You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

554 lines
16 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "hsKeys.h"
#include "hsStream.h"
const int hsKeyFrame::kMaxFrameNumber = 65535;
///////////////////////////////////////////////////////////////
void hsPoint3Key::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
fValue.Read(stream);
}
void hsPoint3Key::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
fValue.Write(stream);
}
hsBool hsPoint3Key::CompareValue(hsPoint3Key *key)
{
return hsABS(fValue.fX - key->fValue.fX) < .01 &&
hsABS(fValue.fY - key->fValue.fY) < .01 &&
hsABS(fValue.fZ - key->fValue.fZ) < .01;
}
void hsBezPoint3Key::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
fInTan.Read(stream);
fOutTan.Read(stream);
fValue.Read(stream);
}
void hsBezPoint3Key::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
fInTan.Write(stream);
fOutTan.Write(stream);
fValue.Write(stream);
}
hsBool hsBezPoint3Key::CompareValue(hsBezPoint3Key *key)
{
return hsABS(fValue.fX - key->fValue.fX) < .01 &&
hsABS(fValue.fY - key->fValue.fY) < .01 &&
hsABS(fValue.fZ - key->fValue.fZ) < .01;
}
/////////////////////////////////////////
void hsScalarKey::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
fValue = stream->ReadSwapScalar();
}
void hsScalarKey::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
stream->WriteSwapScalar(fValue);
}
hsBool hsScalarKey::CompareValue(hsScalarKey *key)
{
return fValue == key->fValue;
}
void hsBezScalarKey::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
fInTan = stream->ReadSwapScalar();
fOutTan = stream->ReadSwapScalar();
fValue = stream->ReadSwapScalar();
}
void hsBezScalarKey::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
stream->WriteSwapScalar(fInTan);
stream->WriteSwapScalar(fOutTan);
stream->WriteSwapScalar(fValue);
}
hsBool hsBezScalarKey::CompareValue(hsBezScalarKey *key)
{
return fValue == key->fValue;
}
/////////////////////////////////////////
void hsQuatKey::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
fValue.Read(stream);
}
void hsQuatKey::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
fValue.Write(stream);
}
hsBool hsQuatKey::CompareValue(hsQuatKey *key)
{
return fValue == key->fValue;
}
//////////////////////////////////////////////////////////////////////////////
const hsScalar hsCompressedQuatKey32::kOneOverRootTwo = 0.70710678;
const hsScalar hsCompressedQuatKey32::k10BitScaleRange = 1023 / (2 * kOneOverRootTwo);
void hsCompressedQuatKey32::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
fData = stream->ReadSwap32();
}
void hsCompressedQuatKey32::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
stream->WriteSwap32(fData);
}
hsBool hsCompressedQuatKey32::CompareValue(hsCompressedQuatKey32 *key)
{
return fData == key->fData;
}
// To store a quat in 32 bits, we find which element is the largest and use 2 bits to
// store which one it is. We now know the other 3 elements fall in the range
// of [-kOneOverRootTwo, kOneOverRootTwo]. We scale that range across 10 bits
// and store each. When extracting, we use the fact that the quat was normalized
// to compute the 4th element.
void hsCompressedQuatKey32::SetQuat(hsQuat &q)
{
q.Normalize();
UInt32 maxElement = kCompQuatNukeX;
hsScalar maxVal = hsABS(q.fX);
if (hsABS(q.fY) > maxVal)
{
maxElement = kCompQuatNukeY;
maxVal = hsABS(q.fY);
}
if (hsABS(q.fZ) > maxVal)
{
maxElement = kCompQuatNukeZ;
maxVal = hsABS(q.fZ);
}
if (hsABS(q.fW) > maxVal)
{
maxElement = kCompQuatNukeW;
maxVal = hsABS(q.fW);
}
switch (maxElement)
{
case kCompQuatNukeX:
{
// Invert the quat so that the largest element is positive.
// We need to do this so that later we know to use the positive root.
if (q.fX < 0)
q = -q;
fData = (maxElement << 30) |
(((UInt32)(k10BitScaleRange * (q.fY + kOneOverRootTwo))) << 20) |
(((UInt32)(k10BitScaleRange * (q.fZ + kOneOverRootTwo))) << 10) |
(((UInt32)(k10BitScaleRange * (q.fW + kOneOverRootTwo))));
break;
}
case kCompQuatNukeY:
{
if (q.fY < 0)
q = -q;
fData = (maxElement << 30) |
(((UInt32)(k10BitScaleRange * (q.fX + kOneOverRootTwo))) << 20) |
(((UInt32)(k10BitScaleRange * (q.fZ + kOneOverRootTwo))) << 10) |
(((UInt32)(k10BitScaleRange * (q.fW + kOneOverRootTwo))));
break;
}
case kCompQuatNukeZ:
{
if (q.fZ < 0)
q = -q;
fData = (maxElement << 30) |
(((UInt32)(k10BitScaleRange * (q.fX + kOneOverRootTwo))) << 20) |
(((UInt32)(k10BitScaleRange * (q.fY + kOneOverRootTwo))) << 10) |
(((UInt32)(k10BitScaleRange * (q.fW + kOneOverRootTwo))));
break;
}
case kCompQuatNukeW:
default:
{
if (q.fW < 0)
q = -q;
fData = (maxElement << 30) |
(((UInt32)(k10BitScaleRange * (q.fX + kOneOverRootTwo))) << 20) |
(((UInt32)(k10BitScaleRange * (q.fY + kOneOverRootTwo))) << 10) |
(((UInt32)(k10BitScaleRange * (q.fZ + kOneOverRootTwo))));
break;
}
}
}
void hsCompressedQuatKey32::GetQuat(hsQuat &q)
{
UInt32 maxElement = fData >> 30;
switch (maxElement)
{
case kCompQuatNukeX:
{
q.fY = (fData >> 20 & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fZ = (fData >> 10 & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fW = (fData & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fX = hsSquareRoot(1 - q.fY * q.fY - q.fZ * q.fZ - q.fW *q.fW);
break;
}
case kCompQuatNukeY:
{
q.fX = (fData >> 20 & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fZ = (fData >> 10 & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fW = (fData & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fY = hsSquareRoot(1 - q.fX * q.fX - q.fZ * q.fZ - q.fW *q.fW);
break;
}
case kCompQuatNukeZ:
{
q.fX = (fData >> 20 & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fY = (fData >> 10 & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fW = (fData & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fZ = hsSquareRoot(1 - q.fX * q.fX - q.fY * q.fY - q.fW *q.fW);
break;
}
case kCompQuatNukeW:
default:
{
q.fX = (fData >> 20 & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fY = (fData >> 10 & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fZ = (fData & 0x000003ff) / k10BitScaleRange - kOneOverRootTwo;
q.fW = hsSquareRoot(1 - q.fX * q.fX - q.fY * q.fY - q.fZ * q.fZ);
break;
}
}
}
/////////////////////////////////////////////////////////////////////////////
const hsScalar hsCompressedQuatKey64::kOneOverRootTwo = 0.70710678;
const hsScalar hsCompressedQuatKey64::k20BitScaleRange = 1048575 / (2 * kOneOverRootTwo);
const hsScalar hsCompressedQuatKey64::k21BitScaleRange = 2097151 / (2 * kOneOverRootTwo);
void hsCompressedQuatKey64::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
fData[0] = stream->ReadSwap32();
fData[1] = stream->ReadSwap32();
}
void hsCompressedQuatKey64::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
stream->WriteSwap32(fData[0]);
stream->WriteSwap32(fData[1]);
}
hsBool hsCompressedQuatKey64::CompareValue(hsCompressedQuatKey64 *key)
{
return (fData[0] == key->fData[0]) && (fData[1] == key->fData[1]);
}
// To store a quat in 64 bits, we find which element is the largest and use 2 bits to
// store which one it is. We now know the other 3 elements fall in the range
// of [-kOneOverRootTwo, kOneOverRootTwo]. We scale that range across 20/21/21 bits
// and store each. When extracting, we use the fact that the quat was normalized
// to compute the 4th element.
void hsCompressedQuatKey64::SetQuat(hsQuat &q)
{
q.Normalize();
UInt32 maxElement = kCompQuatNukeX;
hsScalar maxVal = hsABS(q.fX);
if (hsABS(q.fY) > maxVal)
{
maxElement = kCompQuatNukeY;
maxVal = hsABS(q.fY);
}
if (hsABS(q.fZ) > maxVal)
{
maxElement = kCompQuatNukeZ;
maxVal = hsABS(q.fZ);
}
if (hsABS(q.fW) > maxVal)
{
maxElement = kCompQuatNukeW;
maxVal = hsABS(q.fW);
}
switch (maxElement)
{
case kCompQuatNukeX:
{
// Invert the quat so that the largest element is positive.
// We need to do this so that later we know to use the positive root.
if (q.fX < 0)
q = -q;
fData[0] = (maxElement << 30) |
(((UInt32)(k20BitScaleRange * (q.fY + kOneOverRootTwo))) << 10) |
(((UInt32)(k21BitScaleRange * (q.fZ + kOneOverRootTwo))) >> 11);
fData[1] =
(((UInt32)(k21BitScaleRange * (q.fZ + kOneOverRootTwo))) << 21) |
(((UInt32)(k21BitScaleRange * (q.fW + kOneOverRootTwo))));
break;
}
case kCompQuatNukeY:
{
if (q.fY < 0)
q = -q;
fData[0] = (maxElement << 30) |
(((UInt32)(k20BitScaleRange * (q.fX + kOneOverRootTwo))) << 10) |
(((UInt32)(k21BitScaleRange * (q.fZ + kOneOverRootTwo))) >> 11);
fData[1] =
(((UInt32)(k21BitScaleRange * (q.fZ + kOneOverRootTwo))) << 21) |
(((UInt32)(k21BitScaleRange * (q.fW + kOneOverRootTwo))));
break;
}
case kCompQuatNukeZ:
{
if (q.fZ < 0)
q = -q;
fData[0] = (maxElement << 30) |
(((UInt32)(k20BitScaleRange * (q.fX + kOneOverRootTwo))) << 10) |
(((UInt32)(k21BitScaleRange * (q.fY + kOneOverRootTwo))) >> 11);
fData[1] =
(((UInt32)(k21BitScaleRange * (q.fY + kOneOverRootTwo))) << 21) |
(((UInt32)(k21BitScaleRange * (q.fW + kOneOverRootTwo))));
break;
}
case kCompQuatNukeW:
default:
{
if (q.fW < 0)
q = -q;
fData[0] = (maxElement << 30) |
(((UInt32)(k20BitScaleRange * (q.fX + kOneOverRootTwo))) << 10) |
(((UInt32)(k21BitScaleRange * (q.fY + kOneOverRootTwo))) >> 11);
fData[1] =
(((UInt32)(k21BitScaleRange * (q.fY + kOneOverRootTwo))) << 21) |
(((UInt32)(k21BitScaleRange * (q.fZ + kOneOverRootTwo))));
break;
}
}
}
void hsCompressedQuatKey64::GetQuat(hsQuat &q)
{
UInt32 maxElement = fData[0] >> 30;
switch (maxElement)
{
case kCompQuatNukeX:
{
q.fY = ((fData[0] >> 10) & 0x000fffff) / k20BitScaleRange - kOneOverRootTwo;
q.fZ = (((fData[0] & 0x000003ff) << 11) | (fData[1] >> 21)) / k21BitScaleRange - kOneOverRootTwo;
q.fW = (fData[1] & 0x001fffff) / k21BitScaleRange - kOneOverRootTwo;
q.fX = hsSquareRoot(1 - q.fY * q.fY - q.fZ * q.fZ - q.fW *q.fW);
break;
}
case kCompQuatNukeY:
{
q.fX = ((fData[0] >> 10) & 0x000fffff) / k20BitScaleRange - kOneOverRootTwo;
q.fZ = (((fData[0] & 0x000003ff) << 11) | (fData[1] >> 21)) / k21BitScaleRange - kOneOverRootTwo;
q.fW = (fData[1] & 0x001fffff) / k21BitScaleRange - kOneOverRootTwo;
q.fY = hsSquareRoot(1 - q.fX * q.fX - q.fZ * q.fZ - q.fW *q.fW);
break;
}
case kCompQuatNukeZ:
{
q.fX = ((fData[0] >> 10) & 0x000fffff) / k20BitScaleRange - kOneOverRootTwo;
q.fY = (((fData[0] & 0x000003ff) << 11) | (fData[1] >> 21)) / k21BitScaleRange - kOneOverRootTwo;
q.fW = (fData[1] & 0x001fffff) / k21BitScaleRange - kOneOverRootTwo;
q.fZ = hsSquareRoot(1 - q.fX * q.fX - q.fY * q.fY - q.fW *q.fW);
break;
}
case kCompQuatNukeW:
default:
{
q.fX = ((fData[0] >> 10) & 0x000fffff) / k20BitScaleRange - kOneOverRootTwo;
q.fY = (((fData[0] & 0x000003ff) << 11) | (fData[1] >> 21)) / k21BitScaleRange - kOneOverRootTwo;
q.fZ = (fData[1] & 0x001fffff) / k21BitScaleRange - kOneOverRootTwo;
q.fW = hsSquareRoot(1 - q.fX * q.fX - q.fY * q.fY - q.fZ * q.fZ);
break;
}
}
}
/////////////////////////////////////////
// Not a key
//
void hsScaleValue::Read(hsStream *stream)
{
fS.Read(stream);
fQ.Read(stream);
}
void hsScaleValue::Write(hsStream *stream)
{
fS.Write(stream);
fQ.Write(stream);
}
/////////////////////////////////////////
void hsScaleKey::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
fValue.Read(stream);
}
void hsScaleKey::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
fValue.Write(stream);
}
hsBool hsScaleKey::CompareValue(hsScaleKey *key)
{
return fValue == key->fValue;
}
void hsBezScaleKey::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
fInTan.Read(stream);
fOutTan.Read(stream);
fValue.Read(stream);
}
void hsBezScaleKey::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
fInTan.Write(stream);
fOutTan.Write(stream);
fValue.Write(stream);
}
hsBool hsBezScaleKey::CompareValue(hsBezScaleKey *key)
{
return fValue == key->fValue;
}
//////////////////////
void hsG3DSMaxKeyFrame::Set(hsMatrix44 *mat, UInt16 frame)
{
fFrame = frame;
gemAffineParts parts;
decomp_affine(mat->fMap, &parts);
AP_SET(fParts, parts);
}
void hsG3DSMaxKeyFrame::Set(const hsAffineParts &parts, UInt16 frame)
{
fFrame = frame;
fParts = parts;
}
void hsG3DSMaxKeyFrame::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
fParts.Read(stream);
}
void hsG3DSMaxKeyFrame::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
fParts.Write(stream);
}
hsBool hsG3DSMaxKeyFrame::CompareValue(hsG3DSMaxKeyFrame *key)
{
return fParts == key->fParts;
}
/////////////////////////////////////////
void hsMatrix33Key::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
Int32 i,j;
for(i=0;i<3;i++)
for(j=0;j<3;j++)
fValue.fMap[j][i] = stream->ReadSwapScalar();
}
void hsMatrix33Key::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
Int32 i,j;
for(i=0;i<3;i++)
for(j=0;j<3;j++)
stream->WriteSwapScalar(fValue.fMap[j][i]);
}
hsBool hsMatrix33Key::CompareValue(hsMatrix33Key *key)
{
return fValue == key->fValue;
}
/////////////////////////////////////////
void hsMatrix44Key::Read(hsStream *stream)
{
fFrame = stream->ReadSwap16();
fValue.Read(stream);
}
void hsMatrix44Key::Write(hsStream *stream)
{
stream->WriteSwap16(fFrame);
fValue.Write(stream);
}
hsBool hsMatrix44Key::CompareValue(hsMatrix44Key *key)
{
return fValue == key->fValue;
}