You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

494 lines
13 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "hsTypes.h"
#include "hsInterp.h"
#include "../plTransform/hsAffineParts.h"
#include "hsColorRGBA.h"
#include "hsPoint2.h"
//
///////////////////////////////////////////////////////
// linear interpolation
///////////////////////////////////////////////////////
//
void hsInterp::LinInterp(hsScalar k1, hsScalar k2, hsScalar t, hsScalar* result)
{
*result = k1 + t * (k2 - k1);
}
void hsInterp::LinInterp(const hsScalarTriple* k1, const hsScalarTriple* k2, hsScalar t,
hsScalarTriple* result)
{
if (t==0.0)
*result = *k1;
else
if (t==1.0)
*result = *k2;
else
{
LinInterp(k1->fX, k2->fX, t, &result->fX);
LinInterp(k1->fY, k2->fY, t, &result->fY);
LinInterp(k1->fZ, k2->fZ, t, &result->fZ);
}
}
void hsInterp::LinInterp(const hsColorRGBA* k1, const hsColorRGBA* k2, hsScalar t,
hsColorRGBA* result, UInt32 flags)
{
if (t==0.0)
{
// copy
result->r = k1->r;
result->g = k1->g;
result->b = k1->b;
if (!(flags & kIgnoreAlpha))
result->a = k1->a;
return;
}
if (t==1.0)
{
result->r = k2->r;
result->g = k2->g;
result->b = k2->b;
if (!(flags & kIgnoreAlpha))
result->a = k2->a;
return;
}
LinInterp(k1->r, k2->r, t, &result->r);
LinInterp(k1->g, k2->g, t, &result->g);
LinInterp(k1->b, k2->b, t, &result->b);
if (!(flags & kIgnoreAlpha))
LinInterp(k1->a, k2->a, t, &result->a);
}
void hsInterp::LinInterp(const hsMatrix33* k1, const hsMatrix33* k2, hsScalar t,
hsMatrix33* result, UInt32 flags)
{
if (t==0.0)
{
// copy
result->fMap[0][0] = k1->fMap[0][0];
result->fMap[0][1] = k1->fMap[0][1];
result->fMap[0][2] = k1->fMap[0][2];
result->fMap[1][0] = k1->fMap[1][0];
result->fMap[1][1] = k1->fMap[1][1];
result->fMap[1][2] = k1->fMap[1][2];
if (!(flags & kIgnoreLastMatRow))
{
result->fMap[2][0] = k1->fMap[2][0];
result->fMap[2][1] = k1->fMap[2][1];
result->fMap[2][2] = k1->fMap[2][2];
}
return;
}
if (t==1.0)
{
// copy
result->fMap[0][0] = k2->fMap[0][0];
result->fMap[0][1] = k2->fMap[0][1];
result->fMap[0][2] = k2->fMap[0][2];
result->fMap[1][0] = k2->fMap[1][0];
result->fMap[1][1] = k2->fMap[1][1];
result->fMap[1][2] = k2->fMap[1][2];
if (!(flags & kIgnoreLastMatRow))
{
result->fMap[2][0] = k2->fMap[2][0];
result->fMap[2][1] = k2->fMap[2][1];
result->fMap[2][2] = k2->fMap[2][2];
}
return;
}
LinInterp(k1->fMap[0][0], k2->fMap[0][0], t, &result->fMap[0][0]);
LinInterp(k1->fMap[0][1], k2->fMap[0][1], t, &result->fMap[0][1]);
LinInterp(k1->fMap[0][2], k2->fMap[0][2], t, &result->fMap[0][2]);
LinInterp(k1->fMap[1][0], k2->fMap[1][0], t, &result->fMap[1][0]);
LinInterp(k1->fMap[1][1], k2->fMap[1][1], t, &result->fMap[1][1]);
LinInterp(k1->fMap[1][2], k2->fMap[1][2], t, &result->fMap[1][2]);
if (!(flags & kIgnoreLastMatRow))
{
LinInterp(k1->fMap[2][0], k2->fMap[2][0], t, &result->fMap[2][0]);
LinInterp(k1->fMap[2][1], k2->fMap[2][1], t, &result->fMap[2][1]);
LinInterp(k1->fMap[2][2], k2->fMap[2][2], t, &result->fMap[2][2]);
}
}
//
//
void hsInterp::LinInterp(const hsMatrix44* mat1, const hsMatrix44* mat2, hsScalar t,
hsMatrix44* out, UInt32 flags)
{
if (flags == 0)
{
if( 0 == t )
{
*out = *mat1;
return;
}
if( hsScalar1 == t )
{
*out = *mat2;
return;
}
}
if( flags & kIgnorePartsScale )
{
if (!(flags & kIgnorePartsRot))
{
// interp rotation with quats
hsQuat q1, q2, qOut;
q1.SetFromMatrix(mat1);
q2.SetFromMatrix(mat2);
LinInterp(&q1, &q2, t, &qOut);
qOut.Normalize();
qOut.MakeMatrix(out);
}
else
out->Reset();
#if 1
hsAssert(mat2->fMap[3][0]==0 && mat2->fMap[3][1]==0 && mat2->fMap[3][2]==0 && mat2->fMap[3][3]==1,
"matrix prob?");
#else
// copy
for(int i=0; i<3; i++)
out->fMap[3][i] = mat2->fMap[3][i];
#endif
if (!(flags & kIgnorePartsPos))
{
// interp translation
hsPoint3 p1,p2,pOut;
mat1->GetTranslate(&p1);
mat2->GetTranslate(&p2);
LinInterp(&p1, &p2, t, &pOut);
out->SetTranslate(&pOut);
out->NotIdentity(); // in case no rot
}
}
else
{
// Complete decomp and parts interp
gemAffineParts gemParts1, gemParts2;
hsAffineParts parts1, parts2, partsOut;
decomp_affine(mat1->fMap, &gemParts1);
AP_SET(parts1, gemParts1);
decomp_affine(mat2->fMap, &gemParts2);
AP_SET(parts2, gemParts2);
LinInterp(&parts1, &parts2, t, &partsOut, flags); // flags will be parsed here
partsOut.ComposeMatrix(out);
}
}
void hsInterp::LinInterp(const hsQuat* k1, const hsQuat* k2, hsScalar t, hsQuat* result)
{
if (t==0.0)
*result = *k1;
else
if (t==1.0)
*result = *k2;
else
{
result->SetFromSlerp(*k1, *k2, t);
}
}
void hsInterp::LinInterp(const hsScaleValue* k1, const hsScaleValue* k2, hsScalar t,
hsScaleValue* result)
{
LinInterp(&k1->fS, &k2->fS, t, &result->fS); // Stretch rotation
LinInterp(&k1->fQ, &k2->fQ, t, &result->fQ); // Stretch factor
}
void hsInterp::LinInterp(const hsAffineParts* k1, const hsAffineParts* k2, hsScalar t,
hsAffineParts* result, UInt32 flags)
{
if (t==0.0)
{
// copy
if (!(flags & kIgnorePartsPos))
result->fT = k1->fT;
if (!(flags & kIgnorePartsRot))
result->fQ = k1->fQ;
if (!(flags & kIgnorePartsScale))
{
// same as preserveScale
result->fU = k1->fU;
result->fK = k1->fK;
}
result->fF = k1->fF;
return;
}
if (flags & kPreservePartsScale)
{
result->fU = k1->fU; // just copy scale from 1st key
result->fK = k1->fK;
}
if (t==1.0)
{
// copy
if (!(flags & kIgnorePartsPos))
result->fT = k2->fT;
if (!(flags & kIgnorePartsRot))
result->fQ = k2->fQ;
if (!(flags & (kIgnorePartsScale | kPreservePartsScale)))
{
result->fU = k2->fU;
result->fK = k2->fK;
}
result->fF = k2->fF;
return;
}
if(k1->fF!=k2->fF)
hsStatusMessageF("WARNING: Inequality in affine parts flip value.");
// hsAssert(k1->fF==k2->fF, "inequality in affine parts flip value");
if (!(flags & kIgnorePartsPos))
LinInterp(&k1->fT, &k2->fT, t, &result->fT); // Translation
if (!(flags & kIgnorePartsRot))
{
LinInterp(&k1->fQ, &k2->fQ, t, &result->fQ); // Essential rotation
}
if (!(flags & (kIgnorePartsScale | kPreservePartsScale)))
{
LinInterp(&k1->fU, &k2->fU, t, &result->fU); // Stretch rotation
LinInterp(&k1->fK, &k2->fK, t, &result->fK); // Stretch factor
}
#if 0
if (!(flags & kIgnorePartsDet))
LinInterp(k1->fF, k2->fF, t, &result->fF); // Flip rot var
#else
result->fF = k1->fF;
#endif
}
//
///////////////////////////////////////////////////////
// Key interpolation
///////////////////////////////////////////////////////
//
void hsInterp::BezScalarEval(const hsScalar value1, const hsScalar outTan,
const hsScalar value2, const hsScalar inTan,
const hsScalar t, const hsScalar tanScale, hsScalar *result)
{
#if 0
// If the tangents were what you'd expect them to be... Hermite splines, than this code
// would make sense. But no, Max likes to store them in a scaled form based on the
// time of each frame. If we ever optimize this further, we could do the scaling on export,
// but I need this to work right now before all the artists hate me too much.
const hsScalar t2 = t * t;
const hsScalar t3 = t2 * t;
const hsScalar term1 = 2 * t3 - 3 * t2;
*result = ((term1 + 1) * value1) +
(-term1 * value2) +
((t3 - 2 * t2 + 1) * outTan) +
((t3 - t2) * inTan);
#else
const hsScalar oneMinusT = (1.0f - t);
const hsScalar tSq = t * t;
const hsScalar oneMinusTSq = oneMinusT * oneMinusT;
*result = (oneMinusT * oneMinusTSq * value1) +
(3.f * t * oneMinusTSq * (value1 + outTan * tanScale)) +
(3.f * tSq * oneMinusT * (value2 + inTan * tanScale)) +
(tSq * t * value2);
#endif
}
void hsInterp::BezInterp(const hsBezPoint3Key* k1, const hsBezPoint3Key* k2, const hsScalar t, hsScalarTriple* result)
{
hsScalar scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f;
BezScalarEval(k1->fValue.fX, k1->fOutTan.fX, k2->fValue.fX, k2->fInTan.fX, t, scale, &result->fX);
BezScalarEval(k1->fValue.fY, k1->fOutTan.fY, k2->fValue.fY, k2->fInTan.fY, t, scale, &result->fY);
BezScalarEval(k1->fValue.fZ, k1->fOutTan.fZ, k2->fValue.fZ, k2->fInTan.fZ, t, scale, &result->fZ);
}
void hsInterp::BezInterp(const hsBezScalarKey* k1, const hsBezScalarKey* k2, const hsScalar t, hsScalar* result)
{
hsScalar scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f;
BezScalarEval(k1->fValue, k1->fOutTan, k2->fValue, k2->fInTan, t, scale, result);
}
void hsInterp::BezInterp(const hsBezScaleKey* k1, const hsBezScaleKey* k2, const hsScalar t, hsScaleValue* result)
{
hsScalar scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f;
BezScalarEval(k1->fValue.fS.fX, k1->fOutTan.fX, k2->fValue.fS.fX, k2->fInTan.fX, t, scale, &result->fS.fX);
BezScalarEval(k1->fValue.fS.fY, k1->fOutTan.fY, k2->fValue.fS.fY, k2->fInTan.fY, t, scale, &result->fS.fY);
BezScalarEval(k1->fValue.fS.fZ, k1->fOutTan.fZ, k2->fValue.fS.fZ, k2->fInTan.fZ, t, scale, &result->fS.fZ);
// Slerp scale axis
LinInterp(&k1->fValue.fQ, &k2->fValue.fQ, t, &result->fQ);
}
//
// Get an element from an array of unknown type
//
static inline hsKeyFrame* GetKey(Int32 i, void *keys, Int32 size)
{
return (hsKeyFrame*) ((char*)keys + size * i);
}
//
// STATIC
// Given a list of keys, and a time, fills in the 2 boundary keys and
// a fraction (p=0-1) indicating where the time falls between them.
// Returns the index of the first key which can be passed in as a hint (lastKeyIdx)
// for the next search.
//
void hsInterp::GetBoundaryKeyFrames(hsScalar time, UInt32 numKeys, void *keys, UInt32 size,
hsKeyFrame **kF1, hsKeyFrame **kF2, UInt32 *lastKeyIdx, hsScalar *p, hsBool forwards)
{
hsAssert(numKeys>1, "Must have more than 1 keyframe");
int k1, k2;
UInt16 frame = (UInt16)(time * MAX_FRAMES_PER_SEC);
// boundary case, past end
if (frame > GetKey(numKeys-1, keys, size)->fFrame)
{
k1=k2=numKeys-1;
(*kF2) = GetKey(k1, keys, size);
(*kF1) = (*kF2);
*p = 0.0;
goto ret;
}
hsKeyFrame *key1, *key2;
// boundary case, before start
if (frame < (key1=GetKey(0, keys, size))->fFrame)
{
k1=k2=0;
(*kF1) = GetKey(k1, keys, size);
(*kF2) = (*kF1);
*p = 0.0;
goto ret;
}
// prime loop
int i;
i = 1;
if (*lastKeyIdx > 0 && *lastKeyIdx < numKeys - 1)
{
// new starting point for search
if (forwards)
key1 = GetKey(*lastKeyIdx, keys, size);
else
key2 = GetKey(*lastKeyIdx + 1, keys, size);
i = *lastKeyIdx + 1;
}
else if (!forwards)
{
key2 = GetKey(1, keys, size);
}
// search pairs of keys
int count;
if (forwards)
{
for (count = 1; count <= numKeys; count++, i++)
{
if (i >= numKeys)
{
key1 = GetKey(0, keys, size);
i = 1;
count++;
}
key2 = GetKey(i, keys, size);
if (frame <= key2->fFrame && frame >= key1->fFrame)
{
k2=i;
k1=i-1;
(*kF2) = key2;
(*kF1) = key1;
*p = (time - (*kF1)->fFrame / MAX_FRAMES_PER_SEC) / (((*kF2)->fFrame - (*kF1)->fFrame) / MAX_FRAMES_PER_SEC);
goto ret;
}
key1=key2;
}
}
else
{
for (count = 1; count <= numKeys; count++, i--)
{
if (i < 1)
{
i = numKeys - 1;
key2 = GetKey(i, keys, size);
count++;
}
key1 = GetKey(i - 1, keys, size);
if (frame <= key2->fFrame && frame >= key1->fFrame)
{
k2 = i;
k1 = i - 1;
(*kF2) = key2;
(*kF1) = key1;
*p = (time - (*kF1)->fFrame / MAX_FRAMES_PER_SEC) / (((*kF2)->fFrame - (*kF1)->fFrame) / MAX_FRAMES_PER_SEC);
goto ret;
}
key2=key1;
}
}
ret:
;
#if 0
char str[128];
sprintf(str, "k1=%d, k2=%d, p=%f\n", k1, k2, *p);
OutputDebugString(str);
#endif
*lastKeyIdx = k1;
}