You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

759 lines
20 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Additional permissions under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "plSecureStream.h"
#include "hsUtils.h"
#include "plFileUtils.h"
#include "hsSTLStream.h"
#include <time.h>
#if !HS_BUILD_FOR_WIN32
#define INVALID_HANDLE_VALUE 0
#endif
// our default encryption key
const uint32_t plSecureStream::kDefaultKey[4] = { 0x6c0a5452, 0x3827d0f, 0x3a170b92, 0x16db7fc2 };
static const int kEncryptChunkSize = 8;
static const char* kMagicString = "notthedroids";
static const int kMagicStringLen = 12;
static const int kFileStartOffset = kMagicStringLen + sizeof(uint32_t);
static const int kMaxBufferedFileSize = 10*1024;
plSecureStream::plSecureStream(hsBool deleteOnExit, uint32_t* key) :
fRef(INVALID_HANDLE_VALUE),
fActualFileSize(0),
fBufferedStream(false),
fRAMStream(nil),
fWriteFileName(nil),
fOpenMode(kOpenFail),
fDeleteOnExit(deleteOnExit)
{
if (key)
memcpy(&fKey, key, sizeof(kDefaultKey));
else
memcpy(&fKey, &kDefaultKey, sizeof(kDefaultKey));
}
plSecureStream::plSecureStream(hsStream* base, uint32_t* key) :
fRef(INVALID_HANDLE_VALUE),
fActualFileSize(0),
fBufferedStream(false),
fRAMStream(nil),
fWriteFileName(nil),
fOpenMode(kOpenFail),
fDeleteOnExit(false)
{
if (key)
memcpy(&fKey, key, sizeof(kDefaultKey));
else
memcpy(&fKey, &kDefaultKey, sizeof(kDefaultKey));
Open(base);
}
plSecureStream::~plSecureStream()
{
}
//
// XXTEA
// http://www-users.cs.york.ac.uk/~matthew/TEA/
//
// A potential weakness in this implementation is the fact that a known value
// (length of the original file) is written at the start of the encrypted file. -Colin
//
#define MX (z>>5 ^ y<<2) + (y>>3 ^ z<<4) ^ (sum^y) + (fKey[p&3^e]^z)
void plSecureStream::IEncipher(uint32_t* const v, uint32_t n)
{
register unsigned long y=v[0], z=v[n-1], e, delta=0x9E3779B9;
register unsigned long q = 6 + 52/n, p, sum = 0;
while (q-- > 0)
{
sum += delta;
e = (sum >> 2) & 3;
for (p = 0; p < n - 1; p++)
{
y = v[p + 1];
v[p] += MX;
z = v[p];
}
y = v[0];
v[n - 1] += MX;
z = v[n - 1];
}
}
void plSecureStream::IDecipher(uint32_t* const v, uint32_t n)
{
register unsigned long y=v[0], z=v[n-1], e, delta=0x9E3779B9;
register unsigned long q = 6 + 52/n, p, sum = q * delta;
while (sum > 0)
{
e = (sum >> 2) & 3;
for (p = n - 1; p > 0; p--)
{
z = v[p - 1];
v[p] -= MX;
y = v[p];
}
z = v[n - 1];
v[0] -= MX;
y = v[0];
sum -= delta;
}
}
hsBool plSecureStream::Open(const char* name, const char* mode)
{
wchar_t* wName = hsStringToWString(name);
wchar_t* wMode = hsStringToWString(mode);
hsBool ret = Open(wName, wMode);
delete [] wName;
delete [] wMode;
return ret;
}
hsBool plSecureStream::Open(const wchar_t* name, const wchar_t* mode)
{
if (wcscmp(mode, L"rb") == 0)
{
#if HS_BUILD_FOR_WIN32
if (fDeleteOnExit)
{
fRef = CreateFileW(name,
GENERIC_READ, // open for reading
0, // no one can open the file until we're done
NULL, // default security
OPEN_EXISTING, // only open existing files (no creation)
FILE_FLAG_DELETE_ON_CLOSE, // delete the file from disk when we close the handle
NULL); // no template
}
else
{
fRef = CreateFileW(name,
GENERIC_READ, // open for reading
0, // no one can open the file until we're done
NULL, // default security
OPEN_EXISTING, // only open existing files (no creation)
FILE_ATTRIBUTE_NORMAL, // normal file attributes
NULL); // no template
}
fPosition = 0;
if (fRef == INVALID_HANDLE_VALUE)
return false;
// Make sure our special magic string is there
if (!ICheckMagicString(fRef))
{
CloseHandle(fRef);
fRef = INVALID_HANDLE_VALUE;
return false;
}
DWORD numBytesRead;
ReadFile(fRef, &fActualFileSize, sizeof(uint32_t), &numBytesRead, NULL);
#elif HS_BUILD_FOR_UNIX
const char* cname = hsWStringToString(name);
fRef = fopen(cname, "rb");
delete[] cname;
fPosition = 0;
if (fRef == INVALID_HANDLE_VALUE)
return false;
if (!ICheckMagicString(fRef))
{
fclose(fRef);
fRef = INVALID_HANDLE_VALUE;
return false;
}
#endif
// The encrypted stream is inefficient if you do reads smaller than
// 8 bytes. Since we do a lot of those, any file under a size threshold
// is buffered in memory
if (fActualFileSize <= kMaxBufferedFileSize)
IBufferFile();
fOpenMode = kOpenRead;
return true;
}
else if (wcscmp(mode, L"wb") == 0)
{
fRAMStream = TRACKED_NEW hsVectorStream;
fWriteFileName = TRACKED_NEW wchar_t[wcslen(name) + 1];
wcscpy(fWriteFileName, name);
fPosition = 0;
fOpenMode = kOpenWrite;
fBufferedStream = true;
return true;
}
else
{
hsAssert(0, "Unsupported open mode");
fOpenMode = kOpenFail;
return false;
}
}
hsBool plSecureStream::Open(hsStream* stream)
{
uint32_t pos = stream->GetPosition();
stream->Rewind();
if (!ICheckMagicString(stream))
return false;
fActualFileSize = stream->ReadLE32();
uint32_t trimSize = kMagicStringLen + sizeof(uint32_t) + fActualFileSize;
fRAMStream = new hsRAMStream;
while (!stream->AtEnd())
{
// Don't write out any garbage
uint32_t size;
if ((trimSize - stream->GetPosition()) < kEncryptChunkSize)
size = (trimSize - stream->GetPosition());
else
size = kEncryptChunkSize;
uint8_t buf[kEncryptChunkSize];
stream->Read(kEncryptChunkSize, &buf);
IDecipher((uint32_t*)&buf, kEncryptChunkSize / sizeof(uint32_t));
fRAMStream->Write(size, &buf);
}
stream->SetPosition(pos);
fRAMStream->Rewind();
fPosition = 0;
fBufferedStream = true;
fOpenMode = kOpenRead;
return true;
}
hsBool plSecureStream::Close()
{
int rtn = false;
if (fOpenMode == kOpenWrite)
{
fRAMStream->Rewind();
rtn = IWriteEncrypted(fRAMStream, fWriteFileName);
}
if (fRef != INVALID_HANDLE_VALUE)
{
#if HS_BUILD_FOR_WIN32
rtn = CloseHandle(fRef);
#elif HS_BUILD_FOR_UNIX
rtn = fclose(fRef);
#endif
fRef = INVALID_HANDLE_VALUE;
}
if (fRAMStream)
{
delete fRAMStream;
fRAMStream = nil;
}
if (fWriteFileName)
{
delete [] fWriteFileName;
fWriteFileName = nil;
}
fActualFileSize = 0;
fBufferedStream = false;
fOpenMode = kOpenFail;
return rtn;
}
uint32_t plSecureStream::IRead(uint32_t bytes, void* buffer)
{
if (fRef == INVALID_HANDLE_VALUE)
return 0;
uint32_t numItems;
#if HS_BUILD_FOR_WIN32
bool success = (ReadFile(fRef, buffer, bytes, (LPDWORD)&numItems, NULL) != 0);
#elif HS_BUILD_FOR_UNIX
numItems = fread(buffer, bytes, 1, fRef);
bool success = numItems != 0;
#endif
fBytesRead += numItems;
fPosition += numItems;
if ((unsigned)numItems < bytes)
{
if (success)
{
// EOF ocurred
char str[128];
sprintf(str, "Hit EOF on Windows read, only read %d out of requested %d bytes\n", numItems, bytes);
hsDebugMessage(str, 0);
}
else
{
hsDebugMessage("Error on Windows read", GetLastError());
}
}
return numItems;
}
void plSecureStream::IBufferFile()
{
fRAMStream = TRACKED_NEW hsVectorStream;
char buf[1024];
while (!AtEnd())
{
uint32_t numRead = Read(1024, buf);
fRAMStream->Write(numRead, buf);
}
fRAMStream->Rewind();
fBufferedStream = true;
#if HS_BUILD_FOR_WIN32
CloseHandle(fRef);
#elif HS_BUILD_FOR_UNIX
fclose(fRef);
#endif
fRef = INVALID_HANDLE_VALUE;
fPosition = 0;
}
hsBool plSecureStream::AtEnd()
{
if (fBufferedStream)
return fRAMStream->AtEnd();
else
return (GetPosition() == fActualFileSize);
}
void plSecureStream::Skip(uint32_t delta)
{
if (fBufferedStream)
{
fRAMStream->Skip(delta);
fPosition = fRAMStream->GetPosition();
}
else if (fRef != INVALID_HANDLE_VALUE)
{
fBytesRead += delta;
fPosition += delta;
#if HS_BUILD_FOR_WIN32
SetFilePointer(fRef, delta, 0, FILE_CURRENT);
#elif HS_BUILD_FOR_UNIX
fseek(fRef, delta, SEEK_CUR);
#endif
}
}
void plSecureStream::Rewind()
{
if (fBufferedStream)
{
fRAMStream->Rewind();
fPosition = fRAMStream->GetPosition();
}
else if (fRef != INVALID_HANDLE_VALUE)
{
fBytesRead = 0;
fPosition = 0;
#if HS_BUILD_FOR_WIN32
SetFilePointer(fRef, kFileStartOffset, 0, FILE_BEGIN);
#elif HS_BUILD_FOR_UNIX
fseek(fRef, kFileStartOffset, SEEK_SET);
#endif
}
}
void plSecureStream::FastFwd()
{
if (fBufferedStream)
{
fRAMStream->FastFwd();
fPosition = fRAMStream->GetPosition();
}
else if (fRef != INVALID_HANDLE_VALUE)
{
#if HS_BUILD_FOR_WIN32
fBytesRead = fPosition = SetFilePointer(fRef, kFileStartOffset + fActualFileSize, 0, FILE_BEGIN);
#elif HS_BUILD_FOR_UNIX
fBytesRead = fPosition = fseek(fRef, 0, SEEK_END);
#endif
}
}
uint32_t plSecureStream::GetEOF()
{
return fActualFileSize;
}
uint32_t plSecureStream::Read(uint32_t bytes, void* buffer)
{
if (fBufferedStream)
{
uint32_t numRead = fRAMStream->Read(bytes, buffer);
fPosition = fRAMStream->GetPosition();
return numRead;
}
uint32_t startPos = fPosition;
// Offset into the first buffer (0 if we are aligned on a chunk, which means no extra block read)
uint32_t startChunkPos = startPos % kEncryptChunkSize;
// Amount of data in the partial first chunk (0 if we're aligned)
uint32_t startAmt = (startChunkPos != 0) ? hsMinimum(kEncryptChunkSize - startChunkPos, bytes) : 0;
uint32_t totalNumRead = IRead(bytes, buffer);
uint32_t numMidChunks = (totalNumRead - startAmt) / kEncryptChunkSize;
uint32_t endAmt = (totalNumRead - startAmt) % kEncryptChunkSize;
// If the start position is in the middle of a chunk we need to rewind and
// read that whole chunk in and decrypt it.
if (startChunkPos != 0)
{
// Move to the start of this chunk
SetPosition(startPos-startChunkPos);
// Read in the chunk and decrypt it
char buf[kEncryptChunkSize];
uint32_t numRead = IRead(kEncryptChunkSize, &buf);
IDecipher((uint32_t*)&buf, kEncryptChunkSize / sizeof(uint32_t));
// Copy the relevant portion to the output buffer
memcpy(buffer, &buf[startChunkPos], startAmt);
SetPosition(startPos+totalNumRead);
}
if (numMidChunks != 0)
{
uint32_t* bufferPos = (uint32_t*)(((char*)buffer)+startAmt);
for (int i = 0; i < numMidChunks; i++)
{
// Decrypt chunk
IDecipher(bufferPos, kEncryptChunkSize / sizeof(uint32_t));
bufferPos += (kEncryptChunkSize / sizeof(uint32_t));
}
}
if (endAmt != 0)
{
// Read in the final chunk and decrypt it
char buf[kEncryptChunkSize];
SetPosition(startPos + startAmt + numMidChunks*kEncryptChunkSize);
uint32_t numRead = IRead(kEncryptChunkSize, &buf);
IDecipher((uint32_t*)&buf, kEncryptChunkSize / sizeof(uint32_t));
memcpy(((char*)buffer)+totalNumRead-endAmt, &buf, endAmt);
SetPosition(startPos+totalNumRead);
}
// If we read into the padding at the end, update the total read to not include that
if (totalNumRead > 0 && startPos + totalNumRead > fActualFileSize)
{
totalNumRead -= (startPos + totalNumRead) - fActualFileSize;
SetPosition(fActualFileSize);
}
return totalNumRead;
}
uint32_t plSecureStream::Write(uint32_t bytes, const void* buffer)
{
if (fOpenMode != kOpenWrite)
{
hsAssert(0, "Trying to write to a read stream");
return 0;
}
return fRAMStream->Write(bytes, buffer);
}
bool plSecureStream::IWriteEncrypted(hsStream* sourceStream, const wchar_t* outputFile)
{
hsUNIXStream outputStream;
if (!outputStream.Open(outputFile, L"wb"))
return false;
outputStream.Write(kMagicStringLen, kMagicString);
// Save some space to write the file size at the end
outputStream.WriteLE32(0);
// Write out all the full size encrypted blocks we can
char buf[kEncryptChunkSize];
uint32_t amtRead;
while ((amtRead = sourceStream->Read(kEncryptChunkSize, &buf)) == kEncryptChunkSize)
{
IEncipher((uint32_t*)&buf, kEncryptChunkSize / sizeof(uint32_t));
outputStream.Write(kEncryptChunkSize, &buf);
}
// Pad with random data and write out the final partial block, if there is one
if (amtRead > 0)
{
static bool seededRand = false;
if (!seededRand)
{
seededRand = true;
srand((unsigned int)time(nil));
}
for (int i = amtRead; i < kEncryptChunkSize; i++)
buf[i] = rand();
IEncipher((uint32_t*)&buf, kEncryptChunkSize / sizeof(uint32_t));
outputStream.Write(kEncryptChunkSize, &buf);
}
// Write the original file size at the start
uint32_t actualSize = sourceStream->GetPosition();
outputStream.Rewind();
outputStream.Skip(kMagicStringLen);
outputStream.WriteLE32(actualSize);
outputStream.Close();
return true;
}
bool plSecureStream::FileEncrypt(const char* fileName, uint32_t* key /* = nil */)
{
wchar_t* wFilename = hsStringToWString(fileName);
bool ret = FileEncrypt(wFilename, key);
delete [] wFilename;
return ret;
}
bool plSecureStream::FileEncrypt(const wchar_t* fileName, uint32_t* key /* = nil */)
{
hsUNIXStream sIn;
if (!sIn.Open(fileName))
return false;
// Don't double encrypt any files
if (ICheckMagicString(sIn.GetFILE()))
{
sIn.Close();
return true;
}
sIn.Rewind();
plSecureStream sOut(false, key);
bool wroteEncrypted = sOut.IWriteEncrypted(&sIn, L"crypt.dat");
sIn.Close();
sOut.Close();
if (wroteEncrypted)
{
plFileUtils::RemoveFile(fileName);
plFileUtils::FileMove(L"crypt.dat", fileName);
}
return true;
}
bool plSecureStream::FileDecrypt(const char* fileName, uint32_t* key /* = nil */)
{
wchar_t* wFilename = hsStringToWString(fileName);
bool ret = FileDecrypt(wFilename, key);
delete [] wFilename;
return ret;
}
bool plSecureStream::FileDecrypt(const wchar_t* fileName, uint32_t* key /* = nil */)
{
plSecureStream sIn(false, key);
if (!sIn.Open(fileName))
return false;
hsUNIXStream sOut;
if (!sOut.Open(L"crypt.dat", L"wb"))
{
sIn.Close();
return false;
}
char buf[1024];
while (!sIn.AtEnd())
{
uint32_t numRead = sIn.Read(sizeof(buf), buf);
sOut.Write(numRead, buf);
}
sIn.Close();
sOut.Close();
plFileUtils::RemoveFile(fileName);
plFileUtils::FileMove(L"crypt.dat", fileName);
return true;
}
bool plSecureStream::ICheckMagicString(hsStream* s)
{
char magicString[kMagicStringLen+1];
s->Read(kMagicStringLen, &magicString);
magicString[kMagicStringLen] = '\0';
return (hsStrEQ(magicString, kMagicString) != 0);
}
bool plSecureStream::ICheckMagicString(hsFD fp)
{
char magicString[kMagicStringLen+1];
#ifdef HS_BUILD_FOR_WIN32
DWORD numread;
ReadFile(fp, &magicString, kMagicStringLen, &numread, NULL);
#elif HS_BUILD_FOR_UNIX
fread(&magicString, kMagicStringLen, 1, fp);
#endif
magicString[kMagicStringLen] = '\0';
return (hsStrEQ(magicString, kMagicString) != 0);
}
bool plSecureStream::IsSecureFile(const char* fileName)
{
wchar_t* wFilename = hsStringToWString(fileName);
bool ret = IsSecureFile(wFilename);
delete [] wFilename;
return ret;
}
bool plSecureStream::IsSecureFile(const wchar_t* fileName)
{
hsFD fp = INVALID_HANDLE_VALUE;
#if HS_BUILD_FOR_WIN32
fp = CreateFileW(fileName,
GENERIC_READ, // open for reading
0, // no one can open the file until we're done
NULL, // default security
OPEN_EXISTING, // only open existing files (no creation)
FILE_ATTRIBUTE_NORMAL, // normal file attributes
NULL); // no template
#elif HS_BUILD_FOR_UNIX
const char* cfile = hsWStringToString(fileName);
fp = fopen(cfile, "rb");
delete[] cfile;
#endif
if (fp == INVALID_HANDLE_VALUE)
return false;
bool isEncrypted = ICheckMagicString(fp);
#if HS_BUILD_FOR_WIN32
CloseHandle(fp);
#elif HS_BUILD_FOR_UNIX
fclose(fp);
#endif
return isEncrypted;
}
hsStream* plSecureStream::OpenSecureFile(const char* fileName, const uint32_t flags /* = kRequireEncryption */, uint32_t* key /* = nil */)
{
wchar_t* wFilename = hsStringToWString(fileName);
hsStream* ret = OpenSecureFile(wFilename, flags, key);
delete [] wFilename;
return ret;
}
hsStream* plSecureStream::OpenSecureFile(const wchar_t* fileName, const uint32_t flags /* = kRequireEncryption */, uint32_t* key /* = nil */)
{
bool requireEncryption = flags & kRequireEncryption;
#ifndef PLASMA_EXTERNAL_RELEASE
requireEncryption = false;
#endif
hsBool deleteOnExit = flags & kDeleteOnExit;
bool isEncrypted = IsSecureFile(fileName);
hsStream* s = nil;
if (isEncrypted)
s = TRACKED_NEW plSecureStream(deleteOnExit, key);
else if (!requireEncryption) // If this isn't an external release, let them use unencrypted data
s = TRACKED_NEW hsUNIXStream;
if (s)
s->Open(fileName, L"rb");
return s;
}
hsStream* plSecureStream::OpenSecureFileWrite(const char* fileName, uint32_t* key /* = nil */)
{
wchar_t* wFilename = hsStringToWString(fileName);
hsStream* ret = OpenSecureFileWrite(wFilename, key);
delete [] wFilename;
return ret;
}
hsStream* plSecureStream::OpenSecureFileWrite(const wchar_t* fileName, uint32_t* key /* = nil */)
{
hsStream* s = nil;
#ifdef PLASMA_EXTERNAL_RELEASE
s = TRACKED_NEW plSecureStream(false, key);
#else
s = TRACKED_NEW hsUNIXStream;
#endif
s->Open(fileName, L"wb");
return s;
}