You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1232 lines
36 KiB
1232 lines
36 KiB
/* |
|
|
|
Reference Cycle Garbage Collection |
|
================================== |
|
|
|
Neil Schemenauer <nas@arctrix.com> |
|
|
|
Based on a post on the python-dev list. Ideas from Guido van Rossum, |
|
Eric Tiedemann, and various others. |
|
|
|
http://www.arctrix.com/nas/python/gc/ |
|
http://www.python.org/pipermail/python-dev/2000-March/003869.html |
|
http://www.python.org/pipermail/python-dev/2000-March/004010.html |
|
http://www.python.org/pipermail/python-dev/2000-March/004022.html |
|
|
|
For a highlevel view of the collection process, read the collect |
|
function. |
|
|
|
*/ |
|
|
|
#include "Python.h" |
|
|
|
/* Get an object's GC head */ |
|
#define AS_GC(o) ((PyGC_Head *)(o)-1) |
|
|
|
/* Get the object given the GC head */ |
|
#define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1)) |
|
|
|
/*** Global GC state ***/ |
|
|
|
struct gc_generation { |
|
PyGC_Head head; |
|
int threshold; /* collection threshold */ |
|
int count; /* count of allocations or collections of younger |
|
generations */ |
|
}; |
|
|
|
#define NUM_GENERATIONS 3 |
|
#define GEN_HEAD(n) (&generations[n].head) |
|
|
|
/* linked lists of container objects */ |
|
static struct gc_generation generations[NUM_GENERATIONS] = { |
|
/* PyGC_Head, threshold, count */ |
|
{{{GEN_HEAD(0), GEN_HEAD(0), 0}}, 700, 0}, |
|
{{{GEN_HEAD(1), GEN_HEAD(1), 0}}, 10, 0}, |
|
{{{GEN_HEAD(2), GEN_HEAD(2), 0}}, 10, 0}, |
|
}; |
|
|
|
PyGC_Head *_PyGC_generation0 = GEN_HEAD(0); |
|
|
|
static int enabled = 1; /* automatic collection enabled? */ |
|
|
|
/* true if we are currently running the collector */ |
|
static int collecting = 0; |
|
|
|
/* list of uncollectable objects */ |
|
static PyObject *garbage = NULL; |
|
|
|
/* Python string to use if unhandled exception occurs */ |
|
static PyObject *gc_str = NULL; |
|
|
|
/* Python string used to look for __del__ attribute. */ |
|
static PyObject *delstr = NULL; |
|
|
|
/* set for debugging information */ |
|
#define DEBUG_STATS (1<<0) /* print collection statistics */ |
|
#define DEBUG_COLLECTABLE (1<<1) /* print collectable objects */ |
|
#define DEBUG_UNCOLLECTABLE (1<<2) /* print uncollectable objects */ |
|
#define DEBUG_INSTANCES (1<<3) /* print instances */ |
|
#define DEBUG_OBJECTS (1<<4) /* print other objects */ |
|
#define DEBUG_SAVEALL (1<<5) /* save all garbage in gc.garbage */ |
|
#define DEBUG_LEAK DEBUG_COLLECTABLE | \ |
|
DEBUG_UNCOLLECTABLE | \ |
|
DEBUG_INSTANCES | \ |
|
DEBUG_OBJECTS | \ |
|
DEBUG_SAVEALL |
|
static int debug; |
|
|
|
/*-------------------------------------------------------------------------- |
|
gc_refs values. |
|
|
|
Between collections, every gc'ed object has one of two gc_refs values: |
|
|
|
GC_UNTRACKED |
|
The initial state; objects returned by PyObject_GC_Malloc are in this |
|
state. The object doesn't live in any generation list, and its |
|
tp_traverse slot must not be called. |
|
|
|
GC_REACHABLE |
|
The object lives in some generation list, and its tp_traverse is safe to |
|
call. An object transitions to GC_REACHABLE when PyObject_GC_Track |
|
is called. |
|
|
|
During a collection, gc_refs can temporarily take on other states: |
|
|
|
>= 0 |
|
At the start of a collection, update_refs() copies the true refcount |
|
to gc_refs, for each object in the generation being collected. |
|
subtract_refs() then adjusts gc_refs so that it equals the number of |
|
times an object is referenced directly from outside the generation |
|
being collected. |
|
gc_refs remains >= 0 throughout these steps. |
|
|
|
GC_TENTATIVELY_UNREACHABLE |
|
move_unreachable() then moves objects not reachable (whether directly or |
|
indirectly) from outside the generation into an "unreachable" set. |
|
Objects that are found to be reachable have gc_refs set to GC_REACHABLE |
|
again. Objects that are found to be unreachable have gc_refs set to |
|
GC_TENTATIVELY_UNREACHABLE. It's "tentatively" because the pass doing |
|
this can't be sure until it ends, and GC_TENTATIVELY_UNREACHABLE may |
|
transition back to GC_REACHABLE. |
|
|
|
Only objects with GC_TENTATIVELY_UNREACHABLE still set are candidates |
|
for collection. If it's decided not to collect such an object (e.g., |
|
it has a __del__ method), its gc_refs is restored to GC_REACHABLE again. |
|
---------------------------------------------------------------------------- |
|
*/ |
|
#define GC_UNTRACKED _PyGC_REFS_UNTRACKED |
|
#define GC_REACHABLE _PyGC_REFS_REACHABLE |
|
#define GC_TENTATIVELY_UNREACHABLE _PyGC_REFS_TENTATIVELY_UNREACHABLE |
|
|
|
#define IS_TRACKED(o) ((AS_GC(o))->gc.gc_refs != GC_UNTRACKED) |
|
#define IS_REACHABLE(o) ((AS_GC(o))->gc.gc_refs == GC_REACHABLE) |
|
#define IS_TENTATIVELY_UNREACHABLE(o) ( \ |
|
(AS_GC(o))->gc.gc_refs == GC_TENTATIVELY_UNREACHABLE) |
|
|
|
/*** list functions ***/ |
|
|
|
static void |
|
gc_list_init(PyGC_Head *list) |
|
{ |
|
list->gc.gc_prev = list; |
|
list->gc.gc_next = list; |
|
} |
|
|
|
static int |
|
gc_list_is_empty(PyGC_Head *list) |
|
{ |
|
return (list->gc.gc_next == list); |
|
} |
|
|
|
static void |
|
gc_list_append(PyGC_Head *node, PyGC_Head *list) |
|
{ |
|
node->gc.gc_next = list; |
|
node->gc.gc_prev = list->gc.gc_prev; |
|
node->gc.gc_prev->gc.gc_next = node; |
|
list->gc.gc_prev = node; |
|
} |
|
|
|
static void |
|
gc_list_remove(PyGC_Head *node) |
|
{ |
|
node->gc.gc_prev->gc.gc_next = node->gc.gc_next; |
|
node->gc.gc_next->gc.gc_prev = node->gc.gc_prev; |
|
node->gc.gc_next = NULL; /* object is not currently tracked */ |
|
} |
|
|
|
/* append a list onto another list, from becomes an empty list */ |
|
static void |
|
gc_list_merge(PyGC_Head *from, PyGC_Head *to) |
|
{ |
|
PyGC_Head *tail; |
|
if (!gc_list_is_empty(from)) { |
|
tail = to->gc.gc_prev; |
|
tail->gc.gc_next = from->gc.gc_next; |
|
tail->gc.gc_next->gc.gc_prev = tail; |
|
to->gc.gc_prev = from->gc.gc_prev; |
|
to->gc.gc_prev->gc.gc_next = to; |
|
} |
|
gc_list_init(from); |
|
} |
|
|
|
static long |
|
gc_list_size(PyGC_Head *list) |
|
{ |
|
PyGC_Head *gc; |
|
long n = 0; |
|
for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) { |
|
n++; |
|
} |
|
return n; |
|
} |
|
|
|
/* Append objects in a GC list to a Python list. |
|
* Return 0 if all OK, < 0 if error (out of memory for list). |
|
*/ |
|
static int |
|
append_objects(PyObject *py_list, PyGC_Head *gc_list) |
|
{ |
|
PyGC_Head *gc; |
|
for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) { |
|
PyObject *op = FROM_GC(gc); |
|
if (op != py_list) { |
|
if (PyList_Append(py_list, op)) { |
|
return -1; /* exception */ |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/*** end of list stuff ***/ |
|
|
|
|
|
/* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 for all objects |
|
* in containers, and is GC_REACHABLE for all tracked gc objects not in |
|
* containers. |
|
*/ |
|
static void |
|
update_refs(PyGC_Head *containers) |
|
{ |
|
PyGC_Head *gc = containers->gc.gc_next; |
|
for (; gc != containers; gc = gc->gc.gc_next) { |
|
assert(gc->gc.gc_refs == GC_REACHABLE); |
|
gc->gc.gc_refs = FROM_GC(gc)->ob_refcnt; |
|
} |
|
} |
|
|
|
/* A traversal callback for subtract_refs. */ |
|
static int |
|
visit_decref(PyObject *op, void *data) |
|
{ |
|
assert(op != NULL); |
|
if (PyObject_IS_GC(op)) { |
|
PyGC_Head *gc = AS_GC(op); |
|
/* We're only interested in gc_refs for objects in the |
|
* generation being collected, which can be recognized |
|
* because only they have positive gc_refs. |
|
*/ |
|
assert(gc->gc.gc_refs != 0); /* else refcount was too small */ |
|
if (gc->gc.gc_refs > 0) |
|
gc->gc.gc_refs--; |
|
} |
|
return 0; |
|
} |
|
|
|
/* Subtract internal references from gc_refs. After this, gc_refs is >= 0 |
|
* for all objects in containers, and is GC_REACHABLE for all tracked gc |
|
* objects not in containers. The ones with gc_refs > 0 are directly |
|
* reachable from outside containers, and so can't be collected. |
|
*/ |
|
static void |
|
subtract_refs(PyGC_Head *containers) |
|
{ |
|
traverseproc traverse; |
|
PyGC_Head *gc = containers->gc.gc_next; |
|
for (; gc != containers; gc=gc->gc.gc_next) { |
|
traverse = FROM_GC(gc)->ob_type->tp_traverse; |
|
(void) traverse(FROM_GC(gc), |
|
(visitproc)visit_decref, |
|
NULL); |
|
} |
|
} |
|
|
|
/* A traversal callback for move_unreachable. */ |
|
static int |
|
visit_reachable(PyObject *op, PyGC_Head *reachable) |
|
{ |
|
if (PyObject_IS_GC(op)) { |
|
PyGC_Head *gc = AS_GC(op); |
|
const int gc_refs = gc->gc.gc_refs; |
|
|
|
if (gc_refs == 0) { |
|
/* This is in move_unreachable's 'young' list, but |
|
* the traversal hasn't yet gotten to it. All |
|
* we need to do is tell move_unreachable that it's |
|
* reachable. |
|
*/ |
|
gc->gc.gc_refs = 1; |
|
} |
|
else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) { |
|
/* This had gc_refs = 0 when move_unreachable got |
|
* to it, but turns out it's reachable after all. |
|
* Move it back to move_unreachable's 'young' list, |
|
* and move_unreachable will eventually get to it |
|
* again. |
|
*/ |
|
gc_list_remove(gc); |
|
gc_list_append(gc, reachable); |
|
gc->gc.gc_refs = 1; |
|
} |
|
/* Else there's nothing to do. |
|
* If gc_refs > 0, it must be in move_unreachable's 'young' |
|
* list, and move_unreachable will eventually get to it. |
|
* If gc_refs == GC_REACHABLE, it's either in some other |
|
* generation so we don't care about it, or move_unreachable |
|
* already dealt with it. |
|
* If gc_refs == GC_UNTRACKED, it must be ignored. |
|
*/ |
|
else { |
|
assert(gc_refs > 0 |
|
|| gc_refs == GC_REACHABLE |
|
|| gc_refs == GC_UNTRACKED); |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/* Move the unreachable objects from young to unreachable. After this, |
|
* all objects in young have gc_refs = GC_REACHABLE, and all objects in |
|
* unreachable have gc_refs = GC_TENTATIVELY_UNREACHABLE. All tracked |
|
* gc objects not in young or unreachable still have gc_refs = GC_REACHABLE. |
|
* All objects in young after this are directly or indirectly reachable |
|
* from outside the original young; and all objects in unreachable are |
|
* not. |
|
*/ |
|
static void |
|
move_unreachable(PyGC_Head *young, PyGC_Head *unreachable) |
|
{ |
|
PyGC_Head *gc = young->gc.gc_next; |
|
|
|
/* Invariants: all objects "to the left" of us in young have gc_refs |
|
* = GC_REACHABLE, and are indeed reachable (directly or indirectly) |
|
* from outside the young list as it was at entry. All other objects |
|
* from the original young "to the left" of us are in unreachable now, |
|
* and have gc_refs = GC_TENTATIVELY_UNREACHABLE. All objects to the |
|
* left of us in 'young' now have been scanned, and no objects here |
|
* or to the right have been scanned yet. |
|
*/ |
|
|
|
while (gc != young) { |
|
PyGC_Head *next; |
|
|
|
if (gc->gc.gc_refs) { |
|
/* gc is definitely reachable from outside the |
|
* original 'young'. Mark it as such, and traverse |
|
* its pointers to find any other objects that may |
|
* be directly reachable from it. Note that the |
|
* call to tp_traverse may append objects to young, |
|
* so we have to wait until it returns to determine |
|
* the next object to visit. |
|
*/ |
|
PyObject *op = FROM_GC(gc); |
|
traverseproc traverse = op->ob_type->tp_traverse; |
|
assert(gc->gc.gc_refs > 0); |
|
gc->gc.gc_refs = GC_REACHABLE; |
|
(void) traverse(op, |
|
(visitproc)visit_reachable, |
|
(void *)young); |
|
next = gc->gc.gc_next; |
|
} |
|
else { |
|
/* This *may* be unreachable. To make progress, |
|
* assume it is. gc isn't directly reachable from |
|
* any object we've already traversed, but may be |
|
* reachable from an object we haven't gotten to yet. |
|
* visit_reachable will eventually move gc back into |
|
* young if that's so, and we'll see it again. |
|
*/ |
|
next = gc->gc.gc_next; |
|
gc_list_remove(gc); |
|
gc_list_append(gc, unreachable); |
|
gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE; |
|
} |
|
gc = next; |
|
} |
|
} |
|
|
|
/* Return true if object has a finalization method. |
|
* CAUTION: An instance of an old-style class has to be checked for a |
|
*__del__ method, and earlier versions of this used to call PyObject_HasAttr, |
|
* which in turn could call the class's __getattr__ hook (if any). That |
|
* could invoke arbitrary Python code, mutating the object graph in arbitrary |
|
* ways, and that was the source of some excruciatingly subtle bugs. |
|
*/ |
|
static int |
|
has_finalizer(PyObject *op) |
|
{ |
|
if (PyInstance_Check(op)) { |
|
assert(delstr != NULL); |
|
return _PyInstance_Lookup(op, delstr) != NULL; |
|
} |
|
else if (PyType_HasFeature(op->ob_type, Py_TPFLAGS_HEAPTYPE)) |
|
return op->ob_type->tp_del != NULL; |
|
else |
|
return 0; |
|
} |
|
|
|
/* Move the objects in unreachable with __del__ methods into finalizers, |
|
* and weakrefs with callbacks into wr_callbacks. |
|
* The objects remaining in unreachable do not have __del__ methods, and are |
|
* not weakrefs with callbacks. |
|
* The objects moved have gc_refs changed to GC_REACHABLE; the objects |
|
* remaining in unreachable are left at GC_TENTATIVELY_UNREACHABLE. |
|
*/ |
|
static void |
|
move_troublemakers(PyGC_Head *unreachable, |
|
PyGC_Head *finalizers, |
|
PyGC_Head *wr_callbacks) |
|
{ |
|
PyGC_Head *gc = unreachable->gc.gc_next; |
|
|
|
while (gc != unreachable) { |
|
PyObject *op = FROM_GC(gc); |
|
PyGC_Head *next = gc->gc.gc_next; |
|
|
|
assert(IS_TENTATIVELY_UNREACHABLE(op)); |
|
|
|
if (has_finalizer(op)) { |
|
gc_list_remove(gc); |
|
gc_list_append(gc, finalizers); |
|
gc->gc.gc_refs = GC_REACHABLE; |
|
} |
|
else if (PyWeakref_Check(op) && |
|
((PyWeakReference *)op)->wr_callback) { |
|
gc_list_remove(gc); |
|
gc_list_append(gc, wr_callbacks); |
|
gc->gc.gc_refs = GC_REACHABLE; |
|
} |
|
gc = next; |
|
} |
|
} |
|
|
|
/* A traversal callback for move_finalizer_reachable. */ |
|
static int |
|
visit_move(PyObject *op, PyGC_Head *tolist) |
|
{ |
|
if (PyObject_IS_GC(op)) { |
|
if (IS_TENTATIVELY_UNREACHABLE(op)) { |
|
PyGC_Head *gc = AS_GC(op); |
|
gc_list_remove(gc); |
|
gc_list_append(gc, tolist); |
|
gc->gc.gc_refs = GC_REACHABLE; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/* Move objects that are reachable from finalizers, from the unreachable set |
|
* into finalizers set. |
|
*/ |
|
static void |
|
move_finalizer_reachable(PyGC_Head *finalizers) |
|
{ |
|
traverseproc traverse; |
|
PyGC_Head *gc = finalizers->gc.gc_next; |
|
for (; gc != finalizers; gc = gc->gc.gc_next) { |
|
/* Note that the finalizers list may grow during this. */ |
|
traverse = FROM_GC(gc)->ob_type->tp_traverse; |
|
(void) traverse(FROM_GC(gc), |
|
(visitproc)visit_move, |
|
(void *)finalizers); |
|
} |
|
} |
|
|
|
/* Clear all trash weakrefs with callbacks. This clears weakrefs first, |
|
* which has the happy result of disabling the callbacks without executing |
|
* them. A nasty technical complication: a weakref callback can itself be |
|
* the target of a weakref, in which case decrefing the callback can cause |
|
* another callback to trigger. But we can't allow arbitrary Python code to |
|
* get executed at this point (the callback on the callback may try to muck |
|
* with other cyclic trash we're trying to collect, even resurrecting it |
|
* while we're in the middle of doing tp_clear() on the trash). |
|
* |
|
* The private _PyWeakref_ClearRef() function exists so that we can clear |
|
* the reference in a weakref without triggering a callback on the callback. |
|
* |
|
* We have to save the callback objects and decref them later. But we can't |
|
* allocate new memory to save them (if we can't get new memory, we're dead). |
|
* So we grab a new reference on the clear'ed weakref, which prevents the |
|
* rest of gc from reclaiming it. _PyWeakref_ClearRef() leaves the |
|
* weakref's wr_callback member intact. |
|
* |
|
* In the end, then, wr_callbacks consists of cleared weakrefs that are |
|
* immune from collection. Near the end of gc, after collecting all the |
|
* cyclic trash, we call release_weakrefs(). That releases our references |
|
* to the cleared weakrefs, which in turn may trigger callbacks on their |
|
* callbacks. |
|
*/ |
|
static void |
|
clear_weakrefs(PyGC_Head *wr_callbacks) |
|
{ |
|
PyGC_Head *gc = wr_callbacks->gc.gc_next; |
|
|
|
for (; gc != wr_callbacks; gc = gc->gc.gc_next) { |
|
PyObject *op = FROM_GC(gc); |
|
PyWeakReference *wr; |
|
|
|
assert(IS_REACHABLE(op)); |
|
assert(PyWeakref_Check(op)); |
|
wr = (PyWeakReference *)op; |
|
assert(wr->wr_callback != NULL); |
|
Py_INCREF(op); |
|
_PyWeakref_ClearRef(wr); |
|
} |
|
} |
|
|
|
/* Called near the end of gc. This gives up the references we own to |
|
* cleared weakrefs, allowing them to get collected, and in turn decref'ing |
|
* their callbacks. |
|
* |
|
* If a callback object is itself the target of a weakref callback, |
|
* decref'ing the callback object may trigger that other callback. If |
|
* that other callback was part of the cyclic trash in this generation, |
|
* that won't happen, since we cleared *all* trash-weakref callbacks near |
|
* the start of gc. If that other callback was not part of the cyclic trash |
|
* in this generation, then it acted like an external root to this round |
|
* of gc, so all the objects reachable from that callback are still alive. |
|
* |
|
* Giving up the references to the weakref objects will probably make |
|
* them go away too. However, if a weakref is reachable from finalizers, |
|
* it won't go away. We move it to the old generation then. Since a |
|
* weakref object doesn't have a finalizer, that's the right thing to do (it |
|
* doesn't belong in gc.garbage). |
|
* |
|
* We return the number of weakref objects freed (those not appended to old). |
|
*/ |
|
static int |
|
release_weakrefs(PyGC_Head *wr_callbacks, PyGC_Head *old) |
|
{ |
|
int num_freed = 0; |
|
|
|
while (! gc_list_is_empty(wr_callbacks)) { |
|
PyGC_Head *gc = wr_callbacks->gc.gc_next; |
|
PyObject *op = FROM_GC(gc); |
|
|
|
assert(IS_REACHABLE(op)); |
|
assert(PyWeakref_Check(op)); |
|
assert(((PyWeakReference *)op)->wr_callback != NULL); |
|
Py_DECREF(op); |
|
if (wr_callbacks->gc.gc_next == gc) { |
|
/* object is still alive -- move it */ |
|
gc_list_remove(gc); |
|
gc_list_append(gc, old); |
|
} |
|
else |
|
++num_freed; |
|
} |
|
return num_freed; |
|
} |
|
|
|
static void |
|
debug_instance(char *msg, PyInstanceObject *inst) |
|
{ |
|
char *cname; |
|
/* simple version of instance_repr */ |
|
PyObject *classname = inst->in_class->cl_name; |
|
if (classname != NULL && PyString_Check(classname)) |
|
cname = PyString_AsString(classname); |
|
else |
|
cname = "?"; |
|
PySys_WriteStderr("gc: %.100s <%.100s instance at %p>\n", |
|
msg, cname, inst); |
|
} |
|
|
|
static void |
|
debug_cycle(char *msg, PyObject *op) |
|
{ |
|
if ((debug & DEBUG_INSTANCES) && PyInstance_Check(op)) { |
|
debug_instance(msg, (PyInstanceObject *)op); |
|
} |
|
else if (debug & DEBUG_OBJECTS) { |
|
PySys_WriteStderr("gc: %.100s <%.100s %p>\n", |
|
msg, op->ob_type->tp_name, op); |
|
} |
|
} |
|
|
|
/* Handle uncollectable garbage (cycles with finalizers, and stuff reachable |
|
* only from such cycles). |
|
* If DEBUG_SAVEALL, all objects in finalizers are appended to the module |
|
* garbage list (a Python list), else only the objects in finalizers with |
|
* __del__ methods are appended to garbage. All objects in finalizers are |
|
* merged into the old list regardless. |
|
* Returns 0 if all OK, <0 on error (out of memory to grow the garbage list). |
|
* The finalizers list is made empty on a successful return. |
|
*/ |
|
static int |
|
handle_finalizers(PyGC_Head *finalizers, PyGC_Head *old) |
|
{ |
|
PyGC_Head *gc = finalizers->gc.gc_next; |
|
|
|
if (garbage == NULL) { |
|
garbage = PyList_New(0); |
|
if (garbage == NULL) |
|
Py_FatalError("gc couldn't create gc.garbage list"); |
|
} |
|
for (; gc != finalizers; gc = gc->gc.gc_next) { |
|
PyObject *op = FROM_GC(gc); |
|
|
|
if ((debug & DEBUG_SAVEALL) || has_finalizer(op)) { |
|
if (PyList_Append(garbage, op) < 0) |
|
return -1; |
|
} |
|
} |
|
|
|
gc_list_merge(finalizers, old); |
|
return 0; |
|
} |
|
|
|
/* Break reference cycles by clearing the containers involved. This is |
|
* tricky business as the lists can be changing and we don't know which |
|
* objects may be freed. It is possible I screwed something up here. |
|
*/ |
|
static void |
|
delete_garbage(PyGC_Head *collectable, PyGC_Head *old) |
|
{ |
|
inquiry clear; |
|
|
|
while (!gc_list_is_empty(collectable)) { |
|
PyGC_Head *gc = collectable->gc.gc_next; |
|
PyObject *op = FROM_GC(gc); |
|
|
|
assert(IS_TENTATIVELY_UNREACHABLE(op)); |
|
if (debug & DEBUG_SAVEALL) { |
|
PyList_Append(garbage, op); |
|
} |
|
else { |
|
if ((clear = op->ob_type->tp_clear) != NULL) { |
|
Py_INCREF(op); |
|
clear(op); |
|
Py_DECREF(op); |
|
} |
|
} |
|
if (collectable->gc.gc_next == gc) { |
|
/* object is still alive, move it, it may die later */ |
|
gc_list_remove(gc); |
|
gc_list_append(gc, old); |
|
gc->gc.gc_refs = GC_REACHABLE; |
|
} |
|
} |
|
} |
|
|
|
/* This is the main function. Read this to understand how the |
|
* collection process works. */ |
|
static long |
|
collect(int generation) |
|
{ |
|
int i; |
|
long m = 0; /* # objects collected */ |
|
long n = 0; /* # unreachable objects that couldn't be collected */ |
|
PyGC_Head *young; /* the generation we are examining */ |
|
PyGC_Head *old; /* next older generation */ |
|
PyGC_Head unreachable; /* non-problematic unreachable trash */ |
|
PyGC_Head finalizers; /* objects with, & reachable from, __del__ */ |
|
PyGC_Head wr_callbacks; /* weakrefs with callbacks */ |
|
PyGC_Head *gc; |
|
|
|
if (delstr == NULL) { |
|
delstr = PyString_InternFromString("__del__"); |
|
if (delstr == NULL) |
|
Py_FatalError("gc couldn't allocate \"__del__\""); |
|
} |
|
|
|
if (debug & DEBUG_STATS) { |
|
PySys_WriteStderr("gc: collecting generation %d...\n", |
|
generation); |
|
PySys_WriteStderr("gc: objects in each generation:"); |
|
for (i = 0; i < NUM_GENERATIONS; i++) { |
|
PySys_WriteStderr(" %ld", gc_list_size(GEN_HEAD(i))); |
|
} |
|
PySys_WriteStderr("\n"); |
|
} |
|
|
|
/* update collection and allocation counters */ |
|
if (generation+1 < NUM_GENERATIONS) |
|
generations[generation+1].count += 1; |
|
for (i = 0; i <= generation; i++) |
|
generations[i].count = 0; |
|
|
|
/* merge younger generations with one we are currently collecting */ |
|
for (i = 0; i < generation; i++) { |
|
gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation)); |
|
} |
|
|
|
/* handy references */ |
|
young = GEN_HEAD(generation); |
|
if (generation < NUM_GENERATIONS-1) |
|
old = GEN_HEAD(generation+1); |
|
else |
|
old = young; |
|
|
|
/* Using ob_refcnt and gc_refs, calculate which objects in the |
|
* container set are reachable from outside the set (ie. have a |
|
* refcount greater than 0 when all the references within the |
|
* set are taken into account |
|
*/ |
|
update_refs(young); |
|
subtract_refs(young); |
|
|
|
/* Leave everything reachable from outside young in young, and move |
|
* everything else (in young) to unreachable. |
|
* NOTE: This used to move the reachable objects into a reachable |
|
* set instead. But most things usually turn out to be reachable, |
|
* so it's more efficient to move the unreachable things. |
|
*/ |
|
gc_list_init(&unreachable); |
|
move_unreachable(young, &unreachable); |
|
|
|
/* Move reachable objects to next generation. */ |
|
if (young != old) |
|
gc_list_merge(young, old); |
|
|
|
/* All objects in unreachable are trash, but objects reachable from |
|
* finalizers can't safely be deleted. Python programmers should take |
|
* care not to create such things. For Python, finalizers means |
|
* instance objects with __del__ methods. Weakrefs with callbacks |
|
* can call arbitrary Python code, so those are special-cased too. |
|
* |
|
* Move unreachable objects with finalizers, and weakrefs with |
|
* callbacks, into different lists. |
|
*/ |
|
gc_list_init(&finalizers); |
|
gc_list_init(&wr_callbacks); |
|
move_troublemakers(&unreachable, &finalizers, &wr_callbacks); |
|
/* Clear the trash weakrefs with callbacks. This prevents their |
|
* callbacks from getting invoked (when a weakref goes away, so does |
|
* its callback). |
|
* We do this even if the weakrefs are reachable from finalizers. |
|
* If we didn't, breaking cycles in unreachable later could trigger |
|
* deallocation of objects in finalizers, which could in turn |
|
* cause callbacks to trigger. This may not be ideal behavior. |
|
*/ |
|
clear_weakrefs(&wr_callbacks); |
|
/* finalizers contains the unreachable objects with a finalizer; |
|
* unreachable objects reachable *from* those are also uncollectable, |
|
* and we move those into the finalizers list too. |
|
*/ |
|
move_finalizer_reachable(&finalizers); |
|
|
|
/* Collect statistics on collectable objects found and print |
|
* debugging information. |
|
*/ |
|
for (gc = unreachable.gc.gc_next; gc != &unreachable; |
|
gc = gc->gc.gc_next) { |
|
m++; |
|
if (debug & DEBUG_COLLECTABLE) { |
|
debug_cycle("collectable", FROM_GC(gc)); |
|
} |
|
} |
|
/* Call tp_clear on objects in the unreachable set. This will cause |
|
* the reference cycles to be broken. It may also cause some objects |
|
* in finalizers to be freed. |
|
*/ |
|
delete_garbage(&unreachable, old); |
|
|
|
/* Now that we're done analyzing stuff and breaking cycles, let |
|
* delayed weakref callbacks run. |
|
*/ |
|
m += release_weakrefs(&wr_callbacks, old); |
|
|
|
/* Collect statistics on uncollectable objects found and print |
|
* debugging information. */ |
|
for (gc = finalizers.gc.gc_next; |
|
gc != &finalizers; |
|
gc = gc->gc.gc_next) { |
|
n++; |
|
if (debug & DEBUG_UNCOLLECTABLE) |
|
debug_cycle("uncollectable", FROM_GC(gc)); |
|
} |
|
if (debug & DEBUG_STATS) { |
|
if (m == 0 && n == 0) { |
|
PySys_WriteStderr("gc: done.\n"); |
|
} |
|
else { |
|
PySys_WriteStderr( |
|
"gc: done, %ld unreachable, %ld uncollectable.\n", |
|
n+m, n); |
|
} |
|
} |
|
|
|
/* Append instances in the uncollectable set to a Python |
|
* reachable list of garbage. The programmer has to deal with |
|
* this if they insist on creating this type of structure. |
|
*/ |
|
(void)handle_finalizers(&finalizers, old); |
|
|
|
if (PyErr_Occurred()) { |
|
if (gc_str == NULL) |
|
gc_str = PyString_FromString("garbage collection"); |
|
PyErr_WriteUnraisable(gc_str); |
|
Py_FatalError("unexpected exception during garbage collection"); |
|
} |
|
return n+m; |
|
} |
|
|
|
static long |
|
collect_generations(void) |
|
{ |
|
int i; |
|
long n = 0; |
|
|
|
/* Find the oldest generation (higest numbered) where the count |
|
* exceeds the threshold. Objects in the that generation and |
|
* generations younger than it will be collected. */ |
|
for (i = NUM_GENERATIONS-1; i >= 0; i--) { |
|
if (generations[i].count > generations[i].threshold) { |
|
n = collect(i); |
|
break; |
|
} |
|
} |
|
return n; |
|
} |
|
|
|
PyDoc_STRVAR(gc_enable__doc__, |
|
"enable() -> None\n" |
|
"\n" |
|
"Enable automatic garbage collection.\n"); |
|
|
|
static PyObject * |
|
gc_enable(PyObject *self, PyObject *noargs) |
|
{ |
|
enabled = 1; |
|
Py_INCREF(Py_None); |
|
return Py_None; |
|
} |
|
|
|
PyDoc_STRVAR(gc_disable__doc__, |
|
"disable() -> None\n" |
|
"\n" |
|
"Disable automatic garbage collection.\n"); |
|
|
|
static PyObject * |
|
gc_disable(PyObject *self, PyObject *noargs) |
|
{ |
|
enabled = 0; |
|
Py_INCREF(Py_None); |
|
return Py_None; |
|
} |
|
|
|
PyDoc_STRVAR(gc_isenabled__doc__, |
|
"isenabled() -> status\n" |
|
"\n" |
|
"Returns true if automatic garbage collection is enabled.\n"); |
|
|
|
static PyObject * |
|
gc_isenabled(PyObject *self, PyObject *noargs) |
|
{ |
|
return Py_BuildValue("i", enabled); |
|
} |
|
|
|
PyDoc_STRVAR(gc_collect__doc__, |
|
"collect() -> n\n" |
|
"\n" |
|
"Run a full collection. The number of unreachable objects is returned.\n"); |
|
|
|
static PyObject * |
|
gc_collect(PyObject *self, PyObject *noargs) |
|
{ |
|
long n; |
|
|
|
if (collecting) |
|
n = 0; /* already collecting, don't do anything */ |
|
else { |
|
collecting = 1; |
|
n = collect(NUM_GENERATIONS - 1); |
|
collecting = 0; |
|
} |
|
|
|
return Py_BuildValue("l", n); |
|
} |
|
|
|
PyDoc_STRVAR(gc_set_debug__doc__, |
|
"set_debug(flags) -> None\n" |
|
"\n" |
|
"Set the garbage collection debugging flags. Debugging information is\n" |
|
"written to sys.stderr.\n" |
|
"\n" |
|
"flags is an integer and can have the following bits turned on:\n" |
|
"\n" |
|
" DEBUG_STATS - Print statistics during collection.\n" |
|
" DEBUG_COLLECTABLE - Print collectable objects found.\n" |
|
" DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects found.\n" |
|
" DEBUG_INSTANCES - Print instance objects.\n" |
|
" DEBUG_OBJECTS - Print objects other than instances.\n" |
|
" DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them.\n" |
|
" DEBUG_LEAK - Debug leaking programs (everything but STATS).\n"); |
|
|
|
static PyObject * |
|
gc_set_debug(PyObject *self, PyObject *args) |
|
{ |
|
if (!PyArg_ParseTuple(args, "i:set_debug", &debug)) |
|
return NULL; |
|
|
|
Py_INCREF(Py_None); |
|
return Py_None; |
|
} |
|
|
|
PyDoc_STRVAR(gc_get_debug__doc__, |
|
"get_debug() -> flags\n" |
|
"\n" |
|
"Get the garbage collection debugging flags.\n"); |
|
|
|
static PyObject * |
|
gc_get_debug(PyObject *self, PyObject *noargs) |
|
{ |
|
return Py_BuildValue("i", debug); |
|
} |
|
|
|
PyDoc_STRVAR(gc_set_thresh__doc__, |
|
"set_threshold(threshold0, [threshold1, threshold2]) -> None\n" |
|
"\n" |
|
"Sets the collection thresholds. Setting threshold0 to zero disables\n" |
|
"collection.\n"); |
|
|
|
static PyObject * |
|
gc_set_thresh(PyObject *self, PyObject *args) |
|
{ |
|
int i; |
|
if (!PyArg_ParseTuple(args, "i|ii:set_threshold", |
|
&generations[0].threshold, |
|
&generations[1].threshold, |
|
&generations[2].threshold)) |
|
return NULL; |
|
for (i = 2; i < NUM_GENERATIONS; i++) { |
|
/* generations higher than 2 get the same threshold */ |
|
generations[i].threshold = generations[2].threshold; |
|
} |
|
|
|
Py_INCREF(Py_None); |
|
return Py_None; |
|
} |
|
|
|
PyDoc_STRVAR(gc_get_thresh__doc__, |
|
"get_threshold() -> (threshold0, threshold1, threshold2)\n" |
|
"\n" |
|
"Return the current collection thresholds\n"); |
|
|
|
static PyObject * |
|
gc_get_thresh(PyObject *self, PyObject *noargs) |
|
{ |
|
return Py_BuildValue("(iii)", |
|
generations[0].threshold, |
|
generations[1].threshold, |
|
generations[2].threshold); |
|
} |
|
|
|
static int |
|
referrersvisit(PyObject* obj, PyObject *objs) |
|
{ |
|
int i; |
|
for (i = 0; i < PyTuple_GET_SIZE(objs); i++) |
|
if (PyTuple_GET_ITEM(objs, i) == obj) |
|
return 1; |
|
return 0; |
|
} |
|
|
|
static int |
|
gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist) |
|
{ |
|
PyGC_Head *gc; |
|
PyObject *obj; |
|
traverseproc traverse; |
|
for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) { |
|
obj = FROM_GC(gc); |
|
traverse = obj->ob_type->tp_traverse; |
|
if (obj == objs || obj == resultlist) |
|
continue; |
|
if (traverse(obj, (visitproc)referrersvisit, objs)) { |
|
if (PyList_Append(resultlist, obj) < 0) |
|
return 0; /* error */ |
|
} |
|
} |
|
return 1; /* no error */ |
|
} |
|
|
|
PyDoc_STRVAR(gc_get_referrers__doc__, |
|
"get_referrers(*objs) -> list\n\ |
|
Return the list of objects that directly refer to any of objs."); |
|
|
|
static PyObject * |
|
gc_get_referrers(PyObject *self, PyObject *args) |
|
{ |
|
int i; |
|
PyObject *result = PyList_New(0); |
|
for (i = 0; i < NUM_GENERATIONS; i++) { |
|
if (!(gc_referrers_for(args, GEN_HEAD(i), result))) { |
|
Py_DECREF(result); |
|
return NULL; |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
/* Append obj to list; return true if error (out of memory), false if OK. */ |
|
static int |
|
referentsvisit(PyObject *obj, PyObject *list) |
|
{ |
|
return PyList_Append(list, obj) < 0; |
|
} |
|
|
|
PyDoc_STRVAR(gc_get_referents__doc__, |
|
"get_referents(*objs) -> list\n\ |
|
Return the list of objects that are directly referred to by objs."); |
|
|
|
static PyObject * |
|
gc_get_referents(PyObject *self, PyObject *args) |
|
{ |
|
int i; |
|
PyObject *result = PyList_New(0); |
|
|
|
if (result == NULL) |
|
return NULL; |
|
|
|
for (i = 0; i < PyTuple_GET_SIZE(args); i++) { |
|
traverseproc traverse; |
|
PyObject *obj = PyTuple_GET_ITEM(args, i); |
|
|
|
if (! PyObject_IS_GC(obj)) |
|
continue; |
|
traverse = obj->ob_type->tp_traverse; |
|
if (! traverse) |
|
continue; |
|
if (traverse(obj, (visitproc)referentsvisit, result)) { |
|
Py_DECREF(result); |
|
return NULL; |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
PyDoc_STRVAR(gc_get_objects__doc__, |
|
"get_objects() -> [...]\n" |
|
"\n" |
|
"Return a list of objects tracked by the collector (excluding the list\n" |
|
"returned).\n"); |
|
|
|
static PyObject * |
|
gc_get_objects(PyObject *self, PyObject *noargs) |
|
{ |
|
int i; |
|
PyObject* result; |
|
|
|
result = PyList_New(0); |
|
if (result == NULL) |
|
return NULL; |
|
for (i = 0; i < NUM_GENERATIONS; i++) { |
|
if (append_objects(result, GEN_HEAD(i))) { |
|
Py_DECREF(result); |
|
return NULL; |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
|
|
PyDoc_STRVAR(gc__doc__, |
|
"This module provides access to the garbage collector for reference cycles.\n" |
|
"\n" |
|
"enable() -- Enable automatic garbage collection.\n" |
|
"disable() -- Disable automatic garbage collection.\n" |
|
"isenabled() -- Returns true if automatic collection is enabled.\n" |
|
"collect() -- Do a full collection right now.\n" |
|
"set_debug() -- Set debugging flags.\n" |
|
"get_debug() -- Get debugging flags.\n" |
|
"set_threshold() -- Set the collection thresholds.\n" |
|
"get_threshold() -- Return the current the collection thresholds.\n" |
|
"get_objects() -- Return a list of all objects tracked by the collector.\n" |
|
"get_referrers() -- Return the list of objects that refer to an object.\n" |
|
"get_referents() -- Return the list of objects that an object refers to.\n"); |
|
|
|
static PyMethodDef GcMethods[] = { |
|
{"enable", gc_enable, METH_NOARGS, gc_enable__doc__}, |
|
{"disable", gc_disable, METH_NOARGS, gc_disable__doc__}, |
|
{"isenabled", gc_isenabled, METH_NOARGS, gc_isenabled__doc__}, |
|
{"set_debug", gc_set_debug, METH_VARARGS, gc_set_debug__doc__}, |
|
{"get_debug", gc_get_debug, METH_NOARGS, gc_get_debug__doc__}, |
|
{"set_threshold", gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__}, |
|
{"get_threshold", gc_get_thresh, METH_NOARGS, gc_get_thresh__doc__}, |
|
{"collect", gc_collect, METH_NOARGS, gc_collect__doc__}, |
|
{"get_objects", gc_get_objects,METH_NOARGS, gc_get_objects__doc__}, |
|
{"get_referrers", gc_get_referrers, METH_VARARGS, |
|
gc_get_referrers__doc__}, |
|
{"get_referents", gc_get_referents, METH_VARARGS, |
|
gc_get_referents__doc__}, |
|
{NULL, NULL} /* Sentinel */ |
|
}; |
|
|
|
void |
|
initgc(void) |
|
{ |
|
PyObject *m; |
|
|
|
m = Py_InitModule4("gc", |
|
GcMethods, |
|
gc__doc__, |
|
NULL, |
|
PYTHON_API_VERSION); |
|
|
|
if (garbage == NULL) { |
|
garbage = PyList_New(0); |
|
if (garbage == NULL) |
|
return; |
|
} |
|
if (PyModule_AddObject(m, "garbage", garbage) < 0) |
|
return; |
|
#define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return |
|
ADD_INT(DEBUG_STATS); |
|
ADD_INT(DEBUG_COLLECTABLE); |
|
ADD_INT(DEBUG_UNCOLLECTABLE); |
|
ADD_INT(DEBUG_INSTANCES); |
|
ADD_INT(DEBUG_OBJECTS); |
|
ADD_INT(DEBUG_SAVEALL); |
|
ADD_INT(DEBUG_LEAK); |
|
#undef ADD_INT |
|
} |
|
|
|
/* API to invoke gc.collect() from C */ |
|
long |
|
PyGC_Collect(void) |
|
{ |
|
long n; |
|
|
|
if (collecting) |
|
n = 0; /* already collecting, don't do anything */ |
|
else { |
|
collecting = 1; |
|
n = collect(NUM_GENERATIONS - 1); |
|
collecting = 0; |
|
} |
|
|
|
return n; |
|
} |
|
|
|
/* for debugging */ |
|
void |
|
_PyGC_Dump(PyGC_Head *g) |
|
{ |
|
_PyObject_Dump(FROM_GC(g)); |
|
} |
|
|
|
/* extension modules might be compiled with GC support so these |
|
functions must always be available */ |
|
|
|
#undef PyObject_GC_Track |
|
#undef PyObject_GC_UnTrack |
|
#undef PyObject_GC_Del |
|
#undef _PyObject_GC_Malloc |
|
|
|
void |
|
PyObject_GC_Track(void *op) |
|
{ |
|
_PyObject_GC_TRACK(op); |
|
} |
|
|
|
/* for binary compatibility with 2.2 */ |
|
void |
|
_PyObject_GC_Track(PyObject *op) |
|
{ |
|
PyObject_GC_Track(op); |
|
} |
|
|
|
void |
|
PyObject_GC_UnTrack(void *op) |
|
{ |
|
/* Obscure: the Py_TRASHCAN mechanism requires that we be able to |
|
* call PyObject_GC_UnTrack twice on an object. |
|
*/ |
|
if (IS_TRACKED(op)) |
|
_PyObject_GC_UNTRACK(op); |
|
} |
|
|
|
/* for binary compatibility with 2.2 */ |
|
void |
|
_PyObject_GC_UnTrack(PyObject *op) |
|
{ |
|
PyObject_GC_UnTrack(op); |
|
} |
|
|
|
PyObject * |
|
_PyObject_GC_Malloc(size_t basicsize) |
|
{ |
|
PyObject *op; |
|
PyGC_Head *g = PyObject_MALLOC(sizeof(PyGC_Head) + basicsize); |
|
if (g == NULL) |
|
return PyErr_NoMemory(); |
|
g->gc.gc_refs = GC_UNTRACKED; |
|
generations[0].count++; /* number of allocated GC objects */ |
|
if (generations[0].count > generations[0].threshold && |
|
enabled && |
|
generations[0].threshold && |
|
!collecting && |
|
!PyErr_Occurred()) { |
|
collecting = 1; |
|
collect_generations(); |
|
collecting = 0; |
|
} |
|
op = FROM_GC(g); |
|
return op; |
|
} |
|
|
|
PyObject * |
|
_PyObject_GC_New(PyTypeObject *tp) |
|
{ |
|
PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp)); |
|
if (op != NULL) |
|
op = PyObject_INIT(op, tp); |
|
return op; |
|
} |
|
|
|
PyVarObject * |
|
_PyObject_GC_NewVar(PyTypeObject *tp, int nitems) |
|
{ |
|
const size_t size = _PyObject_VAR_SIZE(tp, nitems); |
|
PyVarObject *op = (PyVarObject *) _PyObject_GC_Malloc(size); |
|
if (op != NULL) |
|
op = PyObject_INIT_VAR(op, tp, nitems); |
|
return op; |
|
} |
|
|
|
PyVarObject * |
|
_PyObject_GC_Resize(PyVarObject *op, int nitems) |
|
{ |
|
const size_t basicsize = _PyObject_VAR_SIZE(op->ob_type, nitems); |
|
PyGC_Head *g = AS_GC(op); |
|
g = PyObject_REALLOC(g, sizeof(PyGC_Head) + basicsize); |
|
if (g == NULL) |
|
return (PyVarObject *)PyErr_NoMemory(); |
|
op = (PyVarObject *) FROM_GC(g); |
|
op->ob_size = nitems; |
|
return op; |
|
} |
|
|
|
void |
|
PyObject_GC_Del(void *op) |
|
{ |
|
PyGC_Head *g = AS_GC(op); |
|
if (IS_TRACKED(op)) |
|
gc_list_remove(g); |
|
if (generations[0].count > 0) { |
|
generations[0].count--; |
|
} |
|
PyObject_FREE(g); |
|
} |
|
|
|
/* for binary compatibility with 2.2 */ |
|
#undef _PyObject_GC_Del |
|
void |
|
_PyObject_GC_Del(PyObject *op) |
|
{ |
|
PyObject_GC_Del(op); |
|
}
|
|
|