You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1087 lines
32 KiB
1087 lines
32 KiB
/*==LICENSE==* |
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools |
|
Copyright (C) 2011 Cyan Worlds, Inc. |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
|
Additional permissions under GNU GPL version 3 section 7 |
|
|
|
If you modify this Program, or any covered work, by linking or |
|
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, |
|
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent |
|
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK |
|
(or a modified version of those libraries), |
|
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, |
|
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG |
|
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the |
|
licensors of this Program grant you additional |
|
permission to convey the resulting work. Corresponding Source for a |
|
non-source form of such a combination shall include the source code for |
|
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered |
|
work. |
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com |
|
or by snail mail at: |
|
Cyan Worlds, Inc. |
|
14617 N Newport Hwy |
|
Mead, WA 99021 |
|
|
|
*==LICENSE==*/ |
|
|
|
#include "hsTypes.h" |
|
#include "plCullTree.h" |
|
#include "plDrawable/plSpaceTree.h" |
|
#include "hsFastMath.h" |
|
#include "hsColorRGBA.h" |
|
#include "plProfile.h" |
|
|
|
#include "plTweak.h" |
|
|
|
#define MF_DEBUG_NORM |
|
#ifdef MF_DEBUG_NORM |
|
|
|
#define IDEBUG_NORMALIZE( a, b ) { hsScalar len = hsFastMath::InvSqrtAppr((a).MagnitudeSquared()); a *= len; b *= len; } |
|
|
|
#else // MF_DEBUG_NORM |
|
#define IDEBUG_NORMALIZE( a, b ) |
|
#endif // MF_DEBUG_NORM |
|
|
|
//#define CULL_SMALL_TOLERANCE |
|
#ifdef CULL_SMALL_TOLERANCE |
|
//static const hsScalar kTolerance = 1.e-5f; |
|
static const hsScalar kTolerance = 1.e-3f; |
|
#else //CULL_SMALL_TOLERANCE |
|
static const hsScalar kTolerance = 1.e-1f; |
|
#endif // CULL_SMALL_TOLERANCE |
|
|
|
plProfile_CreateCounter("Harvest Nodes", "Draw", HarvestNodes); |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Harvest culling section. |
|
// These are the functions used on a built tree |
|
////////////////////////////////////////////////////////////////////// |
|
plCullNode::plCullStatus plCullNode::ITestBoundsRecur(const hsBounds3Ext& bnd) const |
|
{ |
|
plCullNode::plCullStatus retVal = TestBounds(bnd); |
|
|
|
// No Children, what we say goes. |
|
if( (fOuterChild < 0) && (fInnerChild < 0) ) |
|
return retVal; |
|
|
|
// No innerchild. If we cull, it's culled, else we |
|
// hope our outerchild culls it. |
|
if( fInnerChild < 0 ) |
|
{ |
|
if( retVal == kCulled ) |
|
return kCulled; |
|
|
|
return IGetNode(fOuterChild)->ITestBoundsRecur(bnd); |
|
} |
|
|
|
// No outerchild. If we say it's clear, it's clear (or split), but if |
|
// it's culled, we have to pass it to innerchild, who may pronounce it clear |
|
if( fOuterChild < 0 ) |
|
{ |
|
if( retVal == kClear ) |
|
return kClear; |
|
if( retVal == kSplit ) |
|
return kSplit; |
|
return IGetNode(fInnerChild)->ITestBoundsRecur(bnd); |
|
} |
|
|
|
// We've got both children to feed. |
|
// We pass the clear ones to the inner child, culled to outer, |
|
// and split to both. Remember, a both children have to agree to cull a split. |
|
if( retVal == kClear ) |
|
return IGetNode(fOuterChild)->ITestBoundsRecur(bnd); |
|
|
|
if( retVal == kCulled ) |
|
return IGetNode(fInnerChild)->ITestBoundsRecur(bnd); |
|
|
|
// Here's the split, to be culled, both children have to |
|
// say its culled. |
|
if( kCulled != IGetNode(fOuterChild)->ITestBoundsRecur(bnd) ) |
|
return kSplit; |
|
|
|
if( kCulled != IGetNode(fInnerChild)->ITestBoundsRecur(bnd) ) |
|
return kSplit; |
|
|
|
return kCulled; |
|
} |
|
|
|
plCullNode::plCullStatus plCullNode::TestBounds(const hsBounds3Ext& bnd) const |
|
{ |
|
// Not sure if doing a sphere test will pay off or not. Some circumstantial evidence |
|
// from TrueTime suggests it could very well, but I really need to do some side by |
|
// side timings to be sure. Still looking for some reasonably constructed real data sets. mf |
|
#define MF_TEST_SPHERE_FIRST |
|
#ifdef MF_TEST_SPHERE_FIRST |
|
hsScalar dist = fNorm.InnerProduct(bnd.GetCenter()) + fDist; |
|
hsScalar rad = bnd.GetRadius(); |
|
if( dist < -rad ) |
|
return kCulled; |
|
if( dist > rad ) |
|
return kClear; |
|
#endif // MF_TEST_SPHERE_FIRST |
|
|
|
hsPoint2 depth; |
|
bnd.TestPlane(fNorm, depth); |
|
|
|
const hsScalar kSafetyDist = -0.1f; |
|
if( depth.fY + fDist < kSafetyDist ) |
|
return kCulled; |
|
|
|
if( depth.fX + fDist >= 0 ) |
|
return kClear; |
|
|
|
return kSplit; |
|
} |
|
|
|
plCullNode::plCullStatus plCullNode::ITestSphereRecur(const hsPoint3& center, hsScalar rad) const |
|
{ |
|
plCullNode::plCullStatus retVal = TestSphere(center, rad); |
|
|
|
// No Children, what we say goes. |
|
if( (fOuterChild < 0) && (fInnerChild < 0) ) |
|
return retVal; |
|
|
|
// No innerchild. If we cull, it's culled, else we |
|
// hope our outerchild culls it. |
|
if( fInnerChild < 0 ) |
|
{ |
|
if( retVal == kCulled ) |
|
return kCulled; |
|
|
|
return IGetNode(fOuterChild)->ITestSphereRecur(center, rad); |
|
} |
|
|
|
// No outerchild. If we say it's clear, it's clear (or split), but if |
|
// it's culled, we have to pass it to innerchild, who may pronounce it clear |
|
if( fOuterChild < 0 ) |
|
{ |
|
if( retVal == kClear ) |
|
return kClear; |
|
if( retVal == kSplit ) |
|
return kSplit; |
|
return IGetNode(fInnerChild)->ITestSphereRecur(center, rad); |
|
} |
|
|
|
// We've got both children to feed. |
|
// We pass the clear ones to the inner child, culled to outer, |
|
// and split to both. Remember, a both children have to agree to cull a split. |
|
if( retVal == kClear ) |
|
return IGetNode(fOuterChild)->ITestSphereRecur(center, rad); |
|
|
|
if( retVal == kCulled ) |
|
return IGetNode(fInnerChild)->ITestSphereRecur(center, rad); |
|
|
|
// Here's the split, to be culled, both children have to |
|
// say its culled. |
|
if( kCulled != IGetNode(fOuterChild)->ITestSphereRecur(center, rad) ) |
|
return kSplit; |
|
|
|
if( kCulled != IGetNode(fInnerChild)->ITestSphereRecur(center, rad) ) |
|
return kSplit; |
|
|
|
return kCulled; |
|
} |
|
|
|
plCullNode::plCullStatus plCullNode::TestSphere(const hsPoint3& center, hsScalar rad) const |
|
{ |
|
hsScalar dist = fNorm.InnerProduct(center) + fDist; |
|
if( dist < -rad ) |
|
return kCulled; |
|
if( dist > rad ) |
|
return kClear; |
|
|
|
return kSplit; |
|
} |
|
|
|
// For this Cull Node, recur down the space hierarchy pruning out who to test for the next Cull Node. |
|
plCullNode::plCullStatus plCullNode::ITestNode(const plSpaceTree* space, Int16 who, hsLargeArray<Int16>& clear, hsLargeArray<Int16>& split, hsLargeArray<Int16>& culled) const |
|
{ |
|
if( space->IsDisabled(who) || (space->GetNode(who).fWorldBounds.GetType() != kBoundsNormal) ) |
|
{ |
|
culled.Append(who); |
|
return kCulled; |
|
} |
|
|
|
plCullStatus retVal = kClear; |
|
plCullStatus stat = TestBounds(space->GetNode(who).fWorldBounds); |
|
|
|
switch( stat ) |
|
{ |
|
case kClear: |
|
clear.Append(who); |
|
retVal = kClear; |
|
break; |
|
case kCulled: |
|
culled.Append(who); |
|
retVal = kCulled; |
|
break; |
|
case kSplit: |
|
if( space->GetNode(who).fFlags & plSpaceTreeNode::kIsLeaf ) |
|
{ |
|
// split.Append(who); |
|
retVal = kPureSplit; |
|
} |
|
else |
|
{ |
|
plCullStatus child0 = ITestNode(space, space->GetNode(who).GetChild(0), clear, split, culled); |
|
plCullStatus child1 = ITestNode(space, space->GetNode(who).GetChild(1), clear, split, culled); |
|
|
|
if( child0 != child1 ) |
|
{ |
|
if( child0 == kPureSplit ) |
|
split.Append(space->GetNode(who).GetChild(0)); |
|
else if( child1 == kPureSplit ) |
|
split.Append(space->GetNode(who).GetChild(1)); |
|
retVal = kSplit; |
|
} |
|
else if( child0 == kPureSplit ) |
|
{ |
|
retVal = kPureSplit; |
|
} |
|
} |
|
} |
|
return retVal; |
|
} |
|
|
|
// Cycle through the Cull Nodes, paring down the list of who to test (through ITestNode above). |
|
// We reclaim the scratch indices in clear and split when we're done (SetCount(0)), but we can't |
|
// reclaim the culled, because our caller may be looking at who all we culled. See below in split. |
|
// If a node is disabled, we can just ignore we ever got called. |
|
void plCullNode::ITestNode(const plSpaceTree* space, Int16 who, hsBitVector& totList, hsBitVector& outList) const |
|
{ |
|
if( space->IsDisabled(who) ) |
|
return; |
|
|
|
UInt32 myClearStart = ScratchClear().GetCount(); |
|
UInt32 mySplitStart = ScratchSplit().GetCount(); |
|
UInt32 myCullStart = ScratchCulled().GetCount(); |
|
|
|
if( kPureSplit == ITestNode(space, who, ScratchClear(), ScratchSplit(), ScratchCulled()) ) |
|
ScratchSplit().Append(who); |
|
|
|
UInt32 myClearEnd = ScratchClear().GetCount(); |
|
UInt32 mySplitEnd = ScratchSplit().GetCount(); |
|
UInt32 myCullEnd = ScratchCulled().GetCount(); |
|
|
|
int i; |
|
// If there's no OuterChild, everything in clear and split is visible. Everything in culled |
|
// goes to innerchild (if any). |
|
if( fOuterChild < 0 ) |
|
{ |
|
plProfile_IncCount(HarvestNodes, myClearEnd - myClearStart + mySplitEnd - mySplitStart); |
|
// Replace these with a memcopy or something!!!! |
|
for( i = myClearStart; i < myClearEnd; i++ ) |
|
{ |
|
space->HarvestLeaves(ScratchClear()[i], totList, outList); |
|
} |
|
for( i = mySplitStart; i < mySplitEnd; i++ ) |
|
{ |
|
space->HarvestLeaves(ScratchSplit()[i], totList, outList); |
|
} |
|
|
|
if( fInnerChild >= 0 ) |
|
{ |
|
for( i = myCullStart; i < myCullEnd; i++ ) |
|
{ |
|
IGetNode(fInnerChild)->ITestNode(space, ScratchCulled()[i], totList, outList); |
|
} |
|
} |
|
ScratchClear().SetCount(myClearStart); |
|
ScratchSplit().SetCount(mySplitStart); |
|
ScratchCulled().SetCount(myCullStart); |
|
|
|
return; |
|
} |
|
|
|
// There is an OuterChild, so whether there's an InnerChild or not, |
|
// everything in ClearList is visible soley on the discretion of OuterChild. |
|
for( i = myClearStart; i < myClearEnd; i++ ) |
|
{ |
|
IGetNode(fOuterChild)->ITestNode(space, ScratchClear()[i], totList, outList); |
|
} |
|
|
|
// If there's no InnerChild, then the SplitList is also visible soley |
|
// on the discretion of OuterChild. |
|
if( fInnerChild < 0 ) |
|
{ |
|
for( i = mySplitStart; i < mySplitEnd; i++ ) |
|
{ |
|
IGetNode(fOuterChild)->ITestNode(space, ScratchSplit()[i], totList, outList); |
|
} |
|
|
|
ScratchClear().SetCount(myClearStart); |
|
ScratchSplit().SetCount(mySplitStart); |
|
ScratchCulled().SetCount(myCullStart); |
|
|
|
return; |
|
} |
|
|
|
// There is an inner child. Everything in culled list is visible |
|
// soley on its discretion. |
|
for( i = myCullStart; i < myCullEnd; i++ ) |
|
{ |
|
IGetNode(fInnerChild)->ITestNode(space, ScratchCulled()[i], totList, outList); |
|
} |
|
|
|
// Okay, here's the rub. |
|
// Everyone in the split list needs to be tested against InnerChild and OuterChild. |
|
// If either child says it's okay (puts it in OutList), then it's okay. |
|
// The problem is that if both children say it's okay, it will wind up in outList twice. |
|
// This is complicated by the fact that outList is still subTrees at this point, |
|
// so InnerChild adding a subTree and OuterChild adding a child of that subTree isn't |
|
// even appending the same value to the list. |
|
// Sooooo. |
|
// What we do is keep track of every node (interior and leaf) that gets harvested. |
|
// When we go to harvest a subtree, we check in totList for its bit being set. Bits |
|
// set in totList are ENTIRE SUBTREE IS HARVESTED. SpaceTree understands this too in |
|
// its HarvestLeaves. Seems obvious now, but I didn't hear you suggest it. |
|
|
|
for( i = mySplitStart; i < mySplitEnd; i++ ) |
|
{ |
|
IGetNode(fOuterChild)->ITestNode(space, ScratchSplit()[i], totList, outList); |
|
} |
|
|
|
for( i = mySplitStart; i < mySplitEnd; i++ ) |
|
{ |
|
if( !totList.IsBitSet(ScratchSplit()[i]) ) |
|
IGetNode(fInnerChild)->ITestNode(space, ScratchSplit()[i], totList, outList); |
|
} |
|
|
|
ScratchClear().SetCount(myClearStart); |
|
ScratchSplit().SetCount(mySplitStart); |
|
ScratchCulled().SetCount(myCullStart); |
|
} |
|
|
|
void plCullNode::IHarvest(const plSpaceTree* space, hsTArray<Int16>& outList) const |
|
{ |
|
ITestNode(space, space->GetRoot(), ScratchTotVec(), ScratchBitVec()); |
|
space->BitVectorToList(outList, ScratchBitVec()); |
|
ScratchBitVec().Clear(); |
|
ScratchTotVec().Clear(); |
|
|
|
ScratchClear().SetCount(0); |
|
ScratchSplit().SetCount(0); |
|
ScratchCulled().SetCount(0); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// This section builds the tree from the input cullpoly's |
|
////////////////////////////////////////////////////////////////////// |
|
|
|
void plCullNode::IBreakPoly(const plCullPoly& poly, const hsTArray<hsScalar>& depths, |
|
hsBitVector& inVerts, |
|
hsBitVector& outVerts, |
|
hsBitVector& onVerts, |
|
plCullPoly& outPoly) const |
|
{ |
|
inVerts.Clear(); |
|
outVerts.Clear(); |
|
onVerts.Clear(); |
|
|
|
outPoly.Init(poly); |
|
|
|
if( depths[0] < -kTolerance ) |
|
inVerts.SetBit(0); |
|
else if( depths[0] > kTolerance ) |
|
outVerts.SetBit(0); |
|
else |
|
onVerts.SetBit(0); |
|
|
|
if( poly.fClipped.IsBitSet(0) ) |
|
outPoly.fClipped.SetBit(0); |
|
outPoly.fVerts.Append(poly.fVerts[0]); |
|
|
|
int i; |
|
for( i = 1; i < poly.fVerts.GetCount(); i++ ) |
|
{ |
|
if( depths[i] < -kTolerance ) |
|
{ |
|
if( outVerts.IsBitSet(outPoly.fVerts.GetCount()-1) ) |
|
{ |
|
hsPoint3 interp; |
|
hsScalar t = IInterpVert(poly.fVerts[i-1], poly.fVerts[i], interp); |
|
// add interp |
|
onVerts.SetBit(outPoly.fVerts.GetCount()); |
|
if( poly.fClipped.IsBitSet(i-1) ) |
|
outPoly.fClipped.SetBit(outPoly.fVerts.GetCount()); |
|
outPoly.fVerts.Append(interp); |
|
} |
|
inVerts.SetBit(outPoly.fVerts.GetCount()); |
|
} |
|
else if( depths[i] > kTolerance ) |
|
{ |
|
if( inVerts.IsBitSet(outPoly.fVerts.GetCount()-1) ) |
|
{ |
|
hsPoint3 interp; |
|
hsScalar t = IInterpVert(poly.fVerts[i-1], poly.fVerts[i], interp); |
|
// add interp |
|
onVerts.SetBit(outPoly.fVerts.GetCount()); |
|
if( poly.fClipped.IsBitSet(i-1) ) |
|
outPoly.fClipped.SetBit(outPoly.fVerts.GetCount()); |
|
outPoly.fVerts.Append(interp); |
|
} |
|
outVerts.SetBit(outPoly.fVerts.GetCount()); |
|
} |
|
else |
|
{ |
|
onVerts.SetBit(outPoly.fVerts.GetCount()); |
|
} |
|
|
|
if( poly.fClipped.IsBitSet(i) ) |
|
outPoly.fClipped.SetBit(outPoly.fVerts.GetCount()); |
|
outPoly.fVerts.Append(poly.fVerts[i]); |
|
} |
|
if( (inVerts.IsBitSet(outPoly.fVerts.GetCount()-1) && outVerts.IsBitSet(0)) |
|
||(outVerts.IsBitSet(outPoly.fVerts.GetCount()-1) && inVerts.IsBitSet(0)) ) |
|
{ |
|
hsPoint3 interp; |
|
hsScalar t = IInterpVert(poly.fVerts[poly.fVerts.GetCount()-1], poly.fVerts[0], interp); |
|
onVerts.SetBit(outPoly.fVerts.GetCount()); |
|
if( poly.fClipped.IsBitSet(poly.fVerts.GetCount()-1) ) |
|
outPoly.fClipped.SetBit(outPoly.fVerts.GetCount()); |
|
outPoly.fVerts.Append(interp); |
|
} |
|
} |
|
|
|
void plCullNode::ITakeHalfPoly(const plCullPoly& srcPoly, |
|
const hsTArray<int>& vtxIdx, |
|
const hsBitVector& onVerts, |
|
plCullPoly& outPoly) const |
|
{ |
|
if( vtxIdx.GetCount() > 2 ) |
|
{ |
|
int i; |
|
for( i = 0; i < vtxIdx.GetCount(); i++ ) |
|
{ |
|
int next = i < vtxIdx.GetCount()-1 ? i+1 : 0; |
|
int last = i ? i-1 : vtxIdx.GetCount()-1; |
|
|
|
// If these 3 verts are all on the plane, we may have created a collinear vertex (the middle one) |
|
// which we now want to skip. |
|
if( onVerts.IsBitSet(vtxIdx[i]) && onVerts.IsBitSet(vtxIdx[last]) && onVerts.IsBitSet(vtxIdx[next]) ) |
|
{ |
|
#if 0 // FISH |
|
hsScalar dot = hsVector3(&srcPoly.fVerts[vtxIdx[last]], &srcPoly.fVerts[vtxIdx[i]]).InnerProduct(hsVector3(&srcPoly.fVerts[vtxIdx[next]], &srcPoly.fVerts[vtxIdx[i]])); |
|
if( dot <= 0 ) |
|
#endif // FISH |
|
continue; |
|
} |
|
if( srcPoly.fClipped.IsBitSet(vtxIdx[i]) |
|
||(onVerts.IsBitSet(vtxIdx[i]) && onVerts.IsBitSet(vtxIdx[next])) ) |
|
outPoly.fClipped.SetBit(outPoly.fVerts.GetCount()); |
|
outPoly.fVerts.Append(srcPoly.fVerts[vtxIdx[i]]); |
|
} |
|
} |
|
else |
|
{ |
|
// Just need a break point |
|
hsStatusMessage("Under 2"); // FISH |
|
} |
|
} |
|
|
|
void plCullNode::IMarkClipped(const plCullPoly& poly, const hsBitVector& onVerts) const |
|
{ |
|
int i; |
|
for( i = 1; i < poly.fVerts.GetCount(); i++ ) |
|
{ |
|
int last = i-1; |
|
if( onVerts[i] && onVerts[last] ) |
|
poly.fClipped.SetBit(last); |
|
} |
|
if( onVerts[i] && onVerts[0] ) |
|
poly.fClipped.SetBit(0); |
|
} |
|
|
|
plCullNode::plCullStatus plCullNode::ISplitPoly(const plCullPoly& poly, |
|
plCullPoly*& innerPoly, |
|
plCullPoly*& outerPoly) const |
|
{ |
|
static hsTArray<hsScalar> depths; |
|
depths.SetCount(poly.fVerts.GetCount()); |
|
|
|
static hsBitVector onVerts; |
|
onVerts.Clear(); |
|
|
|
hsBool someInner = false; |
|
hsBool someOuter = false; |
|
hsBool someOn = false; |
|
int i; |
|
for( i = 0; i < poly.fVerts.GetCount(); i++ ) |
|
{ |
|
depths[i] = fNorm.InnerProduct(poly.fVerts[i]) + fDist; |
|
if( depths[i] < -kTolerance ) |
|
someInner = true; |
|
else if( depths[i] > kTolerance ) |
|
someOuter = true; |
|
else |
|
{ |
|
someOn = true; |
|
onVerts.SetBit(i); |
|
} |
|
} |
|
if( !(someInner || someOuter) ) |
|
{ |
|
(innerPoly = ScratchPolys().Push())->Init(poly); |
|
(outerPoly = ScratchPolys().Push())->Init(poly); |
|
return kSplit; |
|
} |
|
else if( !someInner ) |
|
{ |
|
IMarkClipped(poly, onVerts); |
|
return kClear; |
|
} |
|
else if( !someOuter ) |
|
{ |
|
IMarkClipped(poly, onVerts); |
|
return kCulled; |
|
} |
|
|
|
|
|
// Okay, it's split, now break it into the two polys |
|
(innerPoly = ScratchPolys().Push())->Init(poly); |
|
(outerPoly = ScratchPolys().Push())->Init(poly); |
|
|
|
static plCullPoly scrPoly; |
|
|
|
static hsBitVector inVerts; |
|
static hsBitVector outVerts; |
|
|
|
IBreakPoly(poly, depths, |
|
inVerts, |
|
outVerts, |
|
onVerts, |
|
scrPoly); |
|
|
|
static hsTArray<int> inPolyIdx; |
|
inPolyIdx.SetCount(0); |
|
static hsTArray<int> outPolyIdx; |
|
outPolyIdx.SetCount(0); |
|
|
|
for( i = 0; i < scrPoly.fVerts.GetCount(); i++ ) |
|
{ |
|
if( inVerts.IsBitSet(i) ) |
|
{ |
|
inPolyIdx.Append(i); |
|
} |
|
else if( outVerts.IsBitSet(i) ) |
|
{ |
|
outPolyIdx.Append(i); |
|
} |
|
else |
|
{ |
|
inPolyIdx.Append(i); |
|
outPolyIdx.Append(i); |
|
} |
|
} |
|
|
|
ITakeHalfPoly(scrPoly, inPolyIdx, onVerts, *innerPoly); |
|
|
|
ITakeHalfPoly(scrPoly, outPolyIdx, onVerts, *outerPoly); |
|
|
|
return kSplit; |
|
} |
|
|
|
hsScalar plCullNode::IInterpVert(const hsPoint3& p0, const hsPoint3& p1, hsPoint3& out) const |
|
{ |
|
hsVector3 oneToOh; |
|
oneToOh.Set(&p0, &p1); |
|
|
|
hsScalar t = -(fNorm.InnerProduct(p1) + fDist) / fNorm.InnerProduct(oneToOh); |
|
if( t >= 1.f ) |
|
{ |
|
out = p0; |
|
return 1.f; |
|
} |
|
if( t <= 0 ) |
|
{ |
|
out = p1; |
|
return 0; |
|
} |
|
|
|
out = p1; |
|
|
|
out += oneToOh * t; |
|
|
|
return t; |
|
} |
|
|
|
// We use indices so our tree can actually be an array, which may be |
|
// resized at any time, which would invalidate any pointers we have. |
|
// But debugging a large tree is hard enough when stepping through pointers, |
|
// it's pretty much impossible with indices. So when debugging we can |
|
// setup these pointers for stepping through the tree. We just need to |
|
// reset them every time we add a poly, because that's when the tree |
|
// may have been resized invalidating the old pointers. |
|
#ifdef DEBUG_POINTERS |
|
void plCullNode::ISetPointersRecur() const |
|
{ |
|
if( fInnerPtr = IGetNode(fInnerChild) ) |
|
fInnerPtr->ISetPointersRecur(); |
|
if( fOuterPtr = IGetNode(fOuterChild) ) |
|
fOuterPtr->ISetPointersRecur(); |
|
} |
|
#endif // DEBUG_POINTERS |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Now the tree proper |
|
////////////////////////////////////////////////////////////////////// |
|
// Build the tree |
|
plCullTree::plCullTree() |
|
: fRoot(-1), |
|
fCapturePolys(false) |
|
{ |
|
} |
|
|
|
plCullTree::~plCullTree() |
|
{ |
|
} |
|
|
|
void plCullTree::AddPoly(const plCullPoly& poly) |
|
{ |
|
const plCullPoly* usePoly = &poly; |
|
|
|
hsVector3 cenToEye(&fViewPos, &poly.fCenter); |
|
hsFastMath::NormalizeAppr(cenToEye); |
|
hsScalar camDist = cenToEye.InnerProduct(poly.fNorm); |
|
plConst(hsScalar) kTol(0.1f); |
|
hsBool backFace = camDist < -kTol; |
|
if( !backFace && (camDist < kTol) ) |
|
return; |
|
|
|
plCullPoly scratchPoly; |
|
if( poly.IsHole() ) |
|
{ |
|
if( !backFace ) |
|
return; |
|
} |
|
else |
|
if( backFace ) |
|
{ |
|
plConst(hsBool) kAllowTwoSided(true); |
|
if( !kAllowTwoSided || !poly.IsTwoSided() ) |
|
return; |
|
|
|
scratchPoly.Flip(poly); |
|
usePoly = &scratchPoly; |
|
} |
|
|
|
if( !SphereVisible(usePoly->GetCenter(), usePoly->GetRadius()) ) |
|
return; |
|
|
|
usePoly->fClipped.Clear(); |
|
|
|
usePoly->Validate(); |
|
|
|
// Make sure we have enough scratch polys. Each node |
|
// can potentially split this poly, so... |
|
ISetupScratch(fNodeList.GetCount()); |
|
|
|
#if 1 |
|
if( IGetRoot() && IGetNode(IGetRoot()->fOuterChild) ) |
|
{ |
|
IAddPolyRecur(*usePoly, IGetRoot()->fOuterChild); |
|
} |
|
else |
|
#endif |
|
{ |
|
fRoot = IAddPolyRecur(*usePoly, fRoot); |
|
} |
|
|
|
#ifdef DEBUG_POINTERS |
|
if( IGetRoot() ) |
|
IGetRoot()->ISetPointersRecur(); |
|
#endif // DEBUG_POINTERS |
|
} |
|
|
|
Int16 plCullTree::IAddPolyRecur(const plCullPoly& poly, Int16 iNode) |
|
{ |
|
if( poly.fVerts.GetCount() < 3 ) |
|
return iNode; |
|
|
|
if( iNode < 0 ) |
|
return IMakePolySubTree(poly); |
|
|
|
hsBool addInner = (IGetNode(iNode)->fInnerChild >= 0) |
|
|| ((iNode > 5) && poly.IsHole()); |
|
hsBool addOuter = !poly.IsHole() || (IGetNode(iNode)->fOuterChild >= 0); |
|
|
|
plCullPoly* innerPoly = nil; |
|
plCullPoly* outerPoly = nil; |
|
|
|
plCullNode::plCullStatus test = IGetNode(iNode)->ISplitPoly(poly, innerPoly, outerPoly); |
|
|
|
switch( test ) |
|
{ |
|
case plCullNode::kClear: |
|
if( addOuter ) |
|
{ |
|
int child = IAddPolyRecur(poly, IGetNode(iNode)->fOuterChild); |
|
IGetNode(iNode)->fOuterChild = child; |
|
} |
|
break; |
|
case plCullNode::kCulled: |
|
if( addInner ) |
|
{ |
|
int child = IAddPolyRecur(poly, IGetNode(iNode)->fInnerChild); |
|
IGetNode(iNode)->fInnerChild = child; |
|
} |
|
break; |
|
case plCullNode::kSplit: |
|
hsAssert(innerPoly && outerPoly, "Poly should have been split into inner and outer in SplitPoly"); |
|
if( addOuter ) |
|
{ |
|
int child = IAddPolyRecur(*outerPoly, IGetNode(iNode)->fOuterChild); |
|
IGetNode(iNode)->fOuterChild = child; |
|
} |
|
if( addInner ) |
|
{ |
|
int child = IAddPolyRecur(*innerPoly, IGetNode(iNode)->fInnerChild); |
|
IGetNode(iNode)->fInnerChild = child; |
|
} |
|
break; |
|
} |
|
return iNode; |
|
} |
|
|
|
Int16 plCullTree::IMakePolyNode(const plCullPoly& poly, int i0, int i1) const |
|
{ |
|
Int16 retINode = fNodeList.GetCount(); |
|
plCullNode* nextNode = fNodeList.Push(); |
|
hsVector3 a; |
|
hsVector3 b; |
|
a.Set(&poly.fVerts[i0], &fViewPos); |
|
b.Set(&poly.fVerts[i1], &fViewPos); |
|
hsVector3 n = a % b; |
|
hsScalar d = -n.InnerProduct(fViewPos); |
|
|
|
IDEBUG_NORMALIZE(n, d); |
|
|
|
nextNode->Init(this, n, d); |
|
|
|
return retINode; |
|
} |
|
|
|
Int16 plCullTree::IMakeHoleSubTree(const plCullPoly& poly) const |
|
{ |
|
if( fCapturePolys ) |
|
IVisPoly(poly, true); |
|
|
|
int firstNode = fNodeList.GetCount(); |
|
|
|
Int16 iNode = -1; |
|
|
|
int i; |
|
for( i = 0; i < poly.fVerts.GetCount()-1; i++ ) |
|
{ |
|
if( !poly.fClipped.IsBitSet(i) ) |
|
{ |
|
Int16 child = IMakePolyNode(poly, i, i+1); |
|
if( iNode >= 0 ) |
|
IGetNode(iNode)->fOuterChild = child; |
|
iNode = child; |
|
} |
|
} |
|
if( !poly.fClipped.IsBitSet(i) ) |
|
{ |
|
Int16 child = IMakePolyNode(poly, i, 0); |
|
if( iNode >= 0 ) |
|
IGetNode(iNode)->fOuterChild = child; |
|
iNode = child; |
|
} |
|
|
|
plCullNode* child = fNodeList.Push(); |
|
child->Init(this, poly.fNorm, poly.fDist); |
|
if( iNode >= 0 ) |
|
IGetNode(iNode)->fOuterChild = fNodeList.GetCount()-1; |
|
|
|
return firstNode; |
|
} |
|
|
|
Int16 plCullTree::IMakePolySubTree(const plCullPoly& poly) const |
|
{ |
|
poly.Validate(); |
|
|
|
if( poly.IsHole() ) |
|
return IMakeHoleSubTree(poly); |
|
|
|
if( fCapturePolys ) |
|
IVisPoly(poly, false); |
|
|
|
int firstNode = fNodeList.GetCount(); |
|
|
|
Int16 iNode = -1; |
|
|
|
int i; |
|
for( i = 0; i < poly.fVerts.GetCount()-1; i++ ) |
|
{ |
|
if( !poly.fClipped.IsBitSet(i) ) |
|
{ |
|
Int16 child = IMakePolyNode(poly, i, i+1); |
|
if( iNode >= 0 ) |
|
IGetNode(iNode)->fInnerChild = child; |
|
iNode = child; |
|
} |
|
} |
|
if( !poly.fClipped.IsBitSet(i) ) |
|
{ |
|
Int16 child = IMakePolyNode(poly, i, 0); |
|
if( iNode >= 0 ) |
|
IGetNode(iNode)->fInnerChild = child; |
|
iNode = child; |
|
} |
|
|
|
plCullNode* child = fNodeList.Push(); |
|
child->Init(this, poly.fNorm, poly.fDist); |
|
child->fIsFace = true; |
|
if( iNode >= 0 ) |
|
IGetNode(iNode)->fInnerChild = fNodeList.GetCount()-1; |
|
|
|
return firstNode; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// Begin visualization section of the program |
|
/////////////////////////////////////////////////////////////////// |
|
void plCullTree::IVisPolyShape(const plCullPoly& poly, hsBool dark) const |
|
{ |
|
int i; |
|
|
|
int vertStart = fVisVerts.GetCount(); |
|
|
|
hsColorRGBA color; |
|
if( dark ) |
|
color.Set(0.2f, 0.2f, 0.2f, 1.f); |
|
else |
|
color.Set(1.f, 1.f, 1.f, 1.f); |
|
|
|
hsVector3 norm = dark ? -poly.fNorm : poly.fNorm; |
|
|
|
for( i = 0; i < poly.fVerts.GetCount(); i++ ) |
|
{ |
|
fVisVerts.Append(poly.fVerts[i]); |
|
fVisNorms.Append(poly.fNorm); |
|
fVisColors.Append(color); |
|
} |
|
if( !dark ) |
|
{ |
|
for( i = 2; i < poly.fVerts.GetCount(); i++ ) |
|
{ |
|
fVisTris.Append(vertStart); |
|
fVisTris.Append(vertStart + i-1); |
|
fVisTris.Append(vertStart + i); |
|
} |
|
} |
|
else |
|
{ |
|
for( i = 2; i < poly.fVerts.GetCount(); i++ ) |
|
{ |
|
fVisTris.Append(vertStart); |
|
fVisTris.Append(vertStart + i); |
|
fVisTris.Append(vertStart + i-1); |
|
} |
|
} |
|
} |
|
|
|
void plCullTree::IVisPolyEdge(const hsPoint3& p0, const hsPoint3& p1, hsBool dark) const |
|
{ |
|
hsColorRGBA color; |
|
if( dark ) |
|
color.Set(0.2f, 0.2f, 0.2f, 1.f); |
|
else |
|
color.Set(1.f, 1.f, 1.f, 1.f); |
|
|
|
int vertStart = fVisVerts.GetCount(); |
|
|
|
hsVector3 dir0(&p0, &fViewPos); |
|
hsFastMath::NormalizeAppr(dir0); |
|
dir0 *= fVisYon; |
|
hsVector3 dir1(&p1, &fViewPos); |
|
hsFastMath::NormalizeAppr(dir1); |
|
dir1 *= fVisYon; |
|
|
|
hsPoint3 p3 = fViewPos; |
|
p3 += dir0; |
|
hsPoint3 p2 = fViewPos; |
|
p2 += dir1; |
|
|
|
hsVector3 norm = hsVector3(&p0, &fViewPos) % hsVector3(&p1, &fViewPos); |
|
hsFastMath::NormalizeAppr(norm); |
|
|
|
fVisVerts.Append(p0); |
|
fVisNorms.Append(norm); |
|
fVisColors.Append(color); |
|
fVisVerts.Append(p1); |
|
fVisNorms.Append(norm); |
|
fVisColors.Append(color); |
|
fVisVerts.Append(p2); |
|
fVisNorms.Append(norm); |
|
fVisColors.Append(color); |
|
fVisVerts.Append(p3); |
|
fVisNorms.Append(norm); |
|
fVisColors.Append(color); |
|
|
|
fVisTris.Append(vertStart + 0); |
|
fVisTris.Append(vertStart + 2); |
|
fVisTris.Append(vertStart + 1); |
|
|
|
fVisTris.Append(vertStart + 0); |
|
fVisTris.Append(vertStart + 3); |
|
fVisTris.Append(vertStart + 2); |
|
} |
|
|
|
void plCullTree::IVisPoly(const plCullPoly& poly, hsBool dark) const |
|
{ |
|
IVisPolyShape(poly, dark); |
|
|
|
int i; |
|
for( i = 0; i < poly.fVerts.GetCount()-1; i++ ) |
|
{ |
|
if( !poly.fClipped.IsBitSet(i) ) |
|
IVisPolyEdge(poly.fVerts[i], poly.fVerts[i+1], dark); |
|
} |
|
if( !poly.fClipped.IsBitSet(i) ) |
|
IVisPolyEdge(poly.fVerts[i], poly.fVerts[0], dark); |
|
} |
|
|
|
void plCullTree::ReleaseCapture() const |
|
{ |
|
fVisVerts.Reset(); |
|
fVisNorms.Reset(); |
|
fVisColors.Reset(); |
|
fVisTris.Reset(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// End visualization section of the program |
|
/////////////////////////////////////////////////////////////////// |
|
|
|
void plCullTree::ISetupScratch(UInt16 nNodes) |
|
{ |
|
ScratchPolys().SetCount(nNodes << 1); |
|
ScratchPolys().SetCount(0); |
|
} |
|
|
|
void plCullTree::Reset() |
|
{ |
|
// Using NodeList as scratch will only work if we use indices, |
|
// because a push invalidates any pointers we've stored away. |
|
fNodeList.SetCount(0); |
|
|
|
fRoot = -1; |
|
|
|
ScratchPolys().SetCount(0); |
|
} |
|
|
|
|
|
void plCullTree::InitFrustum(const hsMatrix44& world2NDC) |
|
{ |
|
Reset(); |
|
|
|
fNodeList.SetCount(6); |
|
fNodeList.SetCount(0); |
|
|
|
Int16 lastIdx = -1; |
|
|
|
plCullNode* node; |
|
hsVector3 norm; |
|
hsScalar dist; |
|
|
|
int i; |
|
for( i = 0; i < 2; i++ ) |
|
{ |
|
|
|
norm.Set(world2NDC.fMap[3][0] - world2NDC.fMap[i][0], world2NDC.fMap[3][1] - world2NDC.fMap[i][1], world2NDC.fMap[3][2] - world2NDC.fMap[i][2]); |
|
dist = world2NDC.fMap[3][3] - world2NDC.fMap[i][3]; |
|
|
|
IDEBUG_NORMALIZE( norm, dist ); |
|
|
|
node = fNodeList.Push(); |
|
node->Init(this, norm, dist); |
|
node->fOuterChild = lastIdx; |
|
lastIdx = fNodeList.GetCount()-1; |
|
|
|
norm.Set(world2NDC.fMap[3][0] + world2NDC.fMap[i][0], world2NDC.fMap[3][1] + world2NDC.fMap[i][1], world2NDC.fMap[3][2] + world2NDC.fMap[i][2]); |
|
dist = world2NDC.fMap[3][3] + world2NDC.fMap[i][3]; |
|
|
|
IDEBUG_NORMALIZE( norm, dist ); |
|
|
|
node = fNodeList.Push(); |
|
node->Init(this, norm, dist); |
|
node->fOuterChild = lastIdx; |
|
lastIdx = fNodeList.GetCount()-1; |
|
} |
|
norm.Set(world2NDC.fMap[3][0] - world2NDC.fMap[2][0], world2NDC.fMap[3][1] - world2NDC.fMap[2][1], world2NDC.fMap[3][2] - world2NDC.fMap[2][2]); |
|
dist = world2NDC.fMap[3][3] - world2NDC.fMap[2][3]; |
|
|
|
IDEBUG_NORMALIZE( norm, dist ); |
|
|
|
node = fNodeList.Push(); |
|
node->Init(this, norm, dist); |
|
node->fOuterChild = lastIdx; |
|
lastIdx = fNodeList.GetCount()-1; |
|
|
|
#ifdef SYMMET |
|
norm.Set(world2NDC.fMap[3][0] + world2NDC.fMap[2][0], world2NDC.fMap[3][1] + world2NDC.fMap[2][1], world2NDC.fMap[3][2] + world2NDC.fMap[2][2]); |
|
dist = world2NDC.fMap[3][3] + world2NDC.fMap[2][3]; |
|
#else // SYMMET |
|
norm.Set(world2NDC.fMap[2][0], world2NDC.fMap[2][1], world2NDC.fMap[2][2]); |
|
dist = world2NDC.fMap[2][3]; |
|
#endif // SYMMET |
|
|
|
IDEBUG_NORMALIZE( norm, dist ); |
|
|
|
node = fNodeList.Push(); |
|
node->Init(this, norm, dist); |
|
node->fOuterChild = lastIdx; |
|
lastIdx = fNodeList.GetCount()-1; |
|
|
|
fRoot = fNodeList.GetCount()-1; |
|
|
|
#ifdef DEBUG_POINTERS |
|
if( IGetRoot() ) |
|
IGetRoot()->ISetPointersRecur(); |
|
#endif // DEBUG_POINTERS |
|
} |
|
|
|
void plCullTree::SetViewPos(const hsPoint3& p) |
|
{ |
|
fViewPos = p; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Use the tree |
|
////////////////////////////////////////////////////////////////////// |
|
void plCullTree::Harvest(const plSpaceTree* space, hsTArray<Int16>& outList) const |
|
{ |
|
outList.SetCount(0); |
|
if (!space->IsEmpty()) |
|
IGetRoot()->IHarvest(space, outList); |
|
|
|
} |
|
|
|
hsBool plCullTree::BoundsVisible(const hsBounds3Ext& bnd) const |
|
{ |
|
return plCullNode::kCulled != IGetRoot()->ITestBoundsRecur(bnd); |
|
} |
|
|
|
hsBool plCullTree::SphereVisible(const hsPoint3& center, hsScalar rad) const |
|
{ |
|
return plCullNode::kCulled != IGetRoot()->ITestSphereRecur(center, rad); |
|
} |
|
|
|
|