You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

341 lines
9.8 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "hsTypes.h"
#include "plAccMeshSmooth.h"
#include "plGeometrySpan.h"
#include "plAccessGeometry.h"
#include "plAccessTriSpan.h"
#include "hsFastMath.h"
class EdgeBin
{
public:
UInt16 fVtx;
UInt16 fCount;
EdgeBin() : fVtx(0), fCount(0) {}
};
void plAccMeshSmooth::FindEdges(UInt32 maxVtxIdx, UInt32 nTris, UInt16* idxList, hsTArray<UInt16>& edgeVerts)
{
hsTArray<EdgeBin>* bins = TRACKED_NEW hsTArray<EdgeBin>[maxVtxIdx+1];
hsBitVector edgeVertBits;
// For each vert pair (edge) in idxList
int i;
for( i = 0; i < nTris; i++ )
{
int j;
for( j = 0; j < 3; j++ )
{
int jPlus = j < 2 ? j+1 : 0;
int idx0 = idxList[i*3 + j];
int idx1 = idxList[i*3 + jPlus];
int lo, hi;
// Look in the LUT for the lower index.
if( idx0 < idx1 )
{
lo = idx0;
hi = idx1;
}
else
{
lo = idx1;
hi = idx0;
}
hsTArray<EdgeBin>& loBin = bins[lo];
// In that bucket, look for the higher index.
int k;
for( k = 0; k < loBin.GetCount(); k++ )
{
if( loBin[k].fVtx == hi )
break;
}
// If we find it, increment it's count,
// else add it.
if( k < loBin.GetCount() )
{
loBin[k].fCount++;
}
else
{
EdgeBin* b = loBin.Push();
b->fVtx = hi;
b->fCount = 1;
}
}
}
// For each bucket in the LUT,
for( i = 0; i < maxVtxIdx+1; i++ )
{
hsTArray<EdgeBin>& loBin = bins[i];
// For each higher index
int j;
for( j = 0; j < loBin.GetCount(); j++ )
{
// If the count is one, it's an edge, so set the edge bit for both indices (hi and lo)
if( 1 == loBin[j].fCount )
{
edgeVertBits.SetBit(i);
edgeVertBits.SetBit(loBin[j].fVtx);
}
}
}
// Now translate the bitvector to a list of indices.
for( i = 0; i < maxVtxIdx+1; i++ )
{
if( edgeVertBits.IsBitSet(i) )
edgeVerts.Append(i);
}
delete [] bins;
}
void plAccMeshSmooth::FindEdges(hsTArray<plGeometrySpan*>& spans, hsTArray<UInt16>* edgeVerts)
{
fSpans.SetCount(spans.GetCount());
int i;
for( i = 0; i < spans.GetCount(); i++ )
{
fAccGeom.AccessSpanFromGeometrySpan(fSpans[i], spans[i]);
if( !fSpans[i].HasAccessTri() )
continue;
plAccessTriSpan& triSpan = fSpans[i].AccessTri();
UInt32 nTris = triSpan.TriCount();
UInt16* idxList = triSpan.fTris;
UInt32 maxVertIdx = triSpan.VertCount()-1;
FindEdges(maxVertIdx, nTris, idxList, edgeVerts[i]);
}
}
void plAccMeshSmooth::Smooth(hsTArray<plGeometrySpan*>& spans)
{
hsTArray<UInt16>* shareVtx = TRACKED_NEW hsTArray<UInt16>[spans.GetCount()];
hsTArray<UInt16>* edgeVerts = TRACKED_NEW hsTArray<UInt16>[spans.GetCount()];
FindEdges(spans, edgeVerts);
int i;
for( i = 0; i < spans.GetCount(); i++ )
{
while( edgeVerts[i].GetCount() )
{
int j = edgeVerts[i].GetCount()-1;
plAccessTriSpan& triSpan = fSpans[i].AccessTri();
VtxAccum accum;
accum.fPos = IPositionToWorld(fSpans[i], edgeVerts[i][j]);
accum.fNorm = INormalToWorld(fSpans[i], edgeVerts[i][j]);
if( triSpan.HasDiffuse() )
accum.fDiffuse = triSpan.DiffuseRGBA(edgeVerts[i][j]);
else
accum.fDiffuse.Set(1.f, 1.f, 1.f, 1.f);
shareVtx[i].Append(edgeVerts[i][j]);
// Find shared verts on this same span
FindSharedVerts(fSpans[i], j, edgeVerts[i], shareVtx[i], accum);
// Now look through the rest of the spans
int k;
for( k = i+1; k < spans.GetCount(); k++ )
{
FindSharedVerts(fSpans[k], edgeVerts[k].GetCount(), edgeVerts[k], shareVtx[k], accum);
}
accum.fNorm.Normalize();
if( fFlags & kSmoothNorm )
{
for( k = i; k < spans.GetCount(); k++ )
{
SetNormals(fSpans[k], shareVtx[k], accum.fNorm);
}
}
if( fFlags & kSmoothPos )
{
for( k = i; k < spans.GetCount(); k++ )
{
SetPositions(fSpans[k], shareVtx[k], accum.fPos);
}
}
if( fFlags & kSmoothDiffuse )
{
for( k = i; k < spans.GetCount(); k++ )
{
SetDiffuse(fSpans[k], shareVtx[k], accum.fDiffuse);
}
}
// Now remove all the shared verts (which we just processed)
// from edgeVerts so we don't process them again.
for( k = i; k < spans.GetCount(); k++ )
{
int m;
for( m = 0; m < shareVtx[k].GetCount(); m++ )
{
int idx = edgeVerts[k].Find(shareVtx[k][m]);
hsAssert(idx != edgeVerts[k].kMissingIndex, "Lost vertex between find and remove");
edgeVerts[k].Remove(idx);
}
shareVtx[k].SetCount(0);
}
}
}
delete [] shareVtx;
delete [] edgeVerts;
}
hsPoint3 plAccMeshSmooth::IPositionToWorld(plAccessSpan& span, int i) const
{
return span.GetLocalToWorld() * span.AccessTri().Position(i);
}
hsVector3 plAccMeshSmooth::INormalToWorld(plAccessSpan& span, int i) const
{
if( span.GetWorldToLocal().fFlags & hsMatrix44::kIsIdent )
{
return span.AccessTri().Normal(i);
}
hsMatrix44 l2wInvTransp;
span.GetWorldToLocal().GetTranspose(&l2wInvTransp);
hsVector3 ret = l2wInvTransp * span.AccessTri().Normal(i);
hsFastMath::NormalizeAppr(ret);
return ret;
}
hsPoint3 plAccMeshSmooth::IPositionToLocal(plAccessSpan& span, const hsPoint3& wPos) const
{
return span.GetWorldToLocal() * wPos;
}
hsVector3 plAccMeshSmooth::INormalToLocal(plAccessSpan& span, const hsVector3& wNorm) const
{
if( span.GetLocalToWorld().fFlags & hsMatrix44::kIsIdent )
{
return wNorm;
}
hsMatrix44 w2lInvTransp;
span.GetLocalToWorld().GetTranspose(&w2lInvTransp);
hsVector3 ret = w2lInvTransp * wNorm;
hsFastMath::NormalizeAppr(ret);
return ret;
}
void plAccMeshSmooth::FindSharedVerts(plAccessSpan& span, int numEdgeVerts, hsTArray<UInt16>& edgeVerts, hsTArray<UInt16>& shareVtx, VtxAccum& accum)
{
plAccessTriSpan& triSpan = span.AccessTri();
int i;
for( i = 0; i < numEdgeVerts; i++ )
{
hsPoint3 pos = IPositionToWorld(span, edgeVerts[i]);
hsVector3 diff(&accum.fPos, &pos);
if( diff.MagnitudeSquared() < fDistTolSq )
{
hsVector3 norm = INormalToWorld(span, edgeVerts[i]);
if( norm.InnerProduct(accum.fNorm) > fMinNormDot )
{
shareVtx.Append(edgeVerts[i]);
accum.fPos += pos;
accum.fPos *= 0.5f;
accum.fNorm += norm;
hsFastMath::NormalizeAppr(accum.fNorm);
hsColorRGBA diff;
if( triSpan.HasDiffuse() )
diff = triSpan.DiffuseRGBA(edgeVerts[i]);
else
diff.Set(1.f, 1.f, 1.f, 1.f);
accum.fDiffuse += diff;
accum.fDiffuse *= 0.5f;
}
}
}
}
void plAccMeshSmooth::SetPositions(plAccessSpan& span, hsTArray<UInt16>& shareVtx, const hsPoint3& pos) const
{
plAccessTriSpan& triSpan = span.AccessTri();
int i;
for( i = 0; i < shareVtx.GetCount(); i++ )
triSpan.Position(shareVtx[i]) = IPositionToLocal(span, pos);
}
void plAccMeshSmooth::SetNormals(plAccessSpan& span, hsTArray<UInt16>& shareVtx, const hsVector3& norm) const
{
plAccessTriSpan& triSpan = span.AccessTri();
int i;
for( i = 0; i < shareVtx.GetCount(); i++ )
triSpan.Normal(shareVtx[i]) = INormalToLocal(span, norm);
}
void plAccMeshSmooth::SetDiffuse(plAccessSpan& span, hsTArray<UInt16>& shareVtx, const hsColorRGBA& diff) const
{
plAccessTriSpan& triSpan = span.AccessTri();
hsAssert(triSpan.HasDiffuse(), "Calling SetColors on data with no color");
int i;
for( i = 0; i < shareVtx.GetCount(); i++ )
triSpan.Diffuse32(shareVtx[i]) = diff.ToARGB32();
}
void plAccMeshSmooth::SetAngle(hsScalar degs)
{
fMinNormDot = hsCosine(hsScalarDegToRad(degs));
}
hsScalar plAccMeshSmooth::GetAngle() const
{
return hsScalarRadToDeg(hsACosine(fMinNormDot));
}
void plAccMeshSmooth::SetDistTol(hsScalar dist)
{
fDistTolSq = dist * dist;
}
hsScalar plAccMeshSmooth::GetDistTol() const
{
return hsSquareRoot(fDistTolSq);
}