if requested.
if (!self->m_imageInverted)
_flip_image(self->m_width, bufsz, reinterpret_cast<uint8_t*>(imbuf));
// If we had to play with ourse^H^H^H^H^Hblender's image state, let's reset it
if (changedState)
glBindTexture(GL_TEXTURE_2D, prevImage);
if (ownit)
PyObjectRef result = PyObject_CallMethod(self->m_blenderImage, "gl_free", NULL);
Py_INCREF(self);
return (PyObject*)self;
}
static PyObject* pyGLTexture__exit__(pyGLTexture* self, PyObject*) {
Py_CLEAR(self->m_imageData);
Py_RETURN_NONE;
}
static int _generate_detail_alpha(pyGLTexture* self, GLint level, float* result) {
float dropoff_start, dropoff_stop, detail_max, detail_min;
if (!_get_float(self->m_textureKey, "detail_fade_start", dropoff_start))
return -1;
if (!_get_float(self->m_textureKey, "detail_fade_stop", dropoff_stop))
return -1;
if (!_get_float(self->m_textureKey, "detail_opacity_start", detail_max))
return -1;
if (!_get_float(self->m_textureKey, "detail_opacity_stop", detail_min))
return -1;
dropoff_start /= 100.f;
dropoff_start *= _get_num_levels(self->m_width, self->m_height);
dropoff_stop /= 100.f;
dropoff_stop *= _get_num_levels(self->m_width, self->m_height);
detail_max /= 100.f;
detail_min /= 100.f;
float alpha = (level - dropoff_start) * (detail_min - detail_max) / (dropoff_stop - dropoff_start) + detail_max;
if (detail_min < detail_max)
*result = std::min(detail_max, std::max(detail_min, alpha));
else
*result = std::min(detail_min, std::max(detail_max, alpha));
return 0;
}
static int _generate_detail_map(pyGLTexture* self, uint8_t* buf, size_t bufsz, GLint level) {
float alpha;
if (_generate_detail_alpha(self, level, &alpha) != 0)
return -1;
PyObjectRef pydetail_blend;
if (self->m_textureKey)
pydetail_blend = PyObject_GetAttrString(self->m_textureKey, "detail_blend");
if (!pydetail_blend)
return -1;
size_t detail_blend = PyLong_AsSize_t(pydetail_blend);
switch (detail_blend) {
case TEX_DETAIL_ALPHA: {
for (size_t i = 0; i < bufsz; i += 4) {
buf[i+3] = (uint8_t)(((float)buf[i+3]) * alpha);
}
}
break;
case TEX_DETAIL_ADD: {
for (size_t i = 0; i < bufsz; i += 4) {
buf[i+0] = (uint8_t)(((float)buf[i+0]) * alpha);
buf[i+1] = (uint8_t)(((float)buf[i+1]) * alpha);
buf[i+2] = (uint8_t)(((float)buf[i+2]) * alpha);
}
}
break;
case TEX_DETAIL_MULTIPLY: {
float invert_alpha = (1.f - alpha) * 255.f;
for (size_t i = 0; i < bufsz; i += 4) {
buf[i+3] = (uint8_t)((invert_alpha + (float)buf[i+3]) * alpha);
}
}
break;
default:
return -1;
}
return 0;
}
static PyObject* pyGLTexture_get_level_data(pyGLTexture* self, PyObject* args, PyObject* kwargs) {
static char* kwlist[] = { _pycs("level"), _pycs("calc_alpha"), _pycs("report"),
_pycs("indent"), _pycs("fast"), NULL };
GLint level = 0;
bool calc_alpha = false;
PyObject* report = nullptr;
int indent = 2;
bool fast = false;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ibOib", kwlist, &level, &calc_alpha, &report, &indent, &fast)) {
PyErr_SetString(PyExc_TypeError, "get_level_data expects an optional int, bool, obejct, int, bool");
return NULL;
}
// We only ever want to return POT images for use in Plasma
auto eWidth = _ensure_power_of_two(self->m_width) >> level;
auto eHeight = _ensure_power_of_two(self->m_height) >> level;
bool is_og = eWidth == self->m_width && eHeight == self->m_height;
size_t bufsz = eWidth * eHeight * sizeof(uint32_t);
// Print out the debug message
if (report && report != Py_None) {
PyObjectRef msg_func = PyObject_GetAttrString(report, "msg");
PyObjectRef args = Py_BuildValue("siii", "Level #{}: {}x{}", level, eWidth, eHeight);
PyObjectRef kwargs = Py_BuildValue("{s:i}", "indent", indent);
PyObjectRef result = PyObject_Call(msg_func, args, kwargs);
}
PyObject* data;
if (is_og) {
Py_INCREF(self->m_imageData);
data = self->m_imageData;
} else {
data = PyBytes_FromStringAndSize(NULL, bufsz);
uint8_t* dstBuf = reinterpret_cast<uint8_t*>(PyBytes_AsString(data)); // AS_STRING :(
uint8_t* srcBuf = reinterpret_cast<uint8_t*>(PyBytes_AsString(self->m_imageData));
_scale_image(srcBuf, self->m_width, self->m_height, dstBuf, eWidth, eHeight);
}
// Make sure the level data is not flipped upside down...
if (self->m_imageInverted && !fast) {
_ensure_copy_bytes(self->m_blenderImage, data);
_flip_image(eWidth, bufsz, reinterpret_cast<uint8_t*>(PyBytes_AS_STRING(data)));
}
// Detail blend
if (self->m_textureKey) {
PyObjectRef is_detail_map = PyObject_GetAttrString(self->m_textureKey, "is_detail_map");
if (PyLong_AsLong(is_detail_map) != 0) {
_ensure_copy_bytes(self->m_imageData, data);
uint8_t* buf = reinterpret_cast<uint8_t*>(PyBytes_AS_STRING(data));
if (_generate_detail_map(self, buf, bufsz, level) != 0) {
PyErr_SetString(PyExc_RuntimeError, "error while baking detail map");
Py_DECREF(data);
return NULL;
}
}
}
if (calc_alpha) {
_ensure_copy_bytes(self->m_imageData, data);
char* buf = PyBytes_AS_STRING(data);
for (size_t i = 0; i < bufsz; i += 4)
buf[i + 3] = (buf[i + 0] + buf[i + 1] + buf[i + 2]) / 3;
}
return data;
}
static PyMethodDef pyGLTexture_Methods[] = {
{ _pycs("__enter__"), (PyCFunction)pyGLTexture__enter__, METH_NOARGS, NULL },
{ _pycs("__exit__"), (PyCFunction)pyGLTexture__exit__, METH_VARARGS, NULL },
{ _pycs("get_level_data"), (PyCFunction)pyGLTexture_get_level_data, METH_KEYWORDS | METH_VARARGS, NULL },
{ NULL, NULL, 0, NULL }
};
static PyObject* pyGLTexture_get_has_alpha(pyGLTexture* self, void*) {
char* data = PyBytes_AsString(self->m_imageData);
size_t bufsz = self->m_width * self->m_height * sizeof(uint32_t);
bool transparency = false;
uint32_t* datap = reinterpret_cast<uint32_t*>(data);
uint32_t* endp = reinterpret_cast<uint32_t*>(data + bufsz);
while (datap < endp) {
uint8_t alpha = ((*datap & 0xFF000000) >> 24);
if (alpha == 0x00)
transparency = true;
else if (alpha != 0xFF)
return PyLong_FromLong(kFull);
datap++;
}
return PyLong_FromLong(transparency ? kOnOff : kOpaque);
}
static PyObject* pyGLTexture_get_image_data(pyGLTexture* self, void*) {
Py_XINCREF(self->m_imageData);
return Py_BuildValue("iiO", self->m_width, self->m_height, self->m_imageData);
}
static int pyGLTexture_set_image_data(pyGLTexture* self, PyObject* value, void*) {
PyObject* data;
// Requesting a Bytes object "S" instead of a buffer "y#" so we can just increment the reference
// count on a buffer that already exists, instead of doing a memcpy.
if (!PyArg_ParseTuple(value, "iiS", &self->m_width, &self->m_height, &data)) {
PyErr_SetString(PyExc_TypeError, "image_data should be a sequence of int, int, bytes");
return -1;
}
Py_XDECREF(self->m_imageData);
Py_XINCREF(data);
self->m_imageData = data;
return 0;
}
static PyObject* pyGLTexture_get_num_levels(pyGLTexture* self, void*) {
return PyLong_FromLong(_get_num_levels(self->m_width, self->m_height));
}
static PyObject* pyGLTexture_get_size_npot(pyGLTexture* self, void*) {
return Py_BuildValue("ii", self->m_width, self->m_height);
}
static PyObject* pyGLTexture_get_size_pot(pyGLTexture* self, void*) {
size_t width = _ensure_power_of_two(self->m_width);
size_t height = _ensure_power_of_two(self->m_height);
return Py_BuildValue("ii", width, height);
}
static PyGetSetDef pyGLTexture_GetSet[] = {
{ _pycs("has_alpha"), (getter)pyGLTexture_get_has_alpha, NULL, NULL, NULL },
{ _pycs("image_data"), (getter)pyGLTexture_get_image_data, (setter)pyGLTexture_set_image_data, NULL, NULL },
{ _pycs("num_levels"), (getter)pyGLTexture_get_num_levels, NULL, NULL, NULL },
{ _pycs("size_npot"), (getter)pyGLTexture_get_size_npot, NULL, NULL, NULL },
{ _pycs("size_pot"), (getter)pyGLTexture_get_size_pot, NULL, NULL, NULL },
{ NULL, NULL, NULL, NULL, NULL }
};
PyTypeObject pyGLTexture_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"_korlib.GLTexture", /* tp_name */
sizeof(pyGLTexture), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)pyGLTexture_dealloc, /* tp_dealloc */
NULL, /* tp_print */
NULL, /* tp_getattr */
NULL, /* tp_setattr */
NULL, /* tp_compare */
NULL, /* tp_repr */
NULL, /* tp_as_number */
NULL, /* tp_as_sequence */
NULL, /* tp_as_mapping */
NULL, /* tp_hash */
NULL, /* tp_call */
NULL, /* tp_str */
NULL, /* tp_getattro */
NULL, /* tp_setattro */
NULL, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
"GLTexture", /* tp_doc */
NULL, /* tp_traverse */
NULL, /* tp_clear */
NULL, /* tp_richcompare */
0, /* tp_weaklistoffset */
NULL, /* tp_iter */
NULL, /* tp_iternext */
pyGLTexture_Methods, /* tp_methods */
NULL, /* tp_members */
pyGLTexture_GetSet, /* tp_getset */
NULL, /* tp_base */
NULL, /* tp_dict */
NULL, /* tp_descr_get */
NULL, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)pyGLTexture___init__, /* tp_init */
NULL, /* tp_alloc */
pyGLTexture_new, /* tp_new */
NULL, /* tp_free */
NULL, /* tp_is_gc */
NULL, /* tp_bases */
NULL, /* tp_mro */
NULL, /* tp_cache */
NULL, /* tp_subclasses */
NULL, /* tp_weaklist */
NULL, /* tp_del */
0, /* tp_version_tag */
NULL, /* tp_finalize */
};
PyObject* Init_pyGLTexture_Type() {
if (PyType_Ready(&pyGLTexture_Type) < 0)
return NULL;
Py_INCREF(&pyGLTexture_Type);
return (PyObject*)&pyGLTexture_Type;
}