You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1201 lines
34 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Additional permissions under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "HeadSpin.h"
#include "hsBitVector.h"
#include "plComponent.h"
#include "plComponentReg.h"
#include "plMiscComponents.h"
#include "MaxMain/plMaxNode.h"
#include <dummy.h>
#include <iparamm2.h>
#include <meshdlib.h>
#if MAX_VERSION_MAJOR >= 13
# include <INamedSelectionSetManager.h>
#endif
#include "resource.h"
#include <vector>
#pragma hdrstop
#include "MaxMain/plPlasmaRefMsgs.h"
#include "MaxExport/plExportProgressBar.h"
#include "plMath/hsRadixSort.h"
#include "pnEncryption/plRandom.h"
#include "pfAnimation/plBlower.h"
#include "plDicer.h"
#include "plDistribComponent.h"
#include "MaxConvert/plDistributor.h"
#include "MaxConvert/plDistTree.h"
#include "plClusterComponent.h"
#include "MaxConvert/plClusterUtil.h"
#include "plDrawable/plClusterGroup.h"
#include "plDrawable/plSpanTemplate.h"
/////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////
// Start with the component bookkeeping song and dance.
// Actual working code follows.
/////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////
void DummyCodeIncludeFuncCluster()
{
}
class plClusterComponentProc : public ParamMap2UserDlgProc
{
public:
BOOL DlgProc(TimeValue t, IParamMap2 *map, HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
switch (msg)
{
case WM_COMMAND:
if( (HIWORD(wParam) == BN_CLICKED) && (LOWORD(wParam) == IDC_CLUSTER_DO_THE_DANCE) )
{
plClusterComponent* cc = (plClusterComponent*)map->GetParamBlock()->GetOwner();
cc->Cluster(nil);
return TRUE;
}
if( (HIWORD(wParam) == BN_CLICKED) && (LOWORD(wParam) == IDC_CLUSTER_CLEAR) )
{
plClusterComponent* cc = (plClusterComponent*)map->GetParamBlock()->GetOwner();
cc->Clear();
return TRUE;
}
break;
}
return false;
}
void DeleteThis() {}
};
static plClusterComponentProc gClusterCompProc;
//Max desc stuff necessary below.
CLASS_DESC(plClusterComponent, gClusterCompDesc, "Cluster", "Cluster", COMP_TYPE_DISTRIBUTOR, CLUSTER_COMP_CID)
class plClusterCompAccessor : public PBAccessor
{
public:
void Set(PB2Value& v, ReferenceMaker* owner, ParamID id, int tabIndex, TimeValue t)
{
if( id == plClusterComponent::kWindBones )
{
plClusterComponent *comp = (plClusterComponent*)owner;
comp->NotifyDependents(FOREVER, PART_ALL, REFMSG_USER_COMP_REF_CHANGED);
}
}
};
plClusterCompAccessor gClusterCompAccessor;
ParamBlockDesc2 gClusterBk
(
plComponent::kBlkComp, _T("Cluster"), 0, &gClusterCompDesc, P_AUTO_CONSTRUCT + P_AUTO_UI, plComponent::kRefComp,
IDD_COMP_CLUSTER, IDS_COMP_CLUSTERS, 0, 0, &gClusterCompProc,
plClusterComponent::kClusters, _T("Clusters"), TYPE_INODE_TAB, 0, 0, 0,
end,
plClusterComponent::kOptimization, _T("Optimization"), TYPE_FLOAT, 0, 0,
p_default, 100.0,
p_range, 0.0, 100.0,
p_ui, TYPE_SPINNER, EDITTYPE_POS_FLOAT,
IDC_COMP_CLUSTERSIZE, IDC_COMP_CLUSTERSIZE_SPIN, 1.0,
end,
plClusterComponent::kFadeIns, _T("FadeIns"), TYPE_POINT3_TAB, 0, 0, 0,
end,
plClusterComponent::kFadeOuts, _T("FadeOuts"), TYPE_POINT3_TAB, 0, 0, 0,
end,
// OBSOLETE
plClusterComponent::kWindBone, _T("WindBone"), TYPE_INODE, 0, 0,
// p_ui, TYPE_PICKNODEBUTTON, IDC_COMP_CLUSTER_WINDBONE,
// p_prompt, IDS_COMP_CLUSTER_CHOSE_WINDBONE,
end,
plClusterComponent::kWindBones, _T("WindBones"), TYPE_INODE_TAB, 0, 0, 0,
end,
plClusterComponent::kAutoGen, _T("AutoGen"), TYPE_BOOL, 0, 0,
p_default, FALSE,
p_ui, TYPE_SINGLECHEKBOX, IDC_COMP_CLUST_AUTOEXPORT,
end,
plClusterComponent::kAutoInstance, _T("AutoInstance"), TYPE_BOOL, 0, 0,
p_default, FALSE,
p_ui, TYPE_SINGLECHEKBOX, IDC_COMP_CLUST_AUTOINSTANCE,
end,
end
);
bool plClusterComponent::SetupProperties(plMaxNode *node, plErrorMsg *pErrMsg)
{
fSetupDone = false;
fExported = false;
int numClust = fCompPB->Count(kClusters);
int i;
for( i = numClust-1; i >= 0; --i )
{
if( !fCompPB->GetINode(kClusters, TimeValue(0), i) )
fCompPB->Delete(kClusters, i, 1);
}
return true;
}
static int CompTemplNodes(const void *elem1, const void *elem2)
{
plDistribInstance* distA = (plDistribInstance*)elem1;
plDistribInstance* distB = (plDistribInstance*)elem2;
plMaxNode* a = (plMaxNode*)distA->fNode;
plMaxNode* b = (plMaxNode*)distB->fNode;
if( a == b )
return 0;
if( a->GetRenderLevel(!a->GetNoDeferDraw()) < b->GetRenderLevel(!b->GetNoDeferDraw()) )
return -1;
if( a->GetRenderLevel(!a->GetNoDeferDraw()) > b->GetRenderLevel(!b->GetNoDeferDraw()) )
return 1;
if( a < b )
return -1;
return 1;
}
bool plClusterComponent::PreConvert(plMaxNode *node, plErrorMsg *pErrMsg)
{
if( !fSetupDone )
{
int numClust = fCompPB->Count(kClusters);
int i;
for( i = 0; i < numClust; i++ )
{
plMaxNodeBase* clust = (plMaxNodeBase*)fCompPB->GetINode(kClusters, TimeValue(0), i);
if( clust )
{
Box3 fade(fCompPB->GetPoint3(kFadeIns, TimeValue(0), i), fCompPB->GetPoint3(kFadeOuts, TimeValue(0), i));
// Deal here is that, although we'd love to properly sort all the time, most of the time we don't
// need to and/or can't afford it, at least with the closeup dense plants. This is a sort of hacky
// way to guess whether we can afford a proper sort. The idea is that anything that is only visible
// from farther than N feet away is probably some cheap imposter kind of representation that we can
// afford to face sort (it's likely to be two sided convex objects too, which means it'll need the sort).
// Can we do better? Not tonight.
const float kMinDistantFadeIn = 70.f;
const float kMaxDistantFadeOut = 10.f;
BOOL faceSort = false;
if( fade.Min()[2] < 0 )
{
if( fade.Min()[0] > kMinDistantFadeIn )
faceSort = true;
}
else if( fade.Max()[2] > 0 )
{
if( fade.Max()[1] < kMaxDistantFadeOut )
faceSort = true;
}
if( faceSort )
faceSort = true;
clust->SetFade(fade);
clust->SetNoDeferDraw(true);
clust->SetNoFaceSort(!faceSort);
clust->SetNormalChan(plDistributor::kNormMapChan);
if( i < fCompPB->Count(kWindBones) )
{
plMaxNodeBase* windBone = (plMaxNodeBase*)fCompPB->GetINode(kWindBones, TimeValue(0), i);
// FISHHACK
// BoneUpdate
// Add clust as first bone, windBone as second.
if( windBone && (windBone != clust) )
clust->AddBone(windBone);
}
}
}
ISetupRenderDependencies();
fClusterGroups.clear();
if (fCompPB->GetInt(kAutoInstance))
{
hsBitVector doneBits;
IBuildDistribTab();
if( !fDistribTab.Count() )
{
fSetupDone = true;
return true;
}
plDistribInstTab nodes;
plExportProgressBar bar;
if( IBuildNodeTab(nodes, pErrMsg, bar) )
{
nodes.Sort(CompTemplNodes);
plClusterUtil util;
int i = 0;
while( i < nodes.Count() )
{
plMaxNode* repNode = (plMaxNode*)nodes[i].fNode;
int nextNode;
for( nextNode = i+1; (nextNode < nodes.Count()) && (nodes[i].fNode == nodes[nextNode].fNode); nextNode++ )
{} // intentional, we just want the i value
// As far as I can tell, we don't actually use the templates generated here, we just use the count
// to know how many groups to create, and then generate the templates again in Convert().
// Looks like a hack that never got cleaned up.
plSpanTemplTab templs = util.MakeTemplates(repNode);
int j;
for( j = 0; j < templs.Count(); j++ )
{
fClusterGroups.push_back(util.CreateGroup(repNode, GetINode()->GetName()));
delete templs[j];
}
i = nextNode;
}
}
IClearNodeTab();
IClearDistribTab();
}
fSetupDone = true;
}
return true;
}
bool plClusterComponent::Convert(plMaxNode *node, plErrorMsg *pErrMsg)
{
if( !fExported && (fCompPB->GetInt(kAutoInstance)) )
{
hsBitVector doneBits;
IBuildDistribTab();
if( !fDistribTab.Count() )
{
fExported = true;
return true;
}
plDistribInstTab nodes;
plExportProgressBar bar;
if( IBuildNodeTab(nodes, pErrMsg, bar) )
{
nodes.Sort(CompTemplNodes);
plClusterUtil util;
plDeformVert defVert;
plShadeVert shadeVert;
int groupIdx = 0;
int i = 0;
while( i < nodes.Count() )
{
plL2WTab l2wTab;
plMaxNode* repNode = (plMaxNode*)nodes[i].fNode;
Matrix3 l2w = nodes[i].fObjectTM;
l2wTab.Append(1, &l2w);
int nextNode;
for( nextNode = i+1; (nextNode < nodes.Count()) && (nodes[i].fNode == nodes[nextNode].fNode); nextNode++ )
{
l2wTab.Append(1, &nodes[nextNode].fObjectTM);
}
plSpanTemplTab templs = util.MakeTemplates(repNode);
int j;
for( j = 0; j < templs.Count(); j++ )
{
util.SetupGroup(fClusterGroups[groupIdx], repNode, templs[j]);
groupIdx++;
util.AddClusters(l2wTab, nil, nil);
}
i = nextNode;
}
}
IClearNodeTab();
IClearDistribTab();
fExported = true;
}
return true;
}
plClusterComponent::plClusterComponent()
{
fClassDesc = &gClusterCompDesc;
fClassDesc->MakeAutoParamBlocks(this);
fClusterBins = nil;
fSizes[0] = fSizes[1] = fSizes[2] = 0;
fAutoGen = FALSE;
}
void plClusterComponent::ICheckWindBone()
{
}
/////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////
// Working end of the gun follows below this line.
/////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////
BOOL plClusterComponent::AutoGen(plErrorMsg* pErrMsg)
{
if( !fCompPB->Count(kClusters) && fCompPB->GetInt(kAutoGen) )
{
fAutoGen = true;
return Cluster(pErrMsg);
}
return false;
}
void plClusterComponent::AutoClear(plErrorMsg* pErrMsg)
{
if( fAutoGen )
{
Clear();
fAutoGen = false;
}
}
void plClusterComponent::IBuildDistribTab()
{
plDistribCompTab& tab = fDistribTab;
tab.ZeroCount();
// Okay, laziest hackiest sort algorithm in the world follows.
// But it's okay, the number of distributors is small.
plDistribCompTab sortTab;
Tab<float> valTab;
// For each target
int numTarg = NumTargets();
int i;
for( i = 0; i < numTarg; i++ )
{
plMaxNodeBase* targ = GetTarget(i);
if( targ )
{
uint32_t count = targ->NumAttachedComponents();
int j;
for( j = 0; j < count; j++ )
// For each DistribComponent
{
plComponentBase *comp = targ->GetAttachedComponent(j);
if( comp && (comp->ClassID() == DISTRIBUTOR_COMP_CID) )
{
// Add DistribComponent replicants to nodeTab
// making sure we don't add any nodes twice.
plDistribComponent* distComp = (plDistribComponent*)comp;
int k;
for( k = 0; k < sortTab.Count(); k++ )
{
if( distComp == sortTab[k] )
break;
}
if( k == sortTab.Count() )
{
sortTab.Append(1, &distComp);
float val = distComp->GetIsoPriority();
valTab.Append(1, &val);
}
}
}
}
}
BitArray gotten(sortTab.Count());
while( tab.Count() < sortTab.Count() )
{
float maxVal = -1.f;
int maxIdx = -1;
for( i = 0; i < sortTab.Count(); i++ )
{
if( !gotten[i] )
{
if( valTab[i] > maxVal )
{
maxVal = valTab[i];
maxIdx = i;
}
}
}
gotten.Set(maxIdx);
tab.Append(1, &sortTab[maxIdx]);
}
}
void plClusterComponent::IClearDistribTab()
{
int i;
for( i = 0; i < fDistribTab.Count(); i++ )
fDistribTab[i]->Done();
fDistribTab.ZeroCount();
}
BOOL plClusterComponent::IsFlexible() const
{
int i;
for( i = 0; i < fDistribTab.Count(); i++ )
{
if( fDistribTab[i]->IsFlexible() )
return true;
}
return false;
}
BOOL plClusterComponent::IBuildNodeTab(plDistribInstTab& nodes, plErrorMsg* pErrMsg, plExportProgressBar& bar)
{
plDistTree distTree;
nodes.ZeroCount();
int numDistrib = fDistribTab.Count();
if( numDistrib )
{
int progCnt = 0;
int i;
for( i = 0; i < numDistrib; i++ )
progCnt += fDistribTab[i]->NumTargets();
if( !progCnt )
progCnt = 1;
bar.Start("Compiling", progCnt << 4);
if( bar.Update(nil, 0) )
return false;
for( i = 0; i < numDistrib; i++ )
{
plDistribInstTab reps;
if( !fDistribTab[i]->Distribute(reps, pErrMsg, bar, &distTree) )
return false;
if( reps.Count() )
nodes.Append(reps.Count(), &reps[0]);
}
}
return true;
}
void plClusterComponent::IClearNodeTab()
{
int i;
for( i = 0; i < fDistribTab.Count(); i++ )
fDistribTab[i]->Done();
}
void plClusterComponent::Select()
{
INodeTab nodeTab;
int numClust = fCompPB->Count(kClusters);
int i;
for( i = 0; i < numClust; i++ )
{
INode* clust = fCompPB->GetINode(kClusters, TimeValue(0), i);
if( clust )
{
nodeTab.Append(1, &clust);
}
}
#if MAX_VERSION_MAJOR <= 12
GetCOREInterface()->RemoveNamedSelSet(TSTR(GetINode()->GetName()));
GetCOREInterface()->AddNewNamedSelSet(nodeTab, TSTR(GetINode()->GetName()));
#else
INamedSelectionSetManager::GetInstance()->RemoveNamedSelSet(TSTR(GetINode()->GetName()));
INamedSelectionSetManager::GetInstance()->AddNewNamedSelSet(nodeTab, TSTR(GetINode()->GetName()));
#endif
}
void plClusterComponent::Clear()
{
int numClust = fCompPB->Count(kClusters);
if( !numClust )
return;
GetCOREInterface()->DisableSceneRedraw();
plExportProgressBar bar;
const int log2freq = 2;
const int maskfreq = (1 << log2freq)-1;
int totalSteps = numClust >> log2freq;
if( !totalSteps )
totalSteps = 1;
bar.Start("Deleting", totalSteps);
bar.Update(nil, 0);
int i;
for( i = 0; i < numClust; i++ )
{
plMaxNode* cluster = (plMaxNode*)fCompPB->GetINode(kClusters, TimeValue(0), i);
if( cluster )
{
// HACK FISH - till we get a real fix for the slowdown caused by
// deleting things with a location component on them.
int numComp = cluster->NumAttachedComponents();
int j;
for( j = numComp-1; j >= 0; --j )
{
plComponentBase* comp = cluster->GetAttachedComponent(j);
if( comp )
{
comp->DeleteTarget(cluster);
}
}
// END HACK FISH
cluster->Delete(TimeValue(0), true);
}
if( !(i & maskfreq) )
bar.Update(nil);
}
fCompPB->ZeroCount(kClusters);
fCompPB->ZeroCount(kFadeIns);
fCompPB->ZeroCount(kFadeOuts);
fCompPB->ZeroCount(kWindBones);
GetCOREInterface()->EnableSceneRedraw();
GetCOREInterface()->ForceCompleteRedraw(FALSE);
}
BOOL plClusterComponent::Cluster(plErrorMsg* pErrMsg)
{
GetCOREInterface()->RedrawViews(GetCOREInterface()->GetTime(), REDRAW_BEGIN);
Clear();
IGetLocation();
ICheckWindBone();
// fClusterSize = fCompPB->GetFloat(kClusterSize);
// fClusterSize = 75.f;
plExportProgressBar bar;
IBuildDistribTab();
INodeTab doneNodes;
plBox3Tab fade;
INodeTab bone;
hsBitVector boneIsParent;
hsBitVector doneBits;
plDistribInstTab nodes;
BOOL failed = true;
if( IBuildNodeTab(nodes, pErrMsg, bar) )
{
failed = false;
if( nodes.Count() )
{
bar.Start("Optimizing", nodes.Count());
bar.Update(nil, 0);
}
int i;
for( i = 0; i < nodes.Count(); i++ )
{
if( doneBits.IsBitSet(i) )
continue;
if( !nodes[i].fNode )
continue;
if( !ICanCluster(nodes[i]) )
continue;
plDistribInstTab shared;
shared.Append(1, &nodes[i]);
int j;
for( j = 0; j < nodes.Count(); j++ )
{
if( !doneBits.IsBitSet(j) && ICanCluster(nodes[i], nodes[j]) )
{
shared.Append(1, &nodes[j]);
doneBits.SetBit(j);
}
}
INodeTab cluster;
failed = !IClusterGroup(shared, cluster, bar);
if( cluster.Count() )
{
int j;
for( j = 0; j < cluster.Count(); j++ )
{
fade.Append(1, &shared[0].fFade);
bone.Append(1, &shared[0].fBone);
boneIsParent.SetBit(doneNodes.Count() + j, shared[0].fRigid);
// Attach every component on the template node to the new node
int k;
plMaxNode *maxNode = (plMaxNode*)nodes[i].fNode;
for (k = 0; k < maxNode->NumAttachedComponents(); k++)
{
plComponentBase *comp = maxNode->GetAttachedComponent(k);
comp->AddTarget((plMaxNode*)cluster[j]);
}
}
doneNodes.Append(cluster.Count(), &cluster[0]);
}
if( failed )
break;
}
}
IClearNodeTab();
IClearDistribTab();
IFinishDoneNodes(doneNodes, fade, bone, boneIsParent);
if( failed )
Clear();
else
Select();
GetCOREInterface()->RedrawViews(GetCOREInterface()->GetTime(), REDRAW_END);
return failed;
}
void plClusterComponent::IFinishDoneNodes(INodeTab& doneNodes, plBox3Tab& fade, INodeTab& bones, hsBitVector& boneIsParent)
{
if( !doneNodes.Count() )
return;
NameMaker *nn = GetCOREInterface()->NewNameMaker();
TSTR nodeName(GetINode()->GetName());
int i;
for( i = 0; i < doneNodes.Count(); i++ )
{
if( doneNodes[i] )
{
nn->MakeUniqueName(nodeName);
doneNodes[i]->SetName(nodeName);
ISetLocation((plMaxNode*)doneNodes[i]);
}
Point3* p3p;
p3p = &fade[i].pmin;
fCompPB->Append(kFadeIns, 1, &p3p);
p3p = &fade[i].pmax;
fCompPB->Append(kFadeOuts, 1, &p3p);
INode* nilNode = nil;
if( bones[i] )
{
if( boneIsParent.IsBitSet(i) )
{
bones[i]->AttachChild(doneNodes[i], true);
fCompPB->Append(kWindBones, 1, &nilNode);
}
else
{
fCompPB->Append(kWindBones, 1, &bones[i]);
}
}
else
{
fCompPB->Append(kWindBones, 1, &nilNode);
}
}
// Add doneNodes to our PB, so we can keep track of who we've created.
fCompPB->Append(kClusters, doneNodes.Count(), &doneNodes[0]);
}
void plClusterComponent::ISetupRenderDependencies()
{
hsRadixSort::Elem* listTrav;
hsTArray<hsRadixSortElem> scratchList;
int numClust = fCompPB->Count(kClusters);
if( !numClust )
return;
scratchList.SetCount(numClust);
int i;
for( i = 0; i < numClust; i++ )
{
listTrav = &scratchList[i];
listTrav->fBody = (void*)i;
listTrav->fNext = listTrav+1;
Point3 fadeMax = fCompPB->GetPoint3(kFadeOuts, TimeValue(0), i);
listTrav->fKey.fFloat = fadeMax[2] > 0 ? -fadeMax[0] : -1.e33f; // Negate the distance to get decreasing sort.
}
listTrav->fNext = nil;
hsRadixSort rad;
hsRadixSort::Elem* sortedList = rad.Sort(scratchList.AcquireArray(), hsRadixSort::kFloat);
hsRadixSort::Elem* prevStart = nil;
hsRadixSort::Elem* prevEnd = nil;
listTrav = sortedList;
float currFade = listTrav->fKey.fFloat;
listTrav = listTrav->fNext;
while( listTrav )
{
if( listTrav->fKey.fFloat != currFade )
{
IAssignRenderDependencies(prevStart, prevEnd, sortedList, listTrav);
currFade = listTrav->fKey.fFloat;
}
listTrav = listTrav->fNext;
}
IAssignRenderDependencies(prevStart, prevEnd, sortedList, listTrav);
// Sort them by fade.Min()[2] < 0 ? fade.Min()[0] : 0 in decreasing order
// make first sort value group render dependent on all targets
// for each remaining sort value group
// make render dependent on members of previous sort value group.
}
void plClusterComponent::IAssignRenderDependencies(hsRadixSortElem*& prevStart, hsRadixSortElem*& prevEnd,
hsRadixSortElem*& currStart, hsRadixSortElem*& currEnd)
{
if( !prevStart )
{
hsRadixSort::Elem* q;
for( q = currStart; q != currEnd; q = q->fNext )
{
int iNode = (int)q->fBody;
plMaxNodeBase* clust = (plMaxNodeBase*)fCompPB->GetINode(kClusters, TimeValue(0), iNode);
if( clust )
{
int i;
for( i = 0; i < NumTargets(); i++ )
{
plMaxNodeBase* targ = GetTarget(i);
if( targ )
clust->AddRenderDependency(targ);
}
}
}
}
else
{
hsRadixSort::Elem* q;
for( q = currStart; q != currEnd; q = q->fNext )
{
int iNode = (int)q->fBody;
plMaxNodeBase* clust = (plMaxNodeBase*)fCompPB->GetINode(kClusters, TimeValue(0), iNode);
if( clust )
{
#if 0
hsRadixSort::Elem* p;
for( p = prevStart; p != prevEnd; p = p->fNext )
{
iNode = (int)p->fBody;
plMaxNodeBase* targ = (plMaxNodeBase*)fCompPB->GetINode(kClusters, TimeValue(0), iNode);
clust->AddRenderDependency(targ);
}
#else
iNode = (int)prevStart->fBody;
plMaxNodeBase* targ = (plMaxNodeBase*)fCompPB->GetINode(kClusters, TimeValue(0), iNode);
clust->AddRenderDependency(targ);
#endif
}
}
}
prevStart = currStart;
prevEnd = currEnd;
currStart = currEnd;
}
BOOL plClusterComponent::ICanCluster(plDistribInstance& node)
{
if( !node.fNode )
return false;
return true;
}
BOOL plClusterComponent::ICanCluster(plDistribInstance& node0, plDistribInstance& node1)
{
if( !(node0.fNode && node1.fNode) )
return false;
if( !ICanCluster(node1) )
return false;
if( node0.fNode->GetMtl() != node1.fNode->GetMtl() )
return false;
if( (node0.fFade.Min() != node1.fFade.Min())
||(node0.fFade.Max() != node1.fFade.Max()) )
return false;
if( node0.fBone != node1.fBone )
return false;
return true;
}
Box3 plClusterComponent::IPartition(plDistribInstTab& nodes)
{
if( !nodes.Count() )
return Box3();
Box3 retVal;
int i;
for( i = 0; i < nodes.Count(); i++ )
{
retVal += nodes[i].fNodeTM.GetTrans();
}
Point3 mins = retVal.Min();
Point3 maxs = retVal.Max();
// mins += Point3(fClusterSize, fClusterSize, fClusterSize) * 0.5f;
// maxs -= Point3(fClusterSize, fClusterSize, fClusterSize) * 1.5f;
// maxs -= Point3(fClusterSize, fClusterSize, fClusterSize) * 1.0f;
for( i = 0; i < 3; i++ )
{
if( mins[i] >= maxs[i] )
{
float mid = (mins[i] + maxs[i]) * 0.5f;
mins[i] = mid - 1.f;
maxs[i] = mid + 1.f;
}
}
retVal = Box3(mins, maxs);
return retVal;
}
void plClusterComponent::IClusterBins(plDistribInstTab& nodes, Box3& box)
{
int i;
for( i = 0; i < 3; i++ )
{
fSizes[i] = int((box.Max()[i] - box.Min()[i]) / fClusterSize);
if( !fSizes[i] )
fSizes[i] = 1;
}
int totSize = IGetBinCount();
fClusterBins = new plDistribInstTab*[totSize];
memset(fClusterBins, 0, sizeof(*fClusterBins) * totSize);
for( i = 0; i < nodes.Count(); i++ )
{
Matrix3 l2w = nodes[i].fNodeTM;
Point3 loc = l2w.GetTrans();
plDistribInstTab* bin = IGetClusterBin(box, loc);
bin->Append(1, &nodes[i]);
}
}
int plClusterComponent::IGetBinCount()
{
return fSizes[0] * fSizes[1] * fSizes[2];
}
void plClusterComponent::IDeleteClusterBins()
{
int totSize = IGetBinCount();
int i;
for( i = 0; i < totSize; i++ )
delete fClusterBins[i];
delete [] fClusterBins;
fClusterBins = nil;
}
plDistribInstTab* plClusterComponent::IGetClusterBin(const Box3& box, const Point3& loc)
{
int coord[3];
int j;
for( j = 0; j < 3; j++ )
{
coord[j] = int((loc[j] - box.Min()[j]) / fClusterSize);
if( coord[j] < 0 )
coord[j] = 0;
else if( coord[j] >= fSizes[j] )
coord[j] = fSizes[j] - 1;
}
int idx = coord[0] * fSizes[1] * fSizes[2] + coord[1] * fSizes[2] + coord[2];
if( !fClusterBins[idx] )
fClusterBins[idx] = new plDistribInstTab;
return fClusterBins[idx];
}
BOOL plClusterComponent::IClusterGroup(plDistribInstTab& nodes, INodeTab& clusters, plExportProgressBar& bar)
{
BOOL retVal = true;
hsBitVector doneNodes;
const float kNoOptClusterSize = 100.f;
const float kOptClusterSize = 100.f; // 30.f?
const int kNoOptMaxFaces = 10000;
const int kOptMaxFaces = 200;
float optim = fCompPB->GetFloat(kOptimization) * 0.01f;
float minClusterSize = kNoOptClusterSize + optim * (kOptClusterSize - kNoOptClusterSize);
int maxFaces = kNoOptMaxFaces + int(optim * float(kOptMaxFaces - kNoOptMaxFaces));
fClusterSize = minClusterSize;
Box3 fade = nodes[0].fFade;
if( fade.Min().z < 0 )
{
fClusterSize = fade.Min().x;
}
else if( fade.Max().z < 0 )
{
fClusterSize = fade.Max().x;
}
if( fClusterSize < minClusterSize )
fClusterSize = minClusterSize;
Box3 box = IPartition(nodes);
IClusterBins(nodes, box);
int totSize = IGetBinCount();
int i;
for( i = 0; i < totSize; i++ )
{
if( fClusterBins[i] )
{
INode* grp = IMakeOne(*fClusterBins[i]);
if( grp )
{
INodeTab subGrp;
plDicer dicer;
dicer.SetMaxFaces(maxFaces);
dicer.Dice(grp, subGrp);
int j;
for( j = 0; j < subGrp.Count(); j++ )
{
clusters.Append(1, &subGrp[j]);
}
}
if( bar.Update(nil, fClusterBins[i]->Count()) )
{
retVal = false;
break;
}
}
}
IDeleteClusterBins();
return retVal;
}
INode* plClusterComponent::IMakeOne(plDistribInstTab& nodes)
{
if( !nodes.Count() )
return nil;
TriObject* triObj = CreateNewTriObject();
Mesh* outMesh = &triObj->mesh;
*outMesh = *nodes[0].fMesh;
INode *outNode = GetCOREInterface()->CreateObjectNode(triObj);
Matrix3 l2w = nodes[0].fObjectTM;
Matrix3 w2l = Inverse(l2w);
MeshDelta meshDelta(*outMesh);
int i;
for( i = 1; i < nodes.Count(); i++ )
{
Mesh nextMesh(*nodes[i].fMesh);
Matrix3 relativeTransform = nodes[i].fObjectTM * w2l;
// If we've stashed normals on this mesh, they are in the mesh's
// native local space. The transform of the positions is handled
// automatically by meshDelta.AttachMesh (hence passing in the matrix),
// but the meshDelta hasn't a clue that the normal map channel isn't
// just more UVs. No problem, I'll handle it myself.
if( nextMesh.mapVerts(plDistributor::kNormMapChan) )
{
Point3* norms = nextMesh.mapVerts(plDistributor::kNormMapChan);
int k;
for( k = 0; k < nextMesh.getNumMapVerts(plDistributor::kNormMapChan); k++ )
{
norms[k] = relativeTransform.VectorTransform(norms[k]);
}
}
IRandomizeSkinWeights(&nextMesh, nodes[i].fFlex);
meshDelta.AttachMesh(*outMesh, nextMesh, relativeTransform, 0);
meshDelta.Apply(*outMesh);
}
outNode->SetNodeTM(TimeValue(0), l2w);
outNode->CopyProperties(nodes[0].fNode);
outNode->SetMtl(nodes[0].fNode->GetMtl());
outNode->SetObjOffsetPos(Point3(0,0,0));
Quat identQuat;
identQuat.Identity();
outNode->SetObjOffsetRot(identQuat);
outNode->SetObjOffsetScale(ScaleValue(Point3(1.f, 1.f, 1.f)));
outNode->Hide(false);
return outNode;
}
BOOL plClusterComponent::IGetLocation()
{
fLocationComp = nil;
int numTarg = NumTargets();
int i;
for( i = 0; i < numTarg; i++ )
{
plMaxNodeBase* targ = GetTarget(i);
if( targ )
{
uint32_t numComp = targ->NumAttachedComponents(false);
int j;
for( j = 0; j < numComp; j++ )
{
plComponentBase* comp = targ->GetAttachedComponent(j, false);
if( comp && (comp->ClassID() == ROOM_CID || comp->ClassID() == PAGEINFO_CID) )
{
if( fLocationComp && (fLocationComp != comp) )
{
fLocationComp = nil;
return false;
}
fLocationComp = comp;
}
}
}
}
return fLocationComp != nil;
}
void plClusterComponent::ISetLocation(plMaxNode* node)
{
if( fLocationComp )
fLocationComp->AddTarget(node);
}
void plClusterComponent::IRandomizeSkinWeights(Mesh* mesh, const Point3& flex) const
{
const int iWgtMap = plDistributor::kWgtMapChan;
UVVert *wgtMap = mesh->mapVerts(iWgtMap);
int numWgtVerts = mesh->getNumMapVerts(iWgtMap);
static plRandom random;
float interMeshRandomNess = flex[1];
float intraMeshRandomNess = flex[2];
float r = interMeshRandomNess > 0 ? random.RandRangeF(1.f - interMeshRandomNess, 1.f) : 1.f;
int i;
for( i = 0; i < numWgtVerts; i++ )
{
UVVert uvw = wgtMap[i];
float s = r;
if( intraMeshRandomNess > 0 )
s *= random.RandRangeF(1.f - intraMeshRandomNess, 1.f);
uvw *= s;
mesh->setMapVert(iWgtMap, i, uvw);
}
}