You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
494 lines
13 KiB
494 lines
13 KiB
/*==LICENSE==* |
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools |
|
Copyright (C) 2011 Cyan Worlds, Inc. |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com |
|
or by snail mail at: |
|
Cyan Worlds, Inc. |
|
14617 N Newport Hwy |
|
Mead, WA 99021 |
|
|
|
*==LICENSE==*/ |
|
#include "hsTypes.h" |
|
#include "hsInterp.h" |
|
#include "../plTransform/hsAffineParts.h" |
|
#include "hsColorRGBA.h" |
|
#include "hsPoint2.h" |
|
|
|
// |
|
/////////////////////////////////////////////////////// |
|
// linear interpolation |
|
/////////////////////////////////////////////////////// |
|
// |
|
void hsInterp::LinInterp(hsScalar k1, hsScalar k2, hsScalar t, hsScalar* result) |
|
{ |
|
*result = k1 + t * (k2 - k1); |
|
} |
|
|
|
void hsInterp::LinInterp(const hsScalarTriple* k1, const hsScalarTriple* k2, hsScalar t, |
|
hsScalarTriple* result) |
|
{ |
|
if (t==0.0) |
|
*result = *k1; |
|
else |
|
if (t==1.0) |
|
*result = *k2; |
|
else |
|
{ |
|
LinInterp(k1->fX, k2->fX, t, &result->fX); |
|
LinInterp(k1->fY, k2->fY, t, &result->fY); |
|
LinInterp(k1->fZ, k2->fZ, t, &result->fZ); |
|
} |
|
} |
|
|
|
void hsInterp::LinInterp(const hsColorRGBA* k1, const hsColorRGBA* k2, hsScalar t, |
|
hsColorRGBA* result, UInt32 flags) |
|
{ |
|
if (t==0.0) |
|
{ |
|
// copy |
|
result->r = k1->r; |
|
result->g = k1->g; |
|
result->b = k1->b; |
|
if (!(flags & kIgnoreAlpha)) |
|
result->a = k1->a; |
|
return; |
|
} |
|
|
|
if (t==1.0) |
|
{ |
|
result->r = k2->r; |
|
result->g = k2->g; |
|
result->b = k2->b; |
|
if (!(flags & kIgnoreAlpha)) |
|
result->a = k2->a; |
|
return; |
|
} |
|
|
|
LinInterp(k1->r, k2->r, t, &result->r); |
|
LinInterp(k1->g, k2->g, t, &result->g); |
|
LinInterp(k1->b, k2->b, t, &result->b); |
|
if (!(flags & kIgnoreAlpha)) |
|
LinInterp(k1->a, k2->a, t, &result->a); |
|
} |
|
|
|
void hsInterp::LinInterp(const hsMatrix33* k1, const hsMatrix33* k2, hsScalar t, |
|
hsMatrix33* result, UInt32 flags) |
|
{ |
|
if (t==0.0) |
|
{ |
|
// copy |
|
result->fMap[0][0] = k1->fMap[0][0]; |
|
result->fMap[0][1] = k1->fMap[0][1]; |
|
result->fMap[0][2] = k1->fMap[0][2]; |
|
|
|
result->fMap[1][0] = k1->fMap[1][0]; |
|
result->fMap[1][1] = k1->fMap[1][1]; |
|
result->fMap[1][2] = k1->fMap[1][2]; |
|
|
|
if (!(flags & kIgnoreLastMatRow)) |
|
{ |
|
result->fMap[2][0] = k1->fMap[2][0]; |
|
result->fMap[2][1] = k1->fMap[2][1]; |
|
result->fMap[2][2] = k1->fMap[2][2]; |
|
} |
|
return; |
|
} |
|
if (t==1.0) |
|
{ |
|
// copy |
|
result->fMap[0][0] = k2->fMap[0][0]; |
|
result->fMap[0][1] = k2->fMap[0][1]; |
|
result->fMap[0][2] = k2->fMap[0][2]; |
|
|
|
result->fMap[1][0] = k2->fMap[1][0]; |
|
result->fMap[1][1] = k2->fMap[1][1]; |
|
result->fMap[1][2] = k2->fMap[1][2]; |
|
|
|
if (!(flags & kIgnoreLastMatRow)) |
|
{ |
|
result->fMap[2][0] = k2->fMap[2][0]; |
|
result->fMap[2][1] = k2->fMap[2][1]; |
|
result->fMap[2][2] = k2->fMap[2][2]; |
|
} |
|
return; |
|
} |
|
|
|
LinInterp(k1->fMap[0][0], k2->fMap[0][0], t, &result->fMap[0][0]); |
|
LinInterp(k1->fMap[0][1], k2->fMap[0][1], t, &result->fMap[0][1]); |
|
LinInterp(k1->fMap[0][2], k2->fMap[0][2], t, &result->fMap[0][2]); |
|
|
|
LinInterp(k1->fMap[1][0], k2->fMap[1][0], t, &result->fMap[1][0]); |
|
LinInterp(k1->fMap[1][1], k2->fMap[1][1], t, &result->fMap[1][1]); |
|
LinInterp(k1->fMap[1][2], k2->fMap[1][2], t, &result->fMap[1][2]); |
|
|
|
if (!(flags & kIgnoreLastMatRow)) |
|
{ |
|
LinInterp(k1->fMap[2][0], k2->fMap[2][0], t, &result->fMap[2][0]); |
|
LinInterp(k1->fMap[2][1], k2->fMap[2][1], t, &result->fMap[2][1]); |
|
LinInterp(k1->fMap[2][2], k2->fMap[2][2], t, &result->fMap[2][2]); |
|
} |
|
} |
|
|
|
// |
|
// |
|
void hsInterp::LinInterp(const hsMatrix44* mat1, const hsMatrix44* mat2, hsScalar t, |
|
hsMatrix44* out, UInt32 flags) |
|
{ |
|
if (flags == 0) |
|
{ |
|
if( 0 == t ) |
|
{ |
|
*out = *mat1; |
|
return; |
|
} |
|
|
|
if( hsScalar1 == t ) |
|
{ |
|
*out = *mat2; |
|
return; |
|
} |
|
} |
|
|
|
if( flags & kIgnorePartsScale ) |
|
{ |
|
if (!(flags & kIgnorePartsRot)) |
|
{ |
|
// interp rotation with quats |
|
hsQuat q1, q2, qOut; |
|
q1.SetFromMatrix(mat1); |
|
q2.SetFromMatrix(mat2); |
|
LinInterp(&q1, &q2, t, &qOut); |
|
|
|
qOut.Normalize(); |
|
qOut.MakeMatrix(out); |
|
} |
|
else |
|
out->Reset(); |
|
#if 1 |
|
hsAssert(mat2->fMap[3][0]==0 && mat2->fMap[3][1]==0 && mat2->fMap[3][2]==0 && mat2->fMap[3][3]==1, |
|
"matrix prob?"); |
|
#else |
|
// copy |
|
for(int i=0; i<3; i++) |
|
out->fMap[3][i] = mat2->fMap[3][i]; |
|
#endif |
|
|
|
if (!(flags & kIgnorePartsPos)) |
|
{ |
|
// interp translation |
|
hsPoint3 p1,p2,pOut; |
|
mat1->GetTranslate(&p1); |
|
mat2->GetTranslate(&p2); |
|
LinInterp(&p1, &p2, t, &pOut); |
|
out->SetTranslate(&pOut); |
|
out->NotIdentity(); // in case no rot |
|
} |
|
} |
|
else |
|
{ |
|
// Complete decomp and parts interp |
|
|
|
gemAffineParts gemParts1, gemParts2; |
|
hsAffineParts parts1, parts2, partsOut; |
|
|
|
decomp_affine(mat1->fMap, &gemParts1); |
|
AP_SET(parts1, gemParts1); |
|
|
|
decomp_affine(mat2->fMap, &gemParts2); |
|
AP_SET(parts2, gemParts2); |
|
|
|
LinInterp(&parts1, &parts2, t, &partsOut, flags); // flags will be parsed here |
|
|
|
partsOut.ComposeMatrix(out); |
|
} |
|
} |
|
|
|
void hsInterp::LinInterp(const hsQuat* k1, const hsQuat* k2, hsScalar t, hsQuat* result) |
|
{ |
|
if (t==0.0) |
|
*result = *k1; |
|
else |
|
if (t==1.0) |
|
*result = *k2; |
|
else |
|
{ |
|
result->SetFromSlerp(*k1, *k2, t); |
|
} |
|
} |
|
|
|
void hsInterp::LinInterp(const hsScaleValue* k1, const hsScaleValue* k2, hsScalar t, |
|
hsScaleValue* result) |
|
{ |
|
LinInterp(&k1->fS, &k2->fS, t, &result->fS); // Stretch rotation |
|
LinInterp(&k1->fQ, &k2->fQ, t, &result->fQ); // Stretch factor |
|
} |
|
|
|
void hsInterp::LinInterp(const hsAffineParts* k1, const hsAffineParts* k2, hsScalar t, |
|
hsAffineParts* result, UInt32 flags) |
|
{ |
|
if (t==0.0) |
|
{ |
|
// copy |
|
if (!(flags & kIgnorePartsPos)) |
|
result->fT = k1->fT; |
|
if (!(flags & kIgnorePartsRot)) |
|
result->fQ = k1->fQ; |
|
if (!(flags & kIgnorePartsScale)) |
|
{ |
|
// same as preserveScale |
|
result->fU = k1->fU; |
|
result->fK = k1->fK; |
|
} |
|
result->fF = k1->fF; |
|
|
|
return; |
|
} |
|
|
|
if (flags & kPreservePartsScale) |
|
{ |
|
result->fU = k1->fU; // just copy scale from 1st key |
|
result->fK = k1->fK; |
|
} |
|
|
|
if (t==1.0) |
|
{ |
|
// copy |
|
if (!(flags & kIgnorePartsPos)) |
|
result->fT = k2->fT; |
|
if (!(flags & kIgnorePartsRot)) |
|
result->fQ = k2->fQ; |
|
if (!(flags & (kIgnorePartsScale | kPreservePartsScale))) |
|
{ |
|
result->fU = k2->fU; |
|
result->fK = k2->fK; |
|
} |
|
result->fF = k2->fF; |
|
|
|
return; |
|
} |
|
|
|
if(k1->fF!=k2->fF) |
|
hsStatusMessageF("WARNING: Inequality in affine parts flip value."); |
|
|
|
// hsAssert(k1->fF==k2->fF, "inequality in affine parts flip value"); |
|
if (!(flags & kIgnorePartsPos)) |
|
LinInterp(&k1->fT, &k2->fT, t, &result->fT); // Translation |
|
if (!(flags & kIgnorePartsRot)) |
|
{ |
|
LinInterp(&k1->fQ, &k2->fQ, t, &result->fQ); // Essential rotation |
|
} |
|
|
|
if (!(flags & (kIgnorePartsScale | kPreservePartsScale))) |
|
{ |
|
LinInterp(&k1->fU, &k2->fU, t, &result->fU); // Stretch rotation |
|
LinInterp(&k1->fK, &k2->fK, t, &result->fK); // Stretch factor |
|
} |
|
|
|
#if 0 |
|
if (!(flags & kIgnorePartsDet)) |
|
LinInterp(k1->fF, k2->fF, t, &result->fF); // Flip rot var |
|
#else |
|
result->fF = k1->fF; |
|
#endif |
|
} |
|
|
|
// |
|
/////////////////////////////////////////////////////// |
|
// Key interpolation |
|
/////////////////////////////////////////////////////// |
|
// |
|
|
|
void hsInterp::BezScalarEval(const hsScalar value1, const hsScalar outTan, |
|
const hsScalar value2, const hsScalar inTan, |
|
const hsScalar t, const hsScalar tanScale, hsScalar *result) |
|
{ |
|
#if 0 |
|
// If the tangents were what you'd expect them to be... Hermite splines, than this code |
|
// would make sense. But no, Max likes to store them in a scaled form based on the |
|
// time of each frame. If we ever optimize this further, we could do the scaling on export, |
|
// but I need this to work right now before all the artists hate me too much. |
|
const hsScalar t2 = t * t; |
|
const hsScalar t3 = t2 * t; |
|
|
|
const hsScalar term1 = 2 * t3 - 3 * t2; |
|
|
|
*result = ((term1 + 1) * value1) + |
|
(-term1 * value2) + |
|
((t3 - 2 * t2 + 1) * outTan) + |
|
((t3 - t2) * inTan); |
|
#else |
|
const hsScalar oneMinusT = (1.0f - t); |
|
const hsScalar tSq = t * t; |
|
const hsScalar oneMinusTSq = oneMinusT * oneMinusT; |
|
|
|
*result = (oneMinusT * oneMinusTSq * value1) + |
|
(3.f * t * oneMinusTSq * (value1 + outTan * tanScale)) + |
|
(3.f * tSq * oneMinusT * (value2 + inTan * tanScale)) + |
|
(tSq * t * value2); |
|
#endif |
|
} |
|
|
|
void hsInterp::BezInterp(const hsBezPoint3Key* k1, const hsBezPoint3Key* k2, const hsScalar t, hsScalarTriple* result) |
|
{ |
|
hsScalar scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f; |
|
BezScalarEval(k1->fValue.fX, k1->fOutTan.fX, k2->fValue.fX, k2->fInTan.fX, t, scale, &result->fX); |
|
BezScalarEval(k1->fValue.fY, k1->fOutTan.fY, k2->fValue.fY, k2->fInTan.fY, t, scale, &result->fY); |
|
BezScalarEval(k1->fValue.fZ, k1->fOutTan.fZ, k2->fValue.fZ, k2->fInTan.fZ, t, scale, &result->fZ); |
|
} |
|
|
|
void hsInterp::BezInterp(const hsBezScalarKey* k1, const hsBezScalarKey* k2, const hsScalar t, hsScalar* result) |
|
{ |
|
hsScalar scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f; |
|
BezScalarEval(k1->fValue, k1->fOutTan, k2->fValue, k2->fInTan, t, scale, result); |
|
} |
|
|
|
void hsInterp::BezInterp(const hsBezScaleKey* k1, const hsBezScaleKey* k2, const hsScalar t, hsScaleValue* result) |
|
{ |
|
hsScalar scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f; |
|
BezScalarEval(k1->fValue.fS.fX, k1->fOutTan.fX, k2->fValue.fS.fX, k2->fInTan.fX, t, scale, &result->fS.fX); |
|
BezScalarEval(k1->fValue.fS.fY, k1->fOutTan.fY, k2->fValue.fS.fY, k2->fInTan.fY, t, scale, &result->fS.fY); |
|
BezScalarEval(k1->fValue.fS.fZ, k1->fOutTan.fZ, k2->fValue.fS.fZ, k2->fInTan.fZ, t, scale, &result->fS.fZ); |
|
|
|
// Slerp scale axis |
|
LinInterp(&k1->fValue.fQ, &k2->fValue.fQ, t, &result->fQ); |
|
} |
|
|
|
// |
|
// Get an element from an array of unknown type |
|
// |
|
static inline hsKeyFrame* GetKey(Int32 i, void *keys, Int32 size) |
|
{ |
|
return (hsKeyFrame*) ((char*)keys + size * i); |
|
} |
|
|
|
// |
|
// STATIC |
|
// Given a list of keys, and a time, fills in the 2 boundary keys and |
|
// a fraction (p=0-1) indicating where the time falls between them. |
|
// Returns the index of the first key which can be passed in as a hint (lastKeyIdx) |
|
// for the next search. |
|
// |
|
void hsInterp::GetBoundaryKeyFrames(hsScalar time, UInt32 numKeys, void *keys, UInt32 size, |
|
hsKeyFrame **kF1, hsKeyFrame **kF2, UInt32 *lastKeyIdx, hsScalar *p, hsBool forwards) |
|
{ |
|
hsAssert(numKeys>1, "Must have more than 1 keyframe"); |
|
int k1, k2; |
|
UInt16 frame = (UInt16)(time * MAX_FRAMES_PER_SEC); |
|
|
|
// boundary case, past end |
|
if (frame > GetKey(numKeys-1, keys, size)->fFrame) |
|
{ |
|
k1=k2=numKeys-1; |
|
(*kF2) = GetKey(k1, keys, size); |
|
(*kF1) = (*kF2); |
|
*p = 0.0; |
|
goto ret; |
|
} |
|
|
|
hsKeyFrame *key1, *key2; |
|
// boundary case, before start |
|
if (frame < (key1=GetKey(0, keys, size))->fFrame) |
|
{ |
|
k1=k2=0; |
|
(*kF1) = GetKey(k1, keys, size); |
|
(*kF2) = (*kF1); |
|
*p = 0.0; |
|
goto ret; |
|
} |
|
|
|
// prime loop |
|
int i; |
|
i = 1; |
|
if (*lastKeyIdx > 0 && *lastKeyIdx < numKeys - 1) |
|
{ |
|
// new starting point for search |
|
if (forwards) |
|
key1 = GetKey(*lastKeyIdx, keys, size); |
|
else |
|
key2 = GetKey(*lastKeyIdx + 1, keys, size); |
|
|
|
i = *lastKeyIdx + 1; |
|
} |
|
else if (!forwards) |
|
{ |
|
key2 = GetKey(1, keys, size); |
|
} |
|
|
|
// search pairs of keys |
|
int count; |
|
if (forwards) |
|
{ |
|
for (count = 1; count <= numKeys; count++, i++) |
|
{ |
|
if (i >= numKeys) |
|
{ |
|
key1 = GetKey(0, keys, size); |
|
i = 1; |
|
count++; |
|
} |
|
|
|
key2 = GetKey(i, keys, size); |
|
if (frame <= key2->fFrame && frame >= key1->fFrame) |
|
{ |
|
k2=i; |
|
k1=i-1; |
|
(*kF2) = key2; |
|
(*kF1) = key1; |
|
*p = (time - (*kF1)->fFrame / MAX_FRAMES_PER_SEC) / (((*kF2)->fFrame - (*kF1)->fFrame) / MAX_FRAMES_PER_SEC); |
|
goto ret; |
|
} |
|
key1=key2; |
|
} |
|
} |
|
else |
|
{ |
|
for (count = 1; count <= numKeys; count++, i--) |
|
{ |
|
if (i < 1) |
|
{ |
|
i = numKeys - 1; |
|
key2 = GetKey(i, keys, size); |
|
count++; |
|
} |
|
|
|
key1 = GetKey(i - 1, keys, size); |
|
if (frame <= key2->fFrame && frame >= key1->fFrame) |
|
{ |
|
k2 = i; |
|
k1 = i - 1; |
|
(*kF2) = key2; |
|
(*kF1) = key1; |
|
*p = (time - (*kF1)->fFrame / MAX_FRAMES_PER_SEC) / (((*kF2)->fFrame - (*kF1)->fFrame) / MAX_FRAMES_PER_SEC); |
|
goto ret; |
|
} |
|
key2=key1; |
|
} |
|
} |
|
|
|
ret: |
|
; |
|
|
|
#if 0 |
|
char str[128]; |
|
sprintf(str, "k1=%d, k2=%d, p=%f\n", k1, k2, *p); |
|
OutputDebugString(str); |
|
#endif |
|
*lastKeyIdx = k1; |
|
} |
|
|
|
|
|
|