78 lines
2.1 KiB
78 lines
2.1 KiB
"""Bisection algorithms.""" |
|
|
|
def insort_right(a, x, lo=0, hi=None): |
|
"""Insert item x in list a, and keep it sorted assuming a is sorted. |
|
|
|
If x is already in a, insert it to the right of the rightmost x. |
|
|
|
Optional args lo (default 0) and hi (default len(a)) bound the |
|
slice of a to be searched. |
|
""" |
|
|
|
if hi is None: |
|
hi = len(a) |
|
while lo < hi: |
|
mid = (lo+hi)//2 |
|
if x < a[mid]: hi = mid |
|
else: lo = mid+1 |
|
a.insert(lo, x) |
|
|
|
insort = insort_right # backward compatibility |
|
|
|
def bisect_right(a, x, lo=0, hi=None): |
|
"""Return the index where to insert item x in list a, assuming a is sorted. |
|
|
|
The return value i is such that all e in a[:i] have e <= x, and all e in |
|
a[i:] have e > x. So if x already appears in the list, i points just |
|
beyond the rightmost x already there. |
|
|
|
Optional args lo (default 0) and hi (default len(a)) bound the |
|
slice of a to be searched. |
|
""" |
|
|
|
if hi is None: |
|
hi = len(a) |
|
while lo < hi: |
|
mid = (lo+hi)//2 |
|
if x < a[mid]: hi = mid |
|
else: lo = mid+1 |
|
return lo |
|
|
|
bisect = bisect_right # backward compatibility |
|
|
|
def insort_left(a, x, lo=0, hi=None): |
|
"""Insert item x in list a, and keep it sorted assuming a is sorted. |
|
|
|
If x is already in a, insert it to the left of the leftmost x. |
|
|
|
Optional args lo (default 0) and hi (default len(a)) bound the |
|
slice of a to be searched. |
|
""" |
|
|
|
if hi is None: |
|
hi = len(a) |
|
while lo < hi: |
|
mid = (lo+hi)//2 |
|
if a[mid] < x: lo = mid+1 |
|
else: hi = mid |
|
a.insert(lo, x) |
|
|
|
|
|
def bisect_left(a, x, lo=0, hi=None): |
|
"""Return the index where to insert item x in list a, assuming a is sorted. |
|
|
|
The return value i is such that all e in a[:i] have e < x, and all e in |
|
a[i:] have e >= x. So if x already appears in the list, i points just |
|
before the leftmost x already there. |
|
|
|
Optional args lo (default 0) and hi (default len(a)) bound the |
|
slice of a to be searched. |
|
""" |
|
|
|
if hi is None: |
|
hi = len(a) |
|
while lo < hi: |
|
mid = (lo+hi)//2 |
|
if a[mid] < x: lo = mid+1 |
|
else: hi = mid |
|
return lo
|
|
|