You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

438 lines
13 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "hsTypes.h"
#include "hsGeometry3.h"
#include "hsStream.h"
#include "hsFastMath.h"
#include "hsUtils.h"
#include "plParticle.h"
#include "plParticleSystem.h"
#include "plParticleEmitter.h"
#include "plParticleGenerator.h"
#include "hsColorRGBA.h"
#include "plMessage/plParticleUpdateMsg.h"
#include "plInterp/plController.h"
#include "hsResMgr.h"
#include "plMath/plRandom.h"
static const hsScalar DEFAULT_INVERSE_MASS = 1.f;
static plRandom sRandom;
const void plParticleGenerator::ComputeDirection(float pitch, float yaw, hsVector3 &direction)
{
hsScalar cosPitch, sinPitch;
hsScalar cosYaw, sinYaw;
hsFastMath::SinCos(pitch, sinPitch, cosPitch);
hsFastMath::SinCos(yaw, sinYaw, cosYaw);
direction.Set(-sinYaw * cosPitch, sinPitch, cosPitch * cosYaw);
}
// Inverse function of ComputeDirection. Give it a normalized vector, and it will tell you a
// pitch and yaw (angles for the unit Z vector) to get there.
const void plParticleGenerator::ComputePitchYaw(float &pitch, float &yaw, const hsVector3 &dir)
{
const float PI = 3.14159f;
pitch = asin(dir.fY);
float cos_pitch = cos(pitch);
if (cos_pitch == 0)
{
yaw = 0;
return;
}
float inv = -dir.fX / cos_pitch;
if (inv > 1.0f)
inv = 1.0f;
if (inv < -1.0f)
inv = -1.0f;
yaw = asin(inv);
if (dir.fZ < 0)
yaw = PI - yaw;
}
plSimpleParticleGenerator::plSimpleParticleGenerator()
{
}
plSimpleParticleGenerator::~plSimpleParticleGenerator()
{
delete [] fInitPos;
delete [] fInitPitch;
delete [] fInitYaw;
}
void plSimpleParticleGenerator::Init(hsScalar genLife, hsScalar partLifeMin, hsScalar partLifeMax,
hsScalar particlesPerSecond, UInt32 numSources, hsPoint3 *initPos,
hsScalar *initPitch, hsScalar *initYaw, hsScalar angleRange,
hsScalar initVelMin, hsScalar initVelMax,
hsScalar xSize, hsScalar ySize,
hsScalar scaleMin, hsScalar scaleMax,
hsScalar massRange, hsScalar radsPerSecRange)
{
fGenLife = genLife;
fPartLifeMin = partLifeMin;
fPartLifeMax = partLifeMax;
fParticlesPerSecond = particlesPerSecond;
fNumSources = numSources;
fInitPos = initPos;
fInitPitch = initPitch;
fInitYaw = initYaw;
fAngleRange = angleRange;
fVelMin = initVelMin;
fVelMax = initVelMax;
fXSize = xSize;
fYSize = ySize;
fScaleMin = scaleMin;
fScaleMax = scaleMax;
fPartInvMassMin = 1.f / (DEFAULT_INVERSE_MASS + massRange);
fPartInvMassRange = 1.f / DEFAULT_INVERSE_MASS - fPartInvMassMin;
fPartRadsPerSecRange = radsPerSecRange;
fParticleSum = 0;
fMiscFlags = 0;
if (fGenLife < 0) fMiscFlags |= kImmortal;
}
hsBool plSimpleParticleGenerator::AddAutoParticles(plParticleEmitter *emitter, float dt, UInt32 numForced /* = 0 */)
{
Int32 numNewParticles;
if (numForced == 0)
{
fGenLife -= dt;
if ((fGenLife < 0 && !(fMiscFlags & kImmortal)) || (fMiscFlags & kDisabled))
return true; // Leave it around so that a message can bring it back to life.
fParticleSum += fParticlesPerSecond * dt;
numNewParticles = (Int32)fParticleSum;
if (numNewParticles <= 0 || fParticlesPerSecond == 0)
return true;
}
else
{
numNewParticles = numForced;
}
UInt32 miscFlags = 0;
hsPoint3 currStart;
fParticleSum -= numNewParticles;
hsPoint3 orientation;
hsVector3 initDirection;
hsScalar vel = (fVelMax + fVelMin) * 0.5f;
hsScalar velRange = vel - fVelMin;
hsScalar initVelocity;
hsScalar initLife;
hsScalar life = (fPartLifeMax + fPartLifeMin) * 0.5f;
hsScalar lifeRange = life - fPartLifeMin;
hsScalar currSizeVar;
hsScalar scale = (fScaleMax + fScaleMin) * 0.5f;
hsScalar scaleRange = scale - fScaleMin;
hsScalar radsPerSec = 0;
UInt32 tile;
UInt32 sourceIndex;
const hsScalar lifeDiff = dt / numNewParticles;
hsScalar lifeSoFar;
int i;
for (i = 0, lifeSoFar = 0; i < numNewParticles; i++, lifeSoFar += lifeDiff)
{
initLife = life + lifeRange * sRandom.RandMinusOneToOne() - lifeSoFar;
// Careful here... if we're supposed to generate immortal particles, we do so
// by giving them a negative life. This is different that generating one with
// a positive lifetime that is now negative because of "lifeSoFar". The if is
// saying "if it's dead, but it was alive before we took away lifeSoFar, ignore it"
if (initLife <= 0 && initLife + lifeSoFar >= 0)
continue;
sourceIndex = (UInt32)(sRandom.RandZeroToOne() * fNumSources);
ComputeDirection(fInitPitch[sourceIndex] + fAngleRange * sRandom.RandMinusOneToOne(),
fInitYaw[sourceIndex] + fAngleRange * sRandom.RandMinusOneToOne(), initDirection);
initDirection = emitter->GetLocalToWorld() * initDirection;
initVelocity = (vel + velRange * sRandom.RandMinusOneToOne());
currStart = (emitter->GetLocalToWorld() * fInitPos[sourceIndex])
+ (initDirection * initVelocity * lifeSoFar) // Vo * t
+ (emitter->fSystem->fAccel * lifeSoFar * lifeSoFar); // at^2
if (emitter->fMiscFlags & emitter->kOrientationUp)
orientation.Set(0.0f, -1.0f, 0.0f);
else
orientation.Set(&initDirection);
tile = (UInt32)(sRandom.RandZeroToOne() * emitter->GetNumTiles());
currSizeVar = scale + scaleRange * sRandom.RandMinusOneToOne();
hsScalar invMass = fPartInvMassMin;
// Might be faster to just do the math instead of checking for zero...
if( fPartInvMassRange > 0 )
invMass += fPartInvMassRange * sRandom.RandZeroToOne();
if( fPartRadsPerSecRange > 0 )
radsPerSec = fPartRadsPerSecRange * sRandom.RandMinusOneToOne();
emitter->AddParticle(currStart, initDirection * initVelocity, tile, fXSize, fYSize, currSizeVar,
invMass, initLife, orientation, miscFlags, radsPerSec);
}
return true;
}
void plSimpleParticleGenerator::UpdateParam(UInt32 paramID, hsScalar paramValue)
{
switch (paramID)
{
case plParticleUpdateMsg::kParamParticlesPerSecond:
fParticlesPerSecond = paramValue;
break;
case plParticleUpdateMsg::kParamInitPitchRange:
case plParticleUpdateMsg::kParamInitYawRange:
fAngleRange = paramValue;
break;
// case plParticleUpdateMsg::kParamInitVel:
// fInitVel = paramValue;
// break;
// case plParticleUpdateMsg::kParamInitVelRange:
// fInitVelRange = paramValue;
// break;
case plParticleUpdateMsg::kParamVelMin:
fVelMin = paramValue;
break;
case plParticleUpdateMsg::kParamVelMax:
fVelMax = paramValue;
break;
case plParticleUpdateMsg::kParamXSize:
fXSize = paramValue;
break;
case plParticleUpdateMsg::kParamYSize:
fYSize = paramValue;
break;
// case plParticleUpdateMsg::kParamSizeRange:
// fSizeRange = paramValue;
// break;
case plParticleUpdateMsg::kParamScaleMin:
fScaleMin = paramValue;
break;
case plParticleUpdateMsg::kParamScaleMax:
fScaleMax = paramValue;
break;
case plParticleUpdateMsg::kParamGenLife:
fGenLife = paramValue;
if (fGenLife < 0)
fMiscFlags |= kImmortal;
else
fMiscFlags &= ~kImmortal;
break;
// case plParticleUpdateMsg::kParamPartLife:
// fPartLife = paramValue;
// if (fPartLife < 0)
// fPartLifeRange = 0;
// break;
// case plParticleUpdateMsg::kParamPartLifeRange:
// fPartLifeRange = paramValue;
// break;
case plParticleUpdateMsg::kParamPartLifeMin:
fPartLifeMin = paramValue;
break;
case plParticleUpdateMsg::kParamPartLifeMax:
fPartLifeMax = paramValue;
break;
case plParticleUpdateMsg::kParamEnabled:
if (paramValue == 0.f)
fMiscFlags |= kDisabled;
else
fMiscFlags &= ~kDisabled;
break;
default:
break;
}
}
void plSimpleParticleGenerator::Read(hsStream* s, hsResMgr *mgr)
{
hsScalar genLife = s->ReadSwapScalar();
hsScalar partLifeMin = s->ReadSwapScalar();
hsScalar partLifeMax = s->ReadSwapScalar();
hsScalar pps = s->ReadSwapScalar();
UInt32 numSources = s->ReadSwap32();
hsPoint3 *pos = TRACKED_NEW hsPoint3[numSources];
hsScalar *pitch = TRACKED_NEW hsScalar[numSources];
hsScalar *yaw = TRACKED_NEW hsScalar[numSources];
int i;
for (i = 0; i < numSources; i++)
{
pos[i].Read(s);
pitch[i] = s->ReadSwapScalar();
yaw[i] = s->ReadSwapScalar();
}
hsScalar angleRange = s->ReadSwapScalar();
hsScalar velMin = s->ReadSwapScalar();
hsScalar velMax = s->ReadSwapScalar();
hsScalar xSize = s->ReadSwapScalar();
hsScalar ySize = s->ReadSwapScalar();
hsScalar scaleMin = s->ReadSwapScalar();
hsScalar scaleMax = s->ReadSwapScalar();
hsScalar massRange = s->ReadSwapScalar();
hsScalar radsPerSec = s->ReadSwapScalar();
Init(genLife, partLifeMin, partLifeMax, pps, numSources, pos, pitch, yaw, angleRange, velMin, velMax,
xSize, ySize, scaleMin, scaleMax, massRange, radsPerSec);
}
void plSimpleParticleGenerator::Write(hsStream* s, hsResMgr *mgr)
{
s->WriteSwapScalar(fGenLife);
s->WriteSwapScalar(fPartLifeMin);
s->WriteSwapScalar(fPartLifeMax);
s->WriteSwapScalar(fParticlesPerSecond);
s->WriteSwap32(fNumSources);
int i;
for (i = 0; i < fNumSources; i++)
{
fInitPos[i].Write(s);
s->WriteSwapScalar(fInitPitch[i]);
s->WriteSwapScalar(fInitYaw[i]);
}
s->WriteSwapScalar(fAngleRange);
s->WriteSwapScalar(fVelMin);
s->WriteSwapScalar(fVelMax);
s->WriteSwapScalar(fXSize);
s->WriteSwapScalar(fYSize);
s->WriteSwapScalar(fScaleMin);
s->WriteSwapScalar(fScaleMax);
hsScalar massRange = 1.f / fPartInvMassMin - DEFAULT_INVERSE_MASS;
s->WriteSwapScalar(massRange);
s->WriteSwapScalar(fPartRadsPerSecRange);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
plOneTimeParticleGenerator::plOneTimeParticleGenerator()
{
}
plOneTimeParticleGenerator::~plOneTimeParticleGenerator()
{
delete [] fPosition;
delete [] fDirection;
}
void plOneTimeParticleGenerator::Init(hsScalar count, hsPoint3 *pointArray, hsVector3 *dirArray,
hsScalar xSize, hsScalar ySize, hsScalar scaleMin, hsScalar scaleMax, hsScalar radsPerSecRange)
{
fCount = count;
fPosition = pointArray;
fDirection = dirArray;
fXSize = xSize;
fYSize = ySize;
fScaleMin = scaleMin;
fScaleMax = scaleMax;
fPartRadsPerSecRange = radsPerSecRange;
}
// The numForced param is required by the parent class, but ignored by this particular generator
hsBool plOneTimeParticleGenerator::AddAutoParticles(plParticleEmitter *emitter, float dt, UInt32 numForced /* = 0 */)
{
hsScalar currSizeVar;
hsScalar scale = (fScaleMax + fScaleMin) / 2;
hsScalar scaleRange = scale - fScaleMin;
hsScalar tile;
hsPoint3 currStart;
hsPoint3 orientation;
hsVector3 initDirection;
hsVector3 zeroVel(0.f, 0.f, 0.f);
hsScalar radsPerSec = 0;
int i;
for (i = 0; i < fCount; i++)
{
currStart = emitter->GetLocalToWorld() * fPosition[i];
initDirection = emitter->GetLocalToWorld() * fDirection[i];
if (emitter->fMiscFlags & emitter->kOrientationUp)
orientation.Set(0.0f, -1.0f, 0.0f);
else
orientation.Set(&initDirection);
tile = (hsScalar)(sRandom.Rand() % emitter->GetNumTiles());
currSizeVar = scale + scaleRange * sRandom.RandMinusOneToOne();
if( fPartRadsPerSecRange > 0 )
radsPerSec = fPartRadsPerSecRange * sRandom.RandMinusOneToOne();
emitter->AddParticle(currStart, zeroVel, (UInt32)tile, fXSize, fYSize, currSizeVar,
DEFAULT_INVERSE_MASS, -1, orientation, 0, radsPerSec);
}
emitter->fMiscFlags &= ~plParticleEmitter::kNeedsUpdate;
return false; // We've done our one-time job. Let the emitter know to delete us.
}
void plOneTimeParticleGenerator::Read(hsStream* s, hsResMgr *mgr)
{
UInt32 count = s->ReadSwap32();
hsScalar xSize = s->ReadSwapScalar();
hsScalar ySize = s->ReadSwapScalar();
hsScalar scaleMin = s->ReadSwapScalar();
hsScalar scaleMax = s->ReadSwapScalar();
hsScalar radsPerSecRange = s->ReadSwapScalar();
hsPoint3 *pos = TRACKED_NEW hsPoint3[count];
hsVector3 *dir = TRACKED_NEW hsVector3[count];
int i;
for (i = 0; i < count; i++)
{
pos[i].Read(s);
dir[i].Read(s);
}
Init((hsScalar)count, pos, dir, xSize, ySize, scaleMin, scaleMax, radsPerSecRange);
}
void plOneTimeParticleGenerator::Write(hsStream* s, hsResMgr *mgr)
{
s->WriteSwap32((UInt32)fCount);
s->WriteSwapScalar(fXSize);
s->WriteSwapScalar(fYSize);
s->WriteSwapScalar(fScaleMin);
s->WriteSwapScalar(fScaleMax);
s->WriteSwapScalar(fPartRadsPerSecRange);
int i;
for (i = 0; i < fCount; i++)
{
fPosition[i].Write(s);
fDirection[i].Write(s);
}
}