You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
453 lines
16 KiB
453 lines
16 KiB
/* |
|
* jccoefct.c |
|
* |
|
* Copyright (C) 1994-1997, Thomas G. Lane. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains the coefficient buffer controller for compression. |
|
* This controller is the top level of the JPEG compressor proper. |
|
* The coefficient buffer lies between forward-DCT and entropy encoding steps. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
|
|
|
|
/* We use a full-image coefficient buffer when doing Huffman optimization, |
|
* and also for writing multiple-scan JPEG files. In all cases, the DCT |
|
* step is run during the first pass, and subsequent passes need only read |
|
* the buffered coefficients. |
|
*/ |
|
#ifdef ENTROPY_OPT_SUPPORTED |
|
#define FULL_COEF_BUFFER_SUPPORTED |
|
#else |
|
#ifdef C_MULTISCAN_FILES_SUPPORTED |
|
#define FULL_COEF_BUFFER_SUPPORTED |
|
#endif |
|
#endif |
|
|
|
|
|
/* Private buffer controller object */ |
|
|
|
typedef struct { |
|
struct jpeg_c_coef_controller pub; /* public fields */ |
|
|
|
JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
|
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ |
|
int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
|
int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
|
|
|
/* For single-pass compression, it's sufficient to buffer just one MCU |
|
* (although this may prove a bit slow in practice). We allocate a |
|
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each |
|
* MCU constructed and sent. (On 80x86, the workspace is FAR even though |
|
* it's not really very big; this is to keep the module interfaces unchanged |
|
* when a large coefficient buffer is necessary.) |
|
* In multi-pass modes, this array points to the current MCU's blocks |
|
* within the virtual arrays. |
|
*/ |
|
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
|
|
|
/* In multi-pass modes, we need a virtual block array for each component. */ |
|
jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
|
} my_coef_controller; |
|
|
|
typedef my_coef_controller * my_coef_ptr; |
|
|
|
|
|
/* Forward declarations */ |
|
METHODDEF(boolean) compress_data |
|
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
|
#ifdef FULL_COEF_BUFFER_SUPPORTED |
|
METHODDEF(boolean) compress_first_pass |
|
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
|
METHODDEF(boolean) compress_output |
|
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
|
#endif |
|
|
|
|
|
LOCAL(void) |
|
start_iMCU_row (j_compress_ptr cinfo) |
|
/* Reset within-iMCU-row counters for a new row */ |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
|
|
/* In an interleaved scan, an MCU row is the same as an iMCU row. |
|
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
|
* But at the bottom of the image, process only what's left. |
|
*/ |
|
if (cinfo->comps_in_scan > 1) { |
|
coef->MCU_rows_per_iMCU_row = 1; |
|
} else { |
|
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) |
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
|
else |
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
|
} |
|
|
|
coef->mcu_ctr = 0; |
|
coef->MCU_vert_offset = 0; |
|
} |
|
|
|
|
|
/* |
|
* Initialize for a processing pass. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
|
|
coef->iMCU_row_num = 0; |
|
start_iMCU_row(cinfo); |
|
|
|
switch (pass_mode) { |
|
case JBUF_PASS_THRU: |
|
if (coef->whole_image[0] != NULL) |
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
|
coef->pub.compress_data = compress_data; |
|
break; |
|
#ifdef FULL_COEF_BUFFER_SUPPORTED |
|
case JBUF_SAVE_AND_PASS: |
|
if (coef->whole_image[0] == NULL) |
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
|
coef->pub.compress_data = compress_first_pass; |
|
break; |
|
case JBUF_CRANK_DEST: |
|
if (coef->whole_image[0] == NULL) |
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
|
coef->pub.compress_data = compress_output; |
|
break; |
|
#endif |
|
default: |
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
|
break; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Process some data in the single-pass case. |
|
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
|
* per call, ie, v_samp_factor block rows for each component in the image. |
|
* Returns TRUE if the iMCU row is completed, FALSE if suspended. |
|
* |
|
* NB: input_buf contains a plane for each component in image, |
|
* which we index according to the component's SOF position. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
|
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
|
int blkn, bi, ci, yindex, yoffset, blockcnt; |
|
JDIMENSION ypos, xpos; |
|
jpeg_component_info *compptr; |
|
forward_DCT_ptr forward_DCT; |
|
|
|
/* Loop to write as much as one whole iMCU row */ |
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
|
yoffset++) { |
|
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; |
|
MCU_col_num++) { |
|
/* Determine where data comes from in input_buf and do the DCT thing. |
|
* Each call on forward_DCT processes a horizontal row of DCT blocks |
|
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks |
|
* sequentially. Dummy blocks at the right or bottom edge are filled in |
|
* specially. The data in them does not matter for image reconstruction, |
|
* so we fill them with values that will encode to the smallest amount of |
|
* data, viz: all zeroes in the AC entries, DC entries equal to previous |
|
* block's DC value. (Thanks to Thomas Kinsman for this idea.) |
|
*/ |
|
blkn = 0; |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index]; |
|
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
|
: compptr->last_col_width; |
|
xpos = MCU_col_num * compptr->MCU_sample_width; |
|
ypos = yoffset * compptr->DCT_v_scaled_size; |
|
/* ypos == (yoffset+yindex) * DCTSIZE */ |
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
|
if (coef->iMCU_row_num < last_iMCU_row || |
|
yoffset+yindex < compptr->last_row_height) { |
|
(*forward_DCT) (cinfo, compptr, |
|
input_buf[compptr->component_index], |
|
coef->MCU_buffer[blkn], |
|
ypos, xpos, (JDIMENSION) blockcnt); |
|
if (blockcnt < compptr->MCU_width) { |
|
/* Create some dummy blocks at the right edge of the image. */ |
|
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], |
|
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); |
|
for (bi = blockcnt; bi < compptr->MCU_width; bi++) { |
|
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; |
|
} |
|
} |
|
} else { |
|
/* Create a row of dummy blocks at the bottom of the image. */ |
|
jzero_far((void FAR *) coef->MCU_buffer[blkn], |
|
compptr->MCU_width * SIZEOF(JBLOCK)); |
|
for (bi = 0; bi < compptr->MCU_width; bi++) { |
|
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; |
|
} |
|
} |
|
blkn += compptr->MCU_width; |
|
ypos += compptr->DCT_v_scaled_size; |
|
} |
|
} |
|
/* Try to write the MCU. In event of a suspension failure, we will |
|
* re-DCT the MCU on restart (a bit inefficient, could be fixed...) |
|
*/ |
|
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
|
/* Suspension forced; update state counters and exit */ |
|
coef->MCU_vert_offset = yoffset; |
|
coef->mcu_ctr = MCU_col_num; |
|
return FALSE; |
|
} |
|
} |
|
/* Completed an MCU row, but perhaps not an iMCU row */ |
|
coef->mcu_ctr = 0; |
|
} |
|
/* Completed the iMCU row, advance counters for next one */ |
|
coef->iMCU_row_num++; |
|
start_iMCU_row(cinfo); |
|
return TRUE; |
|
} |
|
|
|
|
|
#ifdef FULL_COEF_BUFFER_SUPPORTED |
|
|
|
/* |
|
* Process some data in the first pass of a multi-pass case. |
|
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
|
* per call, ie, v_samp_factor block rows for each component in the image. |
|
* This amount of data is read from the source buffer, DCT'd and quantized, |
|
* and saved into the virtual arrays. We also generate suitable dummy blocks |
|
* as needed at the right and lower edges. (The dummy blocks are constructed |
|
* in the virtual arrays, which have been padded appropriately.) This makes |
|
* it possible for subsequent passes not to worry about real vs. dummy blocks. |
|
* |
|
* We must also emit the data to the entropy encoder. This is conveniently |
|
* done by calling compress_output() after we've loaded the current strip |
|
* of the virtual arrays. |
|
* |
|
* NB: input_buf contains a plane for each component in image. All |
|
* components are DCT'd and loaded into the virtual arrays in this pass. |
|
* However, it may be that only a subset of the components are emitted to |
|
* the entropy encoder during this first pass; be careful about looking |
|
* at the scan-dependent variables (MCU dimensions, etc). |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
|
JDIMENSION blocks_across, MCUs_across, MCUindex; |
|
int bi, ci, h_samp_factor, block_row, block_rows, ndummy; |
|
JCOEF lastDC; |
|
jpeg_component_info *compptr; |
|
JBLOCKARRAY buffer; |
|
JBLOCKROW thisblockrow, lastblockrow; |
|
forward_DCT_ptr forward_DCT; |
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
/* Align the virtual buffer for this component. */ |
|
buffer = (*cinfo->mem->access_virt_barray) |
|
((j_common_ptr) cinfo, coef->whole_image[ci], |
|
coef->iMCU_row_num * compptr->v_samp_factor, |
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
|
/* Count non-dummy DCT block rows in this iMCU row. */ |
|
if (coef->iMCU_row_num < last_iMCU_row) |
|
block_rows = compptr->v_samp_factor; |
|
else { |
|
/* NB: can't use last_row_height here, since may not be set! */ |
|
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
|
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
|
} |
|
blocks_across = compptr->width_in_blocks; |
|
h_samp_factor = compptr->h_samp_factor; |
|
/* Count number of dummy blocks to be added at the right margin. */ |
|
ndummy = (int) (blocks_across % h_samp_factor); |
|
if (ndummy > 0) |
|
ndummy = h_samp_factor - ndummy; |
|
forward_DCT = cinfo->fdct->forward_DCT[ci]; |
|
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call |
|
* on forward_DCT processes a complete horizontal row of DCT blocks. |
|
*/ |
|
for (block_row = 0; block_row < block_rows; block_row++) { |
|
thisblockrow = buffer[block_row]; |
|
(*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow, |
|
(JDIMENSION) (block_row * compptr->DCT_v_scaled_size), |
|
(JDIMENSION) 0, blocks_across); |
|
if (ndummy > 0) { |
|
/* Create dummy blocks at the right edge of the image. */ |
|
thisblockrow += blocks_across; /* => first dummy block */ |
|
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); |
|
lastDC = thisblockrow[-1][0]; |
|
for (bi = 0; bi < ndummy; bi++) { |
|
thisblockrow[bi][0] = lastDC; |
|
} |
|
} |
|
} |
|
/* If at end of image, create dummy block rows as needed. |
|
* The tricky part here is that within each MCU, we want the DC values |
|
* of the dummy blocks to match the last real block's DC value. |
|
* This squeezes a few more bytes out of the resulting file... |
|
*/ |
|
if (coef->iMCU_row_num == last_iMCU_row) { |
|
blocks_across += ndummy; /* include lower right corner */ |
|
MCUs_across = blocks_across / h_samp_factor; |
|
for (block_row = block_rows; block_row < compptr->v_samp_factor; |
|
block_row++) { |
|
thisblockrow = buffer[block_row]; |
|
lastblockrow = buffer[block_row-1]; |
|
jzero_far((void FAR *) thisblockrow, |
|
(size_t) (blocks_across * SIZEOF(JBLOCK))); |
|
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { |
|
lastDC = lastblockrow[h_samp_factor-1][0]; |
|
for (bi = 0; bi < h_samp_factor; bi++) { |
|
thisblockrow[bi][0] = lastDC; |
|
} |
|
thisblockrow += h_samp_factor; /* advance to next MCU in row */ |
|
lastblockrow += h_samp_factor; |
|
} |
|
} |
|
} |
|
} |
|
/* NB: compress_output will increment iMCU_row_num if successful. |
|
* A suspension return will result in redoing all the work above next time. |
|
*/ |
|
|
|
/* Emit data to the entropy encoder, sharing code with subsequent passes */ |
|
return compress_output(cinfo, input_buf); |
|
} |
|
|
|
|
|
/* |
|
* Process some data in subsequent passes of a multi-pass case. |
|
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
|
* per call, ie, v_samp_factor block rows for each component in the scan. |
|
* The data is obtained from the virtual arrays and fed to the entropy coder. |
|
* Returns TRUE if the iMCU row is completed, FALSE if suspended. |
|
* |
|
* NB: input_buf is ignored; it is likely to be a NULL pointer. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
|
int blkn, ci, xindex, yindex, yoffset; |
|
JDIMENSION start_col; |
|
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
|
JBLOCKROW buffer_ptr; |
|
jpeg_component_info *compptr; |
|
|
|
/* Align the virtual buffers for the components used in this scan. |
|
* NB: during first pass, this is safe only because the buffers will |
|
* already be aligned properly, so jmemmgr.c won't need to do any I/O. |
|
*/ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
buffer[ci] = (*cinfo->mem->access_virt_barray) |
|
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
|
coef->iMCU_row_num * compptr->v_samp_factor, |
|
(JDIMENSION) compptr->v_samp_factor, FALSE); |
|
} |
|
|
|
/* Loop to process one whole iMCU row */ |
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
|
yoffset++) { |
|
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; |
|
MCU_col_num++) { |
|
/* Construct list of pointers to DCT blocks belonging to this MCU */ |
|
blkn = 0; /* index of current DCT block within MCU */ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
start_col = MCU_col_num * compptr->MCU_width; |
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
|
buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
|
for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
|
coef->MCU_buffer[blkn++] = buffer_ptr++; |
|
} |
|
} |
|
} |
|
/* Try to write the MCU. */ |
|
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
|
/* Suspension forced; update state counters and exit */ |
|
coef->MCU_vert_offset = yoffset; |
|
coef->mcu_ctr = MCU_col_num; |
|
return FALSE; |
|
} |
|
} |
|
/* Completed an MCU row, but perhaps not an iMCU row */ |
|
coef->mcu_ctr = 0; |
|
} |
|
/* Completed the iMCU row, advance counters for next one */ |
|
coef->iMCU_row_num++; |
|
start_iMCU_row(cinfo); |
|
return TRUE; |
|
} |
|
|
|
#endif /* FULL_COEF_BUFFER_SUPPORTED */ |
|
|
|
|
|
/* |
|
* Initialize coefficient buffer controller. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
|
{ |
|
my_coef_ptr coef; |
|
|
|
coef = (my_coef_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
SIZEOF(my_coef_controller)); |
|
cinfo->coef = (struct jpeg_c_coef_controller *) coef; |
|
coef->pub.start_pass = start_pass_coef; |
|
|
|
/* Create the coefficient buffer. */ |
|
if (need_full_buffer) { |
|
#ifdef FULL_COEF_BUFFER_SUPPORTED |
|
/* Allocate a full-image virtual array for each component, */ |
|
/* padded to a multiple of samp_factor DCT blocks in each direction. */ |
|
int ci; |
|
jpeg_component_info *compptr; |
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, |
|
(JDIMENSION) jround_up((long) compptr->width_in_blocks, |
|
(long) compptr->h_samp_factor), |
|
(JDIMENSION) jround_up((long) compptr->height_in_blocks, |
|
(long) compptr->v_samp_factor), |
|
(JDIMENSION) compptr->v_samp_factor); |
|
} |
|
#else |
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
|
#endif |
|
} else { |
|
/* We only need a single-MCU buffer. */ |
|
JBLOCKROW buffer; |
|
int i; |
|
|
|
buffer = (JBLOCKROW) |
|
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
|
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { |
|
coef->MCU_buffer[i] = buffer + i; |
|
} |
|
coef->whole_image[0] = NULL; /* flag for no virtual arrays */ |
|
} |
|
}
|
|
|