You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

326 lines
18 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#ifndef plViewTransform_inc
#define plViewTransform_inc
#include "hsMatrix44.h"
#include "hsGeometry3.h"
#include "hsPoint2.h"
class hsBounds3;
class hsStream;
// There's a lot here, but there's a lot one might want to do with view transforms.
// It's easiest to grab the structure thinking of it in terms of the different
// spaces you might want a point in. The ones supported here are:
// Screen - this is actual pixel values
// NDC - Normalized Device Coordinates, these are post W divide, so the
// valid range is x = [-1..1], y = [-1..1], z = [0..1]
// Camera - relative to the camera, with (0,0,-1) directly in front of the camera,
// and (0, 1, 0) directly above the camera.
// World - Universal world space.
// Map - arbitrary mapping of NDC. Like from [(-1,-1,0)..(1,1,1)] => [(0,0,0)..(1,1,1)] (default).
// Note that there is no object space here. There could be, but I wanted something more constant, more
// world independent, so the ViewTransform remains constant unless the view changes. Whatever.
//
// So we're broken into functional sections:
// 1) Queries on the state of this view transform, properties, matrix values, whatever. Note that you
// generally shouldn't be reading a value (e.g. matrix) out of the ViewTransform, but let the
// ViewTransform perform the operation you would with the matrix.
// 2) Setting state, properties, matrix values, whatever. There's a couple of really bizarre variants
// (like the union and intersection of view frustums). Full support is available for perspective
// or orthogonal views. An additional capability (not necessary) is offset transforms, useful
// for rendering textures. If you don't what good they are, they probably aren't any good to you.
// 3) Conversions of points from one space to another. You may notice that there are a whole lot of them.
// There is a conversion from each of the spaces above to each of the other spaces. That's 12
// transformations right there. But Points and Vectors actually transform differently, so there
// are different versions for those. Where they could be treated the same, there is an hsScalarTriple
// version that does the actual work, and then casting versions to come and go from the right type.
// 4) Read and write (note these are NOT virtual).
//
// More Notes:
// This class has no virtual functions.
// You must set the width and height for Screen queries to work (duh!).
// ViewPort defaults to cover the entire width and height. Viewport only affects mapping, not clipping
// (i.e. reducing the viewport width will still render the same stuff, just skinnier).
// The actual data here is very small, this is mostly a collection of functions, so where possible,
// just keep one of these to pass around, (e.g. rather than keeping track of FOV etc and passing
// those around).
//
class plViewTransform
{
public:
plViewTransform();
~plViewTransform() {}
void Reset(); // resets to default state
// Queries
hsBool GetOrthogonal() const { return IHasFlag(kOrthogonal); }
hsBool GetPerspective() const { return !GetOrthogonal(); }
hsBool GetViewPortRelative() const { return IHasFlag(kViewPortRelative); }
// Next, all our matrices.
const hsMatrix44& GetCameraToWorld() const { return fCameraToWorld; }
const hsMatrix44& GetWorldToCamera() const { return fWorldToCamera; }
const hsMatrix44& GetCameraToNDC() const { return ICheckCameraToNDC(); }
const hsMatrix44& GetWorldToNDC() const { return ICheckWorldToNDC(); }
hsPoint3 GetPosition() const { return GetCameraToWorld().GetTranslate(); }
hsVector3 GetDirection() const { return *((hsVector3 *)&GetWorldToCamera().fMap[2]); }
hsVector3 GetUp() const { return *((hsVector3*)&GetWorldToCamera().fMap[1]); }
hsVector3 GetAcross() const { return *((hsVector3*)&GetWorldToCamera().fMap[0]); }
UInt16 GetScreenWidth() const { return fWidth; }
UInt16 GetScreenHeight() const { return fHeight; }
void GetViewPort(hsPoint2& mins, hsPoint2& maxs) const;
void GetViewPort(int& loX, int& loY, int& hiX, int& hiY) const;
int GetViewPortWidth() const { return GetViewPortRight() - GetViewPortLeft(); }
int GetViewPortHeight() const { return GetViewPortBottom() - GetViewPortTop(); }
int GetViewPortLeft() const { return int(GetViewPortLoX()); }
int GetViewPortTop() const { return int(GetViewPortLoY()); }
int GetViewPortRight() const { return int(GetViewPortHiX()); }
int GetViewPortBottom() const { return int(GetViewPortHiY()); }
float GetViewPortLoX() const { return GetViewPortRelative() ? fViewPortX.fX * fWidth : fViewPortX.fX; }
float GetViewPortLoY() const { return GetViewPortRelative() ? fViewPortY.fX * fHeight : fViewPortY.fX; }
float GetViewPortHiX() const { return GetViewPortRelative() ? fViewPortX.fY * fWidth : fViewPortX.fY; }
float GetViewPortHiY() const { return GetViewPortRelative() ? fViewPortY.fY * fHeight : fViewPortY.fY; }
hsPoint3 GetMapMin() const { return fMapMin; }
hsPoint3 GetMapMax() const { return fMapMax; }
void GetMapping(hsPoint3& mapMin, hsPoint3& mapMax) const { mapMin = fMapMin; mapMax = fMapMax; }
hsScalar GetFovX() const;
hsScalar GetFovY() const;
hsScalar GetFovXDeg() const { return hsScalarRadToDeg(GetFovX()); }
hsScalar GetFovYDeg() const { return hsScalarRadToDeg(GetFovY()); }
hsScalar GetOrthoWidth() const { return fMax.fX - fMin.fX; }
hsScalar GetOrthoHeight() const { return fMax.fY - fMin.fY; }
hsScalar GetHither() const { return fMin.fZ; }
hsScalar GetYon() const { return fMax.fZ; }
void GetDepth(hsScalar& hither, hsScalar& yon) const { hither = GetHither(); yon = GetYon(); }
// Setup.
// First, our world to camera and back again.
void SetCameraTransform(const hsMatrix44& w2c, const hsMatrix44& c2w) { fWorldToCamera = w2c; fCameraToWorld = c2w; ISetFlag(kWorldToNDCSet, false); }
// Next, what kind of projection.
void SetOrthogonal(hsBool on) { ISetFlag(kOrthogonal, on); InvalidateTransforms(); }
void SetPerspective(hsBool on) { SetOrthogonal(!on); }
// Next, setting the scree/window/rendertarget size
void SetWidth(UInt16 w) { fWidth = w; }
void SetHeight(UInt16 h) { fHeight = h; }
void SetScreenSize(UInt16 w, UInt16 h) { SetWidth(w); SetHeight(h); }
// Next, setting the viewport. You only need to do this if you want to use the screen functions above.
// If you're passing in and getting out normalized device coordinates, skip this. If you don't set viewport,
// Defaults to 0,0,width,height (i.e. the whole screen).
void SetViewPort(const hsPoint2& mins, const hsPoint2& maxs, hsBool relative=true);
void SetViewPort(float loX, float loY, float hiX, float hiY, hsBool relative=true) { SetViewPort(hsPoint2().Set(loX, loY), hsPoint2().Set(hiX, hiY), relative); }
void SetViewPort(UInt16 left, UInt16 top, UInt16 right, UInt16 bottom) { SetViewPort(hsScalar(left), hsScalar(top), hsScalar(right), hsScalar(bottom), false); }
void SetMapping(const hsPoint3& mins, const hsPoint3& maxs) { SetMapMin(mins); SetMapMax(maxs); }
void SetMapMin(const hsPoint3& mins) { fMapMin = mins; }
void SetMapMax(const hsPoint3& maxs) { fMapMax = maxs; }
// Next, variants on setting up our projection matrix.
// Depth is pretty uniform.
void SetDepth(hsScalar hither, hsScalar yon) { fMin.fZ = hither; fMax.fZ = yon; InvalidateTransforms(); }
void SetDepth(const hsPoint2& d) { SetDepth(d.fX, d.fY); }
void SetHither(hsScalar hither) { fMin.fZ = hither; InvalidateTransforms(); }
void SetYon(hsScalar yon) { fMax.fZ = yon; InvalidateTransforms(); }
// Garden variety symmetric fov uses either of this first batch. Unless you're doing some funky projection, you don't even
// need to look through the rest.
// Degrees - all are full angles, < 180 degrees
void SetFovDeg(const hsPoint2& deg) { SetFovDeg(deg.fX, deg.fY); }
void SetFovDeg(hsScalar degX, hsScalar degY) { SetFovXDeg(degX); SetFovYDeg(degY); }
void SetFovXDeg(hsScalar deg) { SetFovX(hsScalarDegToRad(deg)); }
void SetFovYDeg(hsScalar deg) { SetFovY(hsScalarDegToRad(deg)); }
// Radians - all are full angles, < PI
void SetFov(const hsPoint2& rad) { SetFov(rad.fX, rad.fY); }
void SetFov(hsScalar radX, hsScalar radY) { SetFovX(radX); SetFovY(radY); }
void SetFovX(hsScalar rad) { SetHalfWidth(hsTan(rad * 0.5f)); }
void SetFovY(hsScalar rad) { SetHalfHeight(hsTan(rad * 0.5f)); }
// For orthogonal projection, don't call SetWidth(hsTan(fovRads)), because hsTan(f)/2 != hsTan(f/2)
// For non-centered, call SetWidths/Heights() directly.
void SetWidth(hsScalar w) { SetHalfWidth(w * 0.5f); }
void SetHeight(hsScalar h) { SetHalfHeight(h * 0.5f); }
// The rest do no interpretation, just stuff the values passed in.
void SetHalfWidth(hsScalar hw) { SetWidths(-hw, hw); }
void SetHalfHeight(hsScalar hh) { SetHeights(-hh, hh); }
void SetWidths(hsScalar minW, hsScalar maxW) { fMin.fX = minW; fMax.fX = maxW; InvalidateTransforms(); }
void SetHeights(hsScalar minH, hsScalar maxH) { fMin.fY = minH; fMax.fY = maxH; InvalidateTransforms(); }
void SetWidths(const hsPoint2& w) { SetWidths(w.fX, w.fY); }
void SetHeights(const hsPoint2& h) { SetHeights(h.fX, h.fY); }
void SetView(const hsPoint3& mins, const hsPoint3& maxs) { fMax = maxs; fMin = mins; InvalidateTransforms(); }
// Take a CAMERA SPACE bounding box and sets up the projection to just surround it.
// Note this doesn't swivel the camera around to see the box, it offsets the projection.
// Return false if there isn't a projection that will capture any of the bnd. This
// can be from the bnd being behind the camera.
hsBool SetProjection(const hsBounds3& cBnd);
hsBool SetProjectionWorld(const hsBounds3& wBnd);
// This lets you create insane projection matrices. Note that it won't change the answer on anything like
// GetFov().
void PreMultCameraToNDC(const hsMatrix44& m) { fCameraToNDC = m * GetCameraToNDC(); }
void PostMultCameraToNDC(const hsMatrix44& m) { fCameraToNDC = GetCameraToNDC() * m; }
void Recalc() { InvalidateTransforms(); }
// These do the obvious, constructing a single view that encompasses either the intersection or union
// of what the two views will see. The boolean is performed in axis aligned camera space, which lines
// up nicely with screen space. Note that this only makes sense for two ViewTransforms with identical
// CameraToWorld's (which isn't checked).
hsBool Intersect(const plViewTransform& view);
hsBool Union(const plViewTransform& view);
// Convenience to move from one space to another.
// Screen means pixels - Default is mapping NDC -> [0..1]. Z value of pixel is NDC Z.
// NDC is the ([-1..1],[-1..1],[0..1]) Normalized device coordinates.
// Camera is camera space.
// World is world space.
// Past that, you're on your own.
hsScalarTriple ScreenToNDC(const hsScalarTriple& scrP) const;
hsScalarTriple ScreenToCamera(const hsScalarTriple& scrP) const { return NDCToCamera(ScreenToNDC(scrP)); }
hsPoint3 ScreenToNDC(const hsPoint3& scrP) const { return hsPoint3(ScreenToNDC(hsScalarTriple(scrP))); }
hsPoint3 ScreenToCamera(const hsPoint3& scrP) const { return hsPoint3(ScreenToCamera(hsScalarTriple(scrP))); }
hsPoint3 ScreenToWorld(const hsPoint3& scrP) const { return CameraToWorld(ScreenToCamera(scrP)); }
hsVector3 ScreenToNDC(const hsVector3& scrV) const { return hsVector3(ScreenToNDC(hsScalarTriple(scrV))); }
hsVector3 ScreenToCamera(const hsVector3& scrV) const { return hsVector3(ScreenToCamera(hsScalarTriple(scrV))); }
hsVector3 ScreenToWorld(const hsVector3& scrV) const { return CameraToWorld(ScreenToCamera(scrV)); }
hsScalarTriple NDCToScreen(const hsScalarTriple& ndc) const;
hsScalarTriple NDCToCamera(const hsScalarTriple& ndc) const;
hsPoint3 NDCToScreen(const hsPoint3& ndc) const { return hsPoint3(NDCToScreen(hsScalarTriple(ndc))); }
hsPoint3 NDCToCamera(const hsPoint3& ndc) const { return hsPoint3(NDCToCamera(hsScalarTriple(ndc))); }
hsPoint3 NDCToWorld(const hsPoint3& ndc) const { return CameraToWorld(NDCToCamera(ndc)); }
hsVector3 NDCToScreen(const hsVector3& ndc) const { return hsVector3(NDCToScreen(hsScalarTriple(ndc))); }
hsVector3 NDCToCamera(const hsVector3& ndc) const { return hsVector3(NDCToCamera(hsScalarTriple(ndc))); }
hsVector3 NDCToWorld(const hsVector3& ndc) const { return CameraToWorld(NDCToCamera(ndc)); }
hsScalarTriple CameraToScreen(const hsScalarTriple& camP) const { return NDCToScreen(CameraToNDC(camP)); }
hsScalarTriple CameraToNDC(const hsScalarTriple& camP) const;
hsPoint3 CameraToScreen(const hsPoint3& camP) const { return hsPoint3(CameraToScreen(hsScalarTriple(camP))); }
hsPoint3 CameraToNDC(const hsPoint3& camP) const { return hsPoint3(CameraToNDC(hsScalarTriple(camP))); }
hsPoint3 CameraToWorld(const hsPoint3& camP) const { return GetCameraToWorld() * camP; }
hsVector3 CameraToScreen(const hsVector3& camP) const { return hsVector3(CameraToScreen(hsScalarTriple(camP))); }
hsVector3 CameraToNDC(const hsVector3& camP) const { return hsVector3(CameraToNDC(hsScalarTriple(camP))); }
hsVector3 CameraToWorld(const hsVector3& camV) const { return GetCameraToWorld() * camV; }
hsPoint3 WorldToScreen(const hsPoint3& worldP) const { return (hsPoint3)CameraToScreen(WorldToCamera(worldP)); }
hsPoint3 WorldToNDC(const hsPoint3& worldP) const { return CameraToNDC(WorldToCamera(worldP)); }
hsPoint3 WorldToCamera(const hsPoint3& worldP) const { return GetWorldToCamera() * worldP; }
hsVector3 WorldToScreen(const hsVector3& worldV) const { return (hsVector3)CameraToScreen(WorldToCamera(worldV)); }
hsVector3 WorldToNDC(const hsVector3& worldP) const { return CameraToNDC(WorldToCamera(worldP)); }
hsVector3 WorldToCamera(const hsVector3& worldV) const { return GetWorldToCamera() * worldV; }
hsScalarTriple NDCToMap(const hsScalarTriple& ndcP) const;
hsScalarTriple CameraToMap(const hsScalarTriple& camP) const { return NDCToMap(CameraToNDC(camP)); }
hsPoint3 NDCToMap(const hsPoint3& ndcP) const { return hsPoint3(NDCToMap(hsScalarTriple(ndcP))); }
hsPoint3 CameraToMap(const hsPoint3& camP) const { return hsPoint3(CameraToMap(hsScalarTriple(camP))); }
hsPoint3 WorldToMap(const hsPoint3& worldP) const { return CameraToMap(WorldToCamera(worldP)); }
hsVector3 NDCToMap(const hsVector3& ndcP) const { return hsVector3(NDCToMap(hsScalarTriple(ndcP))); }
hsVector3 CameraToMap(const hsVector3& camP) const { return hsVector3(CameraToMap(hsScalarTriple(camP))); }
hsVector3 WorldToMap(const hsVector3& worldP) const { return CameraToMap(WorldToCamera(worldP)); }
void Read(hsStream* s);
void Write(hsStream* s);
protected:
enum
{
kNone = 0x0,
kOrthogonal = 0x1,
kSymmetric = 0x2,
kCameraToNDCSet = 0x4,
kWorldToNDCSet = 0x8,
kSetMask = kCameraToNDCSet | kWorldToNDCSet,
kViewPortRelative = 0x10
};
mutable UInt32 fFlags;
hsMatrix44 fCameraToWorld;
hsMatrix44 fWorldToCamera;
hsPoint3 fMin; // minTanX/X, minTanY/Y, hither
hsPoint3 fMax; // maxTanX/X, maxTanY/Y, yon
// Screen (or rendertarget) dimensions in pixels.
UInt16 fWidth;
UInt16 fHeight;
// Viewport can be stored as fraction of screen size, so the view transform's viewport
// can be set up independent of the size of the window it's applied to.
hsPoint3 fViewPortX; // min, max, 1 / (max-min)
hsPoint3 fViewPortY; // min, max, 1 / (max-min)
// For arbitrary mapping (unconfined to pixel coords or NDC), just set what you want
// to map to.
hsPoint3 fMapMin;
hsPoint3 fMapMax;
// Some mutables. These are just the calculated from the above (e.g. fov, depth, perspective, etc).
mutable hsMatrix44 fCameraToNDC;
mutable hsMatrix44 fWorldToNDC;
// Have to set a limit here on the smallest the hither plane can be.
static const hsScalar kMinHither;
void ISetCameraToNDC() const;
hsBool ICameraToNDCSet() const { return IHasFlag(kCameraToNDCSet); }
const hsMatrix44& ICheckCameraToNDC() const { if( !ICameraToNDCSet() ) ISetCameraToNDC(); return fCameraToNDC; }
void ISetWorldToNDC() const { fWorldToNDC = GetCameraToNDC() * fWorldToCamera; ISetFlag(kWorldToNDCSet); }
hsBool IWorldToNDCSet() const { return IHasFlag(kWorldToNDCSet); }
const hsMatrix44& ICheckWorldToNDC() const { if( !IWorldToNDCSet() ) ISetWorldToNDC(); return fWorldToNDC; }
hsBool IGetMaxMinsFromBnd(const hsBounds3& bnd, hsPoint3& mins, hsPoint3& maxs) const;
void InvalidateTransforms() { ISetFlag(kCameraToNDCSet|kWorldToNDCSet, false); }
// Flags - generic
hsBool IHasFlag(UInt32 f) const { return 0 != (fFlags & f); }
void ISetFlag(UInt32 f, hsBool on=true) const { if(on) fFlags |= f; else fFlags &= ~f; }
};
#endif // plViewTransform_inc