You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2086 lines
54 KiB
2086 lines
54 KiB
|
|
/* Dictionary object implementation using a hash table */ |
|
|
|
/* The distribution includes a separate file, Objects/dictnotes.txt, |
|
describing explorations into dictionary design and optimization. |
|
It covers typical dictionary use patterns, the parameters for |
|
tuning dictionaries, and several ideas for possible optimizations. |
|
*/ |
|
|
|
#include "Python.h" |
|
|
|
typedef PyDictEntry dictentry; |
|
typedef PyDictObject dictobject; |
|
|
|
/* Define this out if you don't want conversion statistics on exit. */ |
|
#undef SHOW_CONVERSION_COUNTS |
|
|
|
/* See large comment block below. This must be >= 1. */ |
|
#define PERTURB_SHIFT 5 |
|
|
|
/* |
|
Major subtleties ahead: Most hash schemes depend on having a "good" hash |
|
function, in the sense of simulating randomness. Python doesn't: its most |
|
important hash functions (for strings and ints) are very regular in common |
|
cases: |
|
|
|
>>> map(hash, (0, 1, 2, 3)) |
|
[0, 1, 2, 3] |
|
>>> map(hash, ("namea", "nameb", "namec", "named")) |
|
[-1658398457, -1658398460, -1658398459, -1658398462] |
|
>>> |
|
|
|
This isn't necessarily bad! To the contrary, in a table of size 2**i, taking |
|
the low-order i bits as the initial table index is extremely fast, and there |
|
are no collisions at all for dicts indexed by a contiguous range of ints. |
|
The same is approximately true when keys are "consecutive" strings. So this |
|
gives better-than-random behavior in common cases, and that's very desirable. |
|
|
|
OTOH, when collisions occur, the tendency to fill contiguous slices of the |
|
hash table makes a good collision resolution strategy crucial. Taking only |
|
the last i bits of the hash code is also vulnerable: for example, consider |
|
[i << 16 for i in range(20000)] as a set of keys. Since ints are their own |
|
hash codes, and this fits in a dict of size 2**15, the last 15 bits of every |
|
hash code are all 0: they *all* map to the same table index. |
|
|
|
But catering to unusual cases should not slow the usual ones, so we just take |
|
the last i bits anyway. It's up to collision resolution to do the rest. If |
|
we *usually* find the key we're looking for on the first try (and, it turns |
|
out, we usually do -- the table load factor is kept under 2/3, so the odds |
|
are solidly in our favor), then it makes best sense to keep the initial index |
|
computation dirt cheap. |
|
|
|
The first half of collision resolution is to visit table indices via this |
|
recurrence: |
|
|
|
j = ((5*j) + 1) mod 2**i |
|
|
|
For any initial j in range(2**i), repeating that 2**i times generates each |
|
int in range(2**i) exactly once (see any text on random-number generation for |
|
proof). By itself, this doesn't help much: like linear probing (setting |
|
j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed |
|
order. This would be bad, except that's not the only thing we do, and it's |
|
actually *good* in the common cases where hash keys are consecutive. In an |
|
example that's really too small to make this entirely clear, for a table of |
|
size 2**3 the order of indices is: |
|
|
|
0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating] |
|
|
|
If two things come in at index 5, the first place we look after is index 2, |
|
not 6, so if another comes in at index 6 the collision at 5 didn't hurt it. |
|
Linear probing is deadly in this case because there the fixed probe order |
|
is the *same* as the order consecutive keys are likely to arrive. But it's |
|
extremely unlikely hash codes will follow a 5*j+1 recurrence by accident, |
|
and certain that consecutive hash codes do not. |
|
|
|
The other half of the strategy is to get the other bits of the hash code |
|
into play. This is done by initializing a (unsigned) vrbl "perturb" to the |
|
full hash code, and changing the recurrence to: |
|
|
|
j = (5*j) + 1 + perturb; |
|
perturb >>= PERTURB_SHIFT; |
|
use j % 2**i as the next table index; |
|
|
|
Now the probe sequence depends (eventually) on every bit in the hash code, |
|
and the pseudo-scrambling property of recurring on 5*j+1 is more valuable, |
|
because it quickly magnifies small differences in the bits that didn't affect |
|
the initial index. Note that because perturb is unsigned, if the recurrence |
|
is executed often enough perturb eventually becomes and remains 0. At that |
|
point (very rarely reached) the recurrence is on (just) 5*j+1 again, and |
|
that's certain to find an empty slot eventually (since it generates every int |
|
in range(2**i), and we make sure there's always at least one empty slot). |
|
|
|
Selecting a good value for PERTURB_SHIFT is a balancing act. You want it |
|
small so that the high bits of the hash code continue to affect the probe |
|
sequence across iterations; but you want it large so that in really bad cases |
|
the high-order hash bits have an effect on early iterations. 5 was "the |
|
best" in minimizing total collisions across experiments Tim Peters ran (on |
|
both normal and pathological cases), but 4 and 6 weren't significantly worse. |
|
|
|
Historical: Reimer Behrends contributed the idea of using a polynomial-based |
|
approach, using repeated multiplication by x in GF(2**n) where an irreducible |
|
polynomial for each table size was chosen such that x was a primitive root. |
|
Christian Tismer later extended that to use division by x instead, as an |
|
efficient way to get the high bits of the hash code into play. This scheme |
|
also gave excellent collision statistics, but was more expensive: two |
|
if-tests were required inside the loop; computing "the next" index took about |
|
the same number of operations but without as much potential parallelism |
|
(e.g., computing 5*j can go on at the same time as computing 1+perturb in the |
|
above, and then shifting perturb can be done while the table index is being |
|
masked); and the dictobject struct required a member to hold the table's |
|
polynomial. In Tim's experiments the current scheme ran faster, produced |
|
equally good collision statistics, needed less code & used less memory. |
|
*/ |
|
|
|
/* Object used as dummy key to fill deleted entries */ |
|
static PyObject *dummy; /* Initialized by first call to newdictobject() */ |
|
|
|
/* forward declarations */ |
|
static dictentry * |
|
lookdict_string(dictobject *mp, PyObject *key, long hash); |
|
|
|
#ifdef SHOW_CONVERSION_COUNTS |
|
static long created = 0L; |
|
static long converted = 0L; |
|
|
|
static void |
|
show_counts(void) |
|
{ |
|
fprintf(stderr, "created %ld string dicts\n", created); |
|
fprintf(stderr, "converted %ld to normal dicts\n", converted); |
|
fprintf(stderr, "%.2f%% conversion rate\n", (100.0*converted)/created); |
|
} |
|
#endif |
|
|
|
/* Initialization macros. |
|
There are two ways to create a dict: PyDict_New() is the main C API |
|
function, and the tp_new slot maps to dict_new(). In the latter case we |
|
can save a little time over what PyDict_New does because it's guaranteed |
|
that the PyDictObject struct is already zeroed out. |
|
Everyone except dict_new() should use EMPTY_TO_MINSIZE (unless they have |
|
an excellent reason not to). |
|
*/ |
|
|
|
#define INIT_NONZERO_DICT_SLOTS(mp) do { \ |
|
(mp)->ma_table = (mp)->ma_smalltable; \ |
|
(mp)->ma_mask = PyDict_MINSIZE - 1; \ |
|
} while(0) |
|
|
|
#define EMPTY_TO_MINSIZE(mp) do { \ |
|
memset((mp)->ma_smalltable, 0, sizeof((mp)->ma_smalltable)); \ |
|
(mp)->ma_used = (mp)->ma_fill = 0; \ |
|
INIT_NONZERO_DICT_SLOTS(mp); \ |
|
} while(0) |
|
|
|
PyObject * |
|
PyDict_New(void) |
|
{ |
|
register dictobject *mp; |
|
if (dummy == NULL) { /* Auto-initialize dummy */ |
|
dummy = PyString_FromString("<dummy key>"); |
|
if (dummy == NULL) |
|
return NULL; |
|
#ifdef SHOW_CONVERSION_COUNTS |
|
Py_AtExit(show_counts); |
|
#endif |
|
} |
|
mp = PyObject_GC_New(dictobject, &PyDict_Type); |
|
if (mp == NULL) |
|
return NULL; |
|
EMPTY_TO_MINSIZE(mp); |
|
mp->ma_lookup = lookdict_string; |
|
#ifdef SHOW_CONVERSION_COUNTS |
|
++created; |
|
#endif |
|
_PyObject_GC_TRACK(mp); |
|
return (PyObject *)mp; |
|
} |
|
|
|
/* |
|
The basic lookup function used by all operations. |
|
This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4. |
|
Open addressing is preferred over chaining since the link overhead for |
|
chaining would be substantial (100% with typical malloc overhead). |
|
|
|
The initial probe index is computed as hash mod the table size. Subsequent |
|
probe indices are computed as explained earlier. |
|
|
|
All arithmetic on hash should ignore overflow. |
|
|
|
(The details in this version are due to Tim Peters, building on many past |
|
contributions by Reimer Behrends, Jyrki Alakuijala, Vladimir Marangozov and |
|
Christian Tismer). |
|
|
|
This function must never return NULL; failures are indicated by returning |
|
a dictentry* for which the me_value field is NULL. Exceptions are never |
|
reported by this function, and outstanding exceptions are maintained. |
|
*/ |
|
|
|
static dictentry * |
|
lookdict(dictobject *mp, PyObject *key, register long hash) |
|
{ |
|
register int i; |
|
register unsigned int perturb; |
|
register dictentry *freeslot; |
|
register unsigned int mask = mp->ma_mask; |
|
dictentry *ep0 = mp->ma_table; |
|
register dictentry *ep; |
|
register int restore_error; |
|
register int checked_error; |
|
register int cmp; |
|
PyObject *err_type, *err_value, *err_tb; |
|
PyObject *startkey; |
|
|
|
i = hash & mask; |
|
ep = &ep0[i]; |
|
if (ep->me_key == NULL || ep->me_key == key) |
|
return ep; |
|
|
|
restore_error = checked_error = 0; |
|
if (ep->me_key == dummy) |
|
freeslot = ep; |
|
else { |
|
if (ep->me_hash == hash) { |
|
/* error can't have been checked yet */ |
|
checked_error = 1; |
|
if (PyErr_Occurred()) { |
|
restore_error = 1; |
|
PyErr_Fetch(&err_type, &err_value, &err_tb); |
|
} |
|
startkey = ep->me_key; |
|
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ); |
|
if (cmp < 0) |
|
PyErr_Clear(); |
|
if (ep0 == mp->ma_table && ep->me_key == startkey) { |
|
if (cmp > 0) |
|
goto Done; |
|
} |
|
else { |
|
/* The compare did major nasty stuff to the |
|
* dict: start over. |
|
* XXX A clever adversary could prevent this |
|
* XXX from terminating. |
|
*/ |
|
ep = lookdict(mp, key, hash); |
|
goto Done; |
|
} |
|
} |
|
freeslot = NULL; |
|
} |
|
|
|
/* In the loop, me_key == dummy is by far (factor of 100s) the |
|
least likely outcome, so test for that last. */ |
|
for (perturb = hash; ; perturb >>= PERTURB_SHIFT) { |
|
i = (i << 2) + i + perturb + 1; |
|
ep = &ep0[i & mask]; |
|
if (ep->me_key == NULL) { |
|
if (freeslot != NULL) |
|
ep = freeslot; |
|
break; |
|
} |
|
if (ep->me_key == key) |
|
break; |
|
if (ep->me_hash == hash && ep->me_key != dummy) { |
|
if (!checked_error) { |
|
checked_error = 1; |
|
if (PyErr_Occurred()) { |
|
restore_error = 1; |
|
PyErr_Fetch(&err_type, &err_value, |
|
&err_tb); |
|
} |
|
} |
|
startkey = ep->me_key; |
|
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ); |
|
if (cmp < 0) |
|
PyErr_Clear(); |
|
if (ep0 == mp->ma_table && ep->me_key == startkey) { |
|
if (cmp > 0) |
|
break; |
|
} |
|
else { |
|
/* The compare did major nasty stuff to the |
|
* dict: start over. |
|
* XXX A clever adversary could prevent this |
|
* XXX from terminating. |
|
*/ |
|
ep = lookdict(mp, key, hash); |
|
break; |
|
} |
|
} |
|
else if (ep->me_key == dummy && freeslot == NULL) |
|
freeslot = ep; |
|
} |
|
|
|
Done: |
|
if (restore_error) |
|
PyErr_Restore(err_type, err_value, err_tb); |
|
return ep; |
|
} |
|
|
|
/* |
|
* Hacked up version of lookdict which can assume keys are always strings; |
|
* this assumption allows testing for errors during PyObject_Compare() to |
|
* be dropped; string-string comparisons never raise exceptions. This also |
|
* means we don't need to go through PyObject_Compare(); we can always use |
|
* _PyString_Eq directly. |
|
* |
|
* This is valuable because the general-case error handling in lookdict() is |
|
* expensive, and dicts with pure-string keys are very common. |
|
*/ |
|
static dictentry * |
|
lookdict_string(dictobject *mp, PyObject *key, register long hash) |
|
{ |
|
register int i; |
|
register unsigned int perturb; |
|
register dictentry *freeslot; |
|
register unsigned int mask = mp->ma_mask; |
|
dictentry *ep0 = mp->ma_table; |
|
register dictentry *ep; |
|
|
|
/* Make sure this function doesn't have to handle non-string keys, |
|
including subclasses of str; e.g., one reason to subclass |
|
strings is to override __eq__, and for speed we don't cater to |
|
that here. */ |
|
if (!PyString_CheckExact(key)) { |
|
#ifdef SHOW_CONVERSION_COUNTS |
|
++converted; |
|
#endif |
|
mp->ma_lookup = lookdict; |
|
return lookdict(mp, key, hash); |
|
} |
|
i = hash & mask; |
|
ep = &ep0[i]; |
|
if (ep->me_key == NULL || ep->me_key == key) |
|
return ep; |
|
if (ep->me_key == dummy) |
|
freeslot = ep; |
|
else { |
|
if (ep->me_hash == hash |
|
&& _PyString_Eq(ep->me_key, key)) { |
|
return ep; |
|
} |
|
freeslot = NULL; |
|
} |
|
|
|
/* In the loop, me_key == dummy is by far (factor of 100s) the |
|
least likely outcome, so test for that last. */ |
|
for (perturb = hash; ; perturb >>= PERTURB_SHIFT) { |
|
i = (i << 2) + i + perturb + 1; |
|
ep = &ep0[i & mask]; |
|
if (ep->me_key == NULL) |
|
return freeslot == NULL ? ep : freeslot; |
|
if (ep->me_key == key |
|
|| (ep->me_hash == hash |
|
&& ep->me_key != dummy |
|
&& _PyString_Eq(ep->me_key, key))) |
|
return ep; |
|
if (ep->me_key == dummy && freeslot == NULL) |
|
freeslot = ep; |
|
} |
|
} |
|
|
|
/* |
|
Internal routine to insert a new item into the table. |
|
Used both by the internal resize routine and by the public insert routine. |
|
Eats a reference to key and one to value. |
|
*/ |
|
static void |
|
insertdict(register dictobject *mp, PyObject *key, long hash, PyObject *value) |
|
{ |
|
PyObject *old_value; |
|
register dictentry *ep; |
|
typedef PyDictEntry *(*lookupfunc)(PyDictObject *, PyObject *, long); |
|
|
|
assert(mp->ma_lookup != NULL); |
|
ep = mp->ma_lookup(mp, key, hash); |
|
if (ep->me_value != NULL) { |
|
old_value = ep->me_value; |
|
ep->me_value = value; |
|
Py_DECREF(old_value); /* which **CAN** re-enter */ |
|
Py_DECREF(key); |
|
} |
|
else { |
|
if (ep->me_key == NULL) |
|
mp->ma_fill++; |
|
else |
|
Py_DECREF(ep->me_key); |
|
ep->me_key = key; |
|
ep->me_hash = hash; |
|
ep->me_value = value; |
|
mp->ma_used++; |
|
} |
|
} |
|
|
|
/* |
|
Restructure the table by allocating a new table and reinserting all |
|
items again. When entries have been deleted, the new table may |
|
actually be smaller than the old one. |
|
*/ |
|
static int |
|
dictresize(dictobject *mp, int minused) |
|
{ |
|
int newsize; |
|
dictentry *oldtable, *newtable, *ep; |
|
int i; |
|
int is_oldtable_malloced; |
|
dictentry small_copy[PyDict_MINSIZE]; |
|
|
|
assert(minused >= 0); |
|
|
|
/* Find the smallest table size > minused. */ |
|
for (newsize = PyDict_MINSIZE; |
|
newsize <= minused && newsize > 0; |
|
newsize <<= 1) |
|
; |
|
if (newsize <= 0) { |
|
PyErr_NoMemory(); |
|
return -1; |
|
} |
|
|
|
/* Get space for a new table. */ |
|
oldtable = mp->ma_table; |
|
assert(oldtable != NULL); |
|
is_oldtable_malloced = oldtable != mp->ma_smalltable; |
|
|
|
if (newsize == PyDict_MINSIZE) { |
|
/* A large table is shrinking, or we can't get any smaller. */ |
|
newtable = mp->ma_smalltable; |
|
if (newtable == oldtable) { |
|
if (mp->ma_fill == mp->ma_used) { |
|
/* No dummies, so no point doing anything. */ |
|
return 0; |
|
} |
|
/* We're not going to resize it, but rebuild the |
|
table anyway to purge old dummy entries. |
|
Subtle: This is *necessary* if fill==size, |
|
as lookdict needs at least one virgin slot to |
|
terminate failing searches. If fill < size, it's |
|
merely desirable, as dummies slow searches. */ |
|
assert(mp->ma_fill > mp->ma_used); |
|
memcpy(small_copy, oldtable, sizeof(small_copy)); |
|
oldtable = small_copy; |
|
} |
|
} |
|
else { |
|
newtable = PyMem_NEW(dictentry, newsize); |
|
if (newtable == NULL) { |
|
PyErr_NoMemory(); |
|
return -1; |
|
} |
|
} |
|
|
|
/* Make the dict empty, using the new table. */ |
|
assert(newtable != oldtable); |
|
mp->ma_table = newtable; |
|
mp->ma_mask = newsize - 1; |
|
memset(newtable, 0, sizeof(dictentry) * newsize); |
|
mp->ma_used = 0; |
|
i = mp->ma_fill; |
|
mp->ma_fill = 0; |
|
|
|
/* Copy the data over; this is refcount-neutral for active entries; |
|
dummy entries aren't copied over, of course */ |
|
for (ep = oldtable; i > 0; ep++) { |
|
if (ep->me_value != NULL) { /* active entry */ |
|
--i; |
|
insertdict(mp, ep->me_key, ep->me_hash, ep->me_value); |
|
} |
|
else if (ep->me_key != NULL) { /* dummy entry */ |
|
--i; |
|
assert(ep->me_key == dummy); |
|
Py_DECREF(ep->me_key); |
|
} |
|
/* else key == value == NULL: nothing to do */ |
|
} |
|
|
|
if (is_oldtable_malloced) |
|
PyMem_DEL(oldtable); |
|
return 0; |
|
} |
|
|
|
PyObject * |
|
PyDict_GetItem(PyObject *op, PyObject *key) |
|
{ |
|
long hash; |
|
dictobject *mp = (dictobject *)op; |
|
if (!PyDict_Check(op)) { |
|
return NULL; |
|
} |
|
if (!PyString_CheckExact(key) || |
|
(hash = ((PyStringObject *) key)->ob_shash) == -1) |
|
{ |
|
hash = PyObject_Hash(key); |
|
if (hash == -1) { |
|
PyErr_Clear(); |
|
return NULL; |
|
} |
|
} |
|
return (mp->ma_lookup)(mp, key, hash)->me_value; |
|
} |
|
|
|
/* CAUTION: PyDict_SetItem() must guarantee that it won't resize the |
|
* dictionary if it is merely replacing the value for an existing key. |
|
* This is means that it's safe to loop over a dictionary with |
|
* PyDict_Next() and occasionally replace a value -- but you can't |
|
* insert new keys or remove them. |
|
*/ |
|
int |
|
PyDict_SetItem(register PyObject *op, PyObject *key, PyObject *value) |
|
{ |
|
register dictobject *mp; |
|
register long hash; |
|
register int n_used; |
|
|
|
if (!PyDict_Check(op)) { |
|
PyErr_BadInternalCall(); |
|
return -1; |
|
} |
|
mp = (dictobject *)op; |
|
if (PyString_CheckExact(key)) { |
|
hash = ((PyStringObject *)key)->ob_shash; |
|
if (hash == -1) |
|
hash = PyObject_Hash(key); |
|
} |
|
else { |
|
hash = PyObject_Hash(key); |
|
if (hash == -1) |
|
return -1; |
|
} |
|
assert(mp->ma_fill <= mp->ma_mask); /* at least one empty slot */ |
|
n_used = mp->ma_used; |
|
Py_INCREF(value); |
|
Py_INCREF(key); |
|
insertdict(mp, key, hash, value); |
|
/* If we added a key, we can safely resize. Otherwise just return! |
|
* If fill >= 2/3 size, adjust size. Normally, this doubles or |
|
* quaduples the size, but it's also possible for the dict to shrink |
|
* (if ma_fill is much larger than ma_used, meaning a lot of dict |
|
* keys have been * deleted). |
|
* |
|
* Quadrupling the size improves average dictionary sparseness |
|
* (reducing collisions) at the cost of some memory and iteration |
|
* speed (which loops over every possible entry). It also halves |
|
* the number of expensive resize operations in a growing dictionary. |
|
* |
|
* Very large dictionaries (over 50K items) use doubling instead. |
|
* This may help applications with severe memory constraints. |
|
*/ |
|
if (!(mp->ma_used > n_used && mp->ma_fill*3 >= (mp->ma_mask+1)*2)) |
|
return 0; |
|
return dictresize(mp, mp->ma_used*(mp->ma_used>50000 ? 2 : 4)); |
|
} |
|
|
|
int |
|
PyDict_DelItem(PyObject *op, PyObject *key) |
|
{ |
|
register dictobject *mp; |
|
register long hash; |
|
register dictentry *ep; |
|
PyObject *old_value, *old_key; |
|
|
|
if (!PyDict_Check(op)) { |
|
PyErr_BadInternalCall(); |
|
return -1; |
|
} |
|
if (!PyString_CheckExact(key) || |
|
(hash = ((PyStringObject *) key)->ob_shash) == -1) { |
|
hash = PyObject_Hash(key); |
|
if (hash == -1) |
|
return -1; |
|
} |
|
mp = (dictobject *)op; |
|
ep = (mp->ma_lookup)(mp, key, hash); |
|
if (ep->me_value == NULL) { |
|
PyErr_SetObject(PyExc_KeyError, key); |
|
return -1; |
|
} |
|
old_key = ep->me_key; |
|
Py_INCREF(dummy); |
|
ep->me_key = dummy; |
|
old_value = ep->me_value; |
|
ep->me_value = NULL; |
|
mp->ma_used--; |
|
Py_DECREF(old_value); |
|
Py_DECREF(old_key); |
|
return 0; |
|
} |
|
|
|
void |
|
PyDict_Clear(PyObject *op) |
|
{ |
|
dictobject *mp; |
|
dictentry *ep, *table; |
|
int table_is_malloced; |
|
int fill; |
|
dictentry small_copy[PyDict_MINSIZE]; |
|
#ifdef Py_DEBUG |
|
int i, n; |
|
#endif |
|
|
|
if (!PyDict_Check(op)) |
|
return; |
|
mp = (dictobject *)op; |
|
#ifdef Py_DEBUG |
|
n = mp->ma_mask + 1; |
|
i = 0; |
|
#endif |
|
|
|
table = mp->ma_table; |
|
assert(table != NULL); |
|
table_is_malloced = table != mp->ma_smalltable; |
|
|
|
/* This is delicate. During the process of clearing the dict, |
|
* decrefs can cause the dict to mutate. To avoid fatal confusion |
|
* (voice of experience), we have to make the dict empty before |
|
* clearing the slots, and never refer to anything via mp->xxx while |
|
* clearing. |
|
*/ |
|
fill = mp->ma_fill; |
|
if (table_is_malloced) |
|
EMPTY_TO_MINSIZE(mp); |
|
|
|
else if (fill > 0) { |
|
/* It's a small table with something that needs to be cleared. |
|
* Afraid the only safe way is to copy the dict entries into |
|
* another small table first. |
|
*/ |
|
memcpy(small_copy, table, sizeof(small_copy)); |
|
table = small_copy; |
|
EMPTY_TO_MINSIZE(mp); |
|
} |
|
/* else it's a small table that's already empty */ |
|
|
|
/* Now we can finally clear things. If C had refcounts, we could |
|
* assert that the refcount on table is 1 now, i.e. that this function |
|
* has unique access to it, so decref side-effects can't alter it. |
|
*/ |
|
for (ep = table; fill > 0; ++ep) { |
|
#ifdef Py_DEBUG |
|
assert(i < n); |
|
++i; |
|
#endif |
|
if (ep->me_key) { |
|
--fill; |
|
Py_DECREF(ep->me_key); |
|
Py_XDECREF(ep->me_value); |
|
} |
|
#ifdef Py_DEBUG |
|
else |
|
assert(ep->me_value == NULL); |
|
#endif |
|
} |
|
|
|
if (table_is_malloced) |
|
PyMem_DEL(table); |
|
} |
|
|
|
/* |
|
* Iterate over a dict. Use like so: |
|
* |
|
* int i; |
|
* PyObject *key, *value; |
|
* i = 0; # important! i should not otherwise be changed by you |
|
* while (PyDict_Next(yourdict, &i, &key, &value)) { |
|
* Refer to borrowed references in key and value. |
|
* } |
|
* |
|
* CAUTION: In general, it isn't safe to use PyDict_Next in a loop that |
|
* mutates the dict. One exception: it is safe if the loop merely changes |
|
* the values associated with the keys (but doesn't insert new keys or |
|
* delete keys), via PyDict_SetItem(). |
|
*/ |
|
int |
|
PyDict_Next(PyObject *op, int *ppos, PyObject **pkey, PyObject **pvalue) |
|
{ |
|
int i; |
|
register dictobject *mp; |
|
if (!PyDict_Check(op)) |
|
return 0; |
|
mp = (dictobject *)op; |
|
i = *ppos; |
|
if (i < 0) |
|
return 0; |
|
while (i <= mp->ma_mask && mp->ma_table[i].me_value == NULL) |
|
i++; |
|
*ppos = i+1; |
|
if (i > mp->ma_mask) |
|
return 0; |
|
if (pkey) |
|
*pkey = mp->ma_table[i].me_key; |
|
if (pvalue) |
|
*pvalue = mp->ma_table[i].me_value; |
|
return 1; |
|
} |
|
|
|
/* Methods */ |
|
|
|
static void |
|
dict_dealloc(register dictobject *mp) |
|
{ |
|
register dictentry *ep; |
|
int fill = mp->ma_fill; |
|
PyObject_GC_UnTrack(mp); |
|
Py_TRASHCAN_SAFE_BEGIN(mp) |
|
for (ep = mp->ma_table; fill > 0; ep++) { |
|
if (ep->me_key) { |
|
--fill; |
|
Py_DECREF(ep->me_key); |
|
Py_XDECREF(ep->me_value); |
|
} |
|
} |
|
if (mp->ma_table != mp->ma_smalltable) |
|
PyMem_DEL(mp->ma_table); |
|
mp->ob_type->tp_free((PyObject *)mp); |
|
Py_TRASHCAN_SAFE_END(mp) |
|
} |
|
|
|
static int |
|
dict_print(register dictobject *mp, register FILE *fp, register int flags) |
|
{ |
|
register int i; |
|
register int any; |
|
|
|
i = Py_ReprEnter((PyObject*)mp); |
|
if (i != 0) { |
|
if (i < 0) |
|
return i; |
|
fprintf(fp, "{...}"); |
|
return 0; |
|
} |
|
|
|
fprintf(fp, "{"); |
|
any = 0; |
|
for (i = 0; i <= mp->ma_mask; i++) { |
|
dictentry *ep = mp->ma_table + i; |
|
PyObject *pvalue = ep->me_value; |
|
if (pvalue != NULL) { |
|
/* Prevent PyObject_Repr from deleting value during |
|
key format */ |
|
Py_INCREF(pvalue); |
|
if (any++ > 0) |
|
fprintf(fp, ", "); |
|
if (PyObject_Print((PyObject *)ep->me_key, fp, 0)!=0) { |
|
Py_DECREF(pvalue); |
|
Py_ReprLeave((PyObject*)mp); |
|
return -1; |
|
} |
|
fprintf(fp, ": "); |
|
if (PyObject_Print(pvalue, fp, 0) != 0) { |
|
Py_DECREF(pvalue); |
|
Py_ReprLeave((PyObject*)mp); |
|
return -1; |
|
} |
|
Py_DECREF(pvalue); |
|
} |
|
} |
|
fprintf(fp, "}"); |
|
Py_ReprLeave((PyObject*)mp); |
|
return 0; |
|
} |
|
|
|
static PyObject * |
|
dict_repr(dictobject *mp) |
|
{ |
|
int i; |
|
PyObject *s, *temp, *colon = NULL; |
|
PyObject *pieces = NULL, *result = NULL; |
|
PyObject *key, *value; |
|
|
|
i = Py_ReprEnter((PyObject *)mp); |
|
if (i != 0) { |
|
return i > 0 ? PyString_FromString("{...}") : NULL; |
|
} |
|
|
|
if (mp->ma_used == 0) { |
|
result = PyString_FromString("{}"); |
|
goto Done; |
|
} |
|
|
|
pieces = PyList_New(0); |
|
if (pieces == NULL) |
|
goto Done; |
|
|
|
colon = PyString_FromString(": "); |
|
if (colon == NULL) |
|
goto Done; |
|
|
|
/* Do repr() on each key+value pair, and insert ": " between them. |
|
Note that repr may mutate the dict. */ |
|
i = 0; |
|
while (PyDict_Next((PyObject *)mp, &i, &key, &value)) { |
|
int status; |
|
/* Prevent repr from deleting value during key format. */ |
|
Py_INCREF(value); |
|
s = PyObject_Repr(key); |
|
PyString_Concat(&s, colon); |
|
PyString_ConcatAndDel(&s, PyObject_Repr(value)); |
|
Py_DECREF(value); |
|
if (s == NULL) |
|
goto Done; |
|
status = PyList_Append(pieces, s); |
|
Py_DECREF(s); /* append created a new ref */ |
|
if (status < 0) |
|
goto Done; |
|
} |
|
|
|
/* Add "{}" decorations to the first and last items. */ |
|
assert(PyList_GET_SIZE(pieces) > 0); |
|
s = PyString_FromString("{"); |
|
if (s == NULL) |
|
goto Done; |
|
temp = PyList_GET_ITEM(pieces, 0); |
|
PyString_ConcatAndDel(&s, temp); |
|
PyList_SET_ITEM(pieces, 0, s); |
|
if (s == NULL) |
|
goto Done; |
|
|
|
s = PyString_FromString("}"); |
|
if (s == NULL) |
|
goto Done; |
|
temp = PyList_GET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1); |
|
PyString_ConcatAndDel(&temp, s); |
|
PyList_SET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1, temp); |
|
if (temp == NULL) |
|
goto Done; |
|
|
|
/* Paste them all together with ", " between. */ |
|
s = PyString_FromString(", "); |
|
if (s == NULL) |
|
goto Done; |
|
result = _PyString_Join(s, pieces); |
|
Py_DECREF(s); |
|
|
|
Done: |
|
Py_XDECREF(pieces); |
|
Py_XDECREF(colon); |
|
Py_ReprLeave((PyObject *)mp); |
|
return result; |
|
} |
|
|
|
static int |
|
dict_length(dictobject *mp) |
|
{ |
|
return mp->ma_used; |
|
} |
|
|
|
static PyObject * |
|
dict_subscript(dictobject *mp, register PyObject *key) |
|
{ |
|
PyObject *v; |
|
long hash; |
|
assert(mp->ma_table != NULL); |
|
if (!PyString_CheckExact(key) || |
|
(hash = ((PyStringObject *) key)->ob_shash) == -1) { |
|
hash = PyObject_Hash(key); |
|
if (hash == -1) |
|
return NULL; |
|
} |
|
v = (mp->ma_lookup)(mp, key, hash) -> me_value; |
|
if (v == NULL) |
|
PyErr_SetObject(PyExc_KeyError, key); |
|
else |
|
Py_INCREF(v); |
|
return v; |
|
} |
|
|
|
static int |
|
dict_ass_sub(dictobject *mp, PyObject *v, PyObject *w) |
|
{ |
|
if (w == NULL) |
|
return PyDict_DelItem((PyObject *)mp, v); |
|
else |
|
return PyDict_SetItem((PyObject *)mp, v, w); |
|
} |
|
|
|
static PyMappingMethods dict_as_mapping = { |
|
(inquiry)dict_length, /*mp_length*/ |
|
(binaryfunc)dict_subscript, /*mp_subscript*/ |
|
(objobjargproc)dict_ass_sub, /*mp_ass_subscript*/ |
|
}; |
|
|
|
static PyObject * |
|
dict_keys(register dictobject *mp) |
|
{ |
|
register PyObject *v; |
|
register int i, j, n; |
|
|
|
again: |
|
n = mp->ma_used; |
|
v = PyList_New(n); |
|
if (v == NULL) |
|
return NULL; |
|
if (n != mp->ma_used) { |
|
/* Durnit. The allocations caused the dict to resize. |
|
* Just start over, this shouldn't normally happen. |
|
*/ |
|
Py_DECREF(v); |
|
goto again; |
|
} |
|
for (i = 0, j = 0; i <= mp->ma_mask; i++) { |
|
if (mp->ma_table[i].me_value != NULL) { |
|
PyObject *key = mp->ma_table[i].me_key; |
|
Py_INCREF(key); |
|
PyList_SET_ITEM(v, j, key); |
|
j++; |
|
} |
|
} |
|
return v; |
|
} |
|
|
|
static PyObject * |
|
dict_values(register dictobject *mp) |
|
{ |
|
register PyObject *v; |
|
register int i, j, n; |
|
|
|
again: |
|
n = mp->ma_used; |
|
v = PyList_New(n); |
|
if (v == NULL) |
|
return NULL; |
|
if (n != mp->ma_used) { |
|
/* Durnit. The allocations caused the dict to resize. |
|
* Just start over, this shouldn't normally happen. |
|
*/ |
|
Py_DECREF(v); |
|
goto again; |
|
} |
|
for (i = 0, j = 0; i <= mp->ma_mask; i++) { |
|
if (mp->ma_table[i].me_value != NULL) { |
|
PyObject *value = mp->ma_table[i].me_value; |
|
Py_INCREF(value); |
|
PyList_SET_ITEM(v, j, value); |
|
j++; |
|
} |
|
} |
|
return v; |
|
} |
|
|
|
static PyObject * |
|
dict_items(register dictobject *mp) |
|
{ |
|
register PyObject *v; |
|
register int i, j, n; |
|
PyObject *item, *key, *value; |
|
|
|
/* Preallocate the list of tuples, to avoid allocations during |
|
* the loop over the items, which could trigger GC, which |
|
* could resize the dict. :-( |
|
*/ |
|
again: |
|
n = mp->ma_used; |
|
v = PyList_New(n); |
|
if (v == NULL) |
|
return NULL; |
|
for (i = 0; i < n; i++) { |
|
item = PyTuple_New(2); |
|
if (item == NULL) { |
|
Py_DECREF(v); |
|
return NULL; |
|
} |
|
PyList_SET_ITEM(v, i, item); |
|
} |
|
if (n != mp->ma_used) { |
|
/* Durnit. The allocations caused the dict to resize. |
|
* Just start over, this shouldn't normally happen. |
|
*/ |
|
Py_DECREF(v); |
|
goto again; |
|
} |
|
/* Nothing we do below makes any function calls. */ |
|
for (i = 0, j = 0; i <= mp->ma_mask; i++) { |
|
if (mp->ma_table[i].me_value != NULL) { |
|
key = mp->ma_table[i].me_key; |
|
value = mp->ma_table[i].me_value; |
|
item = PyList_GET_ITEM(v, j); |
|
Py_INCREF(key); |
|
PyTuple_SET_ITEM(item, 0, key); |
|
Py_INCREF(value); |
|
PyTuple_SET_ITEM(item, 1, value); |
|
j++; |
|
} |
|
} |
|
assert(j == n); |
|
return v; |
|
} |
|
|
|
static PyObject * |
|
dict_fromkeys(PyObject *cls, PyObject *args) |
|
{ |
|
PyObject *seq; |
|
PyObject *value = Py_None; |
|
PyObject *it; /* iter(seq) */ |
|
PyObject *key; |
|
PyObject *d; |
|
int status; |
|
|
|
if (!PyArg_UnpackTuple(args, "fromkeys", 1, 2, &seq, &value)) |
|
return NULL; |
|
|
|
d = PyObject_CallObject(cls, NULL); |
|
if (d == NULL) |
|
return NULL; |
|
|
|
it = PyObject_GetIter(seq); |
|
if (it == NULL){ |
|
Py_DECREF(d); |
|
return NULL; |
|
} |
|
|
|
for (;;) { |
|
key = PyIter_Next(it); |
|
if (key == NULL) { |
|
if (PyErr_Occurred()) |
|
goto Fail; |
|
break; |
|
} |
|
status = PyObject_SetItem(d, key, value); |
|
Py_DECREF(key); |
|
if (status < 0) |
|
goto Fail; |
|
} |
|
|
|
Py_DECREF(it); |
|
return d; |
|
|
|
Fail: |
|
Py_DECREF(it); |
|
Py_DECREF(d); |
|
return NULL; |
|
} |
|
|
|
static PyObject * |
|
dict_update(PyObject *mp, PyObject *other) |
|
{ |
|
if (PyDict_Update(mp, other) < 0) |
|
return NULL; |
|
Py_INCREF(Py_None); |
|
return Py_None; |
|
} |
|
|
|
/* Update unconditionally replaces existing items. |
|
Merge has a 3rd argument 'override'; if set, it acts like Update, |
|
otherwise it leaves existing items unchanged. |
|
|
|
PyDict_{Update,Merge} update/merge from a mapping object. |
|
|
|
PyDict_MergeFromSeq2 updates/merges from any iterable object |
|
producing iterable objects of length 2. |
|
*/ |
|
|
|
int |
|
PyDict_MergeFromSeq2(PyObject *d, PyObject *seq2, int override) |
|
{ |
|
PyObject *it; /* iter(seq2) */ |
|
int i; /* index into seq2 of current element */ |
|
PyObject *item; /* seq2[i] */ |
|
PyObject *fast; /* item as a 2-tuple or 2-list */ |
|
|
|
assert(d != NULL); |
|
assert(PyDict_Check(d)); |
|
assert(seq2 != NULL); |
|
|
|
it = PyObject_GetIter(seq2); |
|
if (it == NULL) |
|
return -1; |
|
|
|
for (i = 0; ; ++i) { |
|
PyObject *key, *value; |
|
int n; |
|
|
|
fast = NULL; |
|
item = PyIter_Next(it); |
|
if (item == NULL) { |
|
if (PyErr_Occurred()) |
|
goto Fail; |
|
break; |
|
} |
|
|
|
/* Convert item to sequence, and verify length 2. */ |
|
fast = PySequence_Fast(item, ""); |
|
if (fast == NULL) { |
|
if (PyErr_ExceptionMatches(PyExc_TypeError)) |
|
PyErr_Format(PyExc_TypeError, |
|
"cannot convert dictionary update " |
|
"sequence element #%d to a sequence", |
|
i); |
|
goto Fail; |
|
} |
|
n = PySequence_Fast_GET_SIZE(fast); |
|
if (n != 2) { |
|
PyErr_Format(PyExc_ValueError, |
|
"dictionary update sequence element #%d " |
|
"has length %d; 2 is required", |
|
i, n); |
|
goto Fail; |
|
} |
|
|
|
/* Update/merge with this (key, value) pair. */ |
|
key = PySequence_Fast_GET_ITEM(fast, 0); |
|
value = PySequence_Fast_GET_ITEM(fast, 1); |
|
if (override || PyDict_GetItem(d, key) == NULL) { |
|
int status = PyDict_SetItem(d, key, value); |
|
if (status < 0) |
|
goto Fail; |
|
} |
|
Py_DECREF(fast); |
|
Py_DECREF(item); |
|
} |
|
|
|
i = 0; |
|
goto Return; |
|
Fail: |
|
Py_XDECREF(item); |
|
Py_XDECREF(fast); |
|
i = -1; |
|
Return: |
|
Py_DECREF(it); |
|
return i; |
|
} |
|
|
|
int |
|
PyDict_Update(PyObject *a, PyObject *b) |
|
{ |
|
return PyDict_Merge(a, b, 1); |
|
} |
|
|
|
int |
|
PyDict_Merge(PyObject *a, PyObject *b, int override) |
|
{ |
|
register PyDictObject *mp, *other; |
|
register int i; |
|
dictentry *entry; |
|
|
|
/* We accept for the argument either a concrete dictionary object, |
|
* or an abstract "mapping" object. For the former, we can do |
|
* things quite efficiently. For the latter, we only require that |
|
* PyMapping_Keys() and PyObject_GetItem() be supported. |
|
*/ |
|
if (a == NULL || !PyDict_Check(a) || b == NULL) { |
|
PyErr_BadInternalCall(); |
|
return -1; |
|
} |
|
mp = (dictobject*)a; |
|
if (PyDict_Check(b)) { |
|
other = (dictobject*)b; |
|
if (other == mp || other->ma_used == 0) |
|
/* a.update(a) or a.update({}); nothing to do */ |
|
return 0; |
|
/* Do one big resize at the start, rather than |
|
* incrementally resizing as we insert new items. Expect |
|
* that there will be no (or few) overlapping keys. |
|
*/ |
|
if ((mp->ma_fill + other->ma_used)*3 >= (mp->ma_mask+1)*2) { |
|
if (dictresize(mp, (mp->ma_used + other->ma_used)*2) != 0) |
|
return -1; |
|
} |
|
for (i = 0; i <= other->ma_mask; i++) { |
|
entry = &other->ma_table[i]; |
|
if (entry->me_value != NULL && |
|
(override || |
|
PyDict_GetItem(a, entry->me_key) == NULL)) { |
|
Py_INCREF(entry->me_key); |
|
Py_INCREF(entry->me_value); |
|
insertdict(mp, entry->me_key, entry->me_hash, |
|
entry->me_value); |
|
} |
|
} |
|
} |
|
else { |
|
/* Do it the generic, slower way */ |
|
PyObject *keys = PyMapping_Keys(b); |
|
PyObject *iter; |
|
PyObject *key, *value; |
|
int status; |
|
|
|
if (keys == NULL) |
|
/* Docstring says this is equivalent to E.keys() so |
|
* if E doesn't have a .keys() method we want |
|
* AttributeError to percolate up. Might as well |
|
* do the same for any other error. |
|
*/ |
|
return -1; |
|
|
|
iter = PyObject_GetIter(keys); |
|
Py_DECREF(keys); |
|
if (iter == NULL) |
|
return -1; |
|
|
|
for (key = PyIter_Next(iter); key; key = PyIter_Next(iter)) { |
|
if (!override && PyDict_GetItem(a, key) != NULL) { |
|
Py_DECREF(key); |
|
continue; |
|
} |
|
value = PyObject_GetItem(b, key); |
|
if (value == NULL) { |
|
Py_DECREF(iter); |
|
Py_DECREF(key); |
|
return -1; |
|
} |
|
status = PyDict_SetItem(a, key, value); |
|
Py_DECREF(key); |
|
Py_DECREF(value); |
|
if (status < 0) { |
|
Py_DECREF(iter); |
|
return -1; |
|
} |
|
} |
|
Py_DECREF(iter); |
|
if (PyErr_Occurred()) |
|
/* Iterator completed, via error */ |
|
return -1; |
|
} |
|
return 0; |
|
} |
|
|
|
static PyObject * |
|
dict_copy(register dictobject *mp) |
|
{ |
|
return PyDict_Copy((PyObject*)mp); |
|
} |
|
|
|
PyObject * |
|
PyDict_Copy(PyObject *o) |
|
{ |
|
register dictobject *mp; |
|
register int i; |
|
dictobject *copy; |
|
dictentry *entry; |
|
|
|
if (o == NULL || !PyDict_Check(o)) { |
|
PyErr_BadInternalCall(); |
|
return NULL; |
|
} |
|
mp = (dictobject *)o; |
|
copy = (dictobject *)PyDict_New(); |
|
if (copy == NULL) |
|
return NULL; |
|
if (mp->ma_used > 0) { |
|
if (dictresize(copy, mp->ma_used*2) != 0) |
|
return NULL; |
|
for (i = 0; i <= mp->ma_mask; i++) { |
|
entry = &mp->ma_table[i]; |
|
if (entry->me_value != NULL) { |
|
Py_INCREF(entry->me_key); |
|
Py_INCREF(entry->me_value); |
|
insertdict(copy, entry->me_key, entry->me_hash, |
|
entry->me_value); |
|
} |
|
} |
|
} |
|
return (PyObject *)copy; |
|
} |
|
|
|
int |
|
PyDict_Size(PyObject *mp) |
|
{ |
|
if (mp == NULL || !PyDict_Check(mp)) { |
|
PyErr_BadInternalCall(); |
|
return 0; |
|
} |
|
return ((dictobject *)mp)->ma_used; |
|
} |
|
|
|
PyObject * |
|
PyDict_Keys(PyObject *mp) |
|
{ |
|
if (mp == NULL || !PyDict_Check(mp)) { |
|
PyErr_BadInternalCall(); |
|
return NULL; |
|
} |
|
return dict_keys((dictobject *)mp); |
|
} |
|
|
|
PyObject * |
|
PyDict_Values(PyObject *mp) |
|
{ |
|
if (mp == NULL || !PyDict_Check(mp)) { |
|
PyErr_BadInternalCall(); |
|
return NULL; |
|
} |
|
return dict_values((dictobject *)mp); |
|
} |
|
|
|
PyObject * |
|
PyDict_Items(PyObject *mp) |
|
{ |
|
if (mp == NULL || !PyDict_Check(mp)) { |
|
PyErr_BadInternalCall(); |
|
return NULL; |
|
} |
|
return dict_items((dictobject *)mp); |
|
} |
|
|
|
/* Subroutine which returns the smallest key in a for which b's value |
|
is different or absent. The value is returned too, through the |
|
pval argument. Both are NULL if no key in a is found for which b's status |
|
differs. The refcounts on (and only on) non-NULL *pval and function return |
|
values must be decremented by the caller (characterize() increments them |
|
to ensure that mutating comparison and PyDict_GetItem calls can't delete |
|
them before the caller is done looking at them). */ |
|
|
|
static PyObject * |
|
characterize(dictobject *a, dictobject *b, PyObject **pval) |
|
{ |
|
PyObject *akey = NULL; /* smallest key in a s.t. a[akey] != b[akey] */ |
|
PyObject *aval = NULL; /* a[akey] */ |
|
int i, cmp; |
|
|
|
for (i = 0; i <= a->ma_mask; i++) { |
|
PyObject *thiskey, *thisaval, *thisbval; |
|
if (a->ma_table[i].me_value == NULL) |
|
continue; |
|
thiskey = a->ma_table[i].me_key; |
|
Py_INCREF(thiskey); /* keep alive across compares */ |
|
if (akey != NULL) { |
|
cmp = PyObject_RichCompareBool(akey, thiskey, Py_LT); |
|
if (cmp < 0) { |
|
Py_DECREF(thiskey); |
|
goto Fail; |
|
} |
|
if (cmp > 0 || |
|
i > a->ma_mask || |
|
a->ma_table[i].me_value == NULL) |
|
{ |
|
/* Not the *smallest* a key; or maybe it is |
|
* but the compare shrunk the dict so we can't |
|
* find its associated value anymore; or |
|
* maybe it is but the compare deleted the |
|
* a[thiskey] entry. |
|
*/ |
|
Py_DECREF(thiskey); |
|
continue; |
|
} |
|
} |
|
|
|
/* Compare a[thiskey] to b[thiskey]; cmp <- true iff equal. */ |
|
thisaval = a->ma_table[i].me_value; |
|
assert(thisaval); |
|
Py_INCREF(thisaval); /* keep alive */ |
|
thisbval = PyDict_GetItem((PyObject *)b, thiskey); |
|
if (thisbval == NULL) |
|
cmp = 0; |
|
else { |
|
/* both dicts have thiskey: same values? */ |
|
cmp = PyObject_RichCompareBool( |
|
thisaval, thisbval, Py_EQ); |
|
if (cmp < 0) { |
|
Py_DECREF(thiskey); |
|
Py_DECREF(thisaval); |
|
goto Fail; |
|
} |
|
} |
|
if (cmp == 0) { |
|
/* New winner. */ |
|
Py_XDECREF(akey); |
|
Py_XDECREF(aval); |
|
akey = thiskey; |
|
aval = thisaval; |
|
} |
|
else { |
|
Py_DECREF(thiskey); |
|
Py_DECREF(thisaval); |
|
} |
|
} |
|
*pval = aval; |
|
return akey; |
|
|
|
Fail: |
|
Py_XDECREF(akey); |
|
Py_XDECREF(aval); |
|
*pval = NULL; |
|
return NULL; |
|
} |
|
|
|
static int |
|
dict_compare(dictobject *a, dictobject *b) |
|
{ |
|
PyObject *adiff, *bdiff, *aval, *bval; |
|
int res; |
|
|
|
/* Compare lengths first */ |
|
if (a->ma_used < b->ma_used) |
|
return -1; /* a is shorter */ |
|
else if (a->ma_used > b->ma_used) |
|
return 1; /* b is shorter */ |
|
|
|
/* Same length -- check all keys */ |
|
bdiff = bval = NULL; |
|
adiff = characterize(a, b, &aval); |
|
if (adiff == NULL) { |
|
assert(!aval); |
|
/* Either an error, or a is a subset with the same length so |
|
* must be equal. |
|
*/ |
|
res = PyErr_Occurred() ? -1 : 0; |
|
goto Finished; |
|
} |
|
bdiff = characterize(b, a, &bval); |
|
if (bdiff == NULL && PyErr_Occurred()) { |
|
assert(!bval); |
|
res = -1; |
|
goto Finished; |
|
} |
|
res = 0; |
|
if (bdiff) { |
|
/* bdiff == NULL "should be" impossible now, but perhaps |
|
* the last comparison done by the characterize() on a had |
|
* the side effect of making the dicts equal! |
|
*/ |
|
res = PyObject_Compare(adiff, bdiff); |
|
} |
|
if (res == 0 && bval != NULL) |
|
res = PyObject_Compare(aval, bval); |
|
|
|
Finished: |
|
Py_XDECREF(adiff); |
|
Py_XDECREF(bdiff); |
|
Py_XDECREF(aval); |
|
Py_XDECREF(bval); |
|
return res; |
|
} |
|
|
|
/* Return 1 if dicts equal, 0 if not, -1 if error. |
|
* Gets out as soon as any difference is detected. |
|
* Uses only Py_EQ comparison. |
|
*/ |
|
static int |
|
dict_equal(dictobject *a, dictobject *b) |
|
{ |
|
int i; |
|
|
|
if (a->ma_used != b->ma_used) |
|
/* can't be equal if # of entries differ */ |
|
return 0; |
|
|
|
/* Same # of entries -- check all of 'em. Exit early on any diff. */ |
|
for (i = 0; i <= a->ma_mask; i++) { |
|
PyObject *aval = a->ma_table[i].me_value; |
|
if (aval != NULL) { |
|
int cmp; |
|
PyObject *bval; |
|
PyObject *key = a->ma_table[i].me_key; |
|
/* temporarily bump aval's refcount to ensure it stays |
|
alive until we're done with it */ |
|
Py_INCREF(aval); |
|
bval = PyDict_GetItem((PyObject *)b, key); |
|
if (bval == NULL) { |
|
Py_DECREF(aval); |
|
return 0; |
|
} |
|
cmp = PyObject_RichCompareBool(aval, bval, Py_EQ); |
|
Py_DECREF(aval); |
|
if (cmp <= 0) /* error or not equal */ |
|
return cmp; |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
static PyObject * |
|
dict_richcompare(PyObject *v, PyObject *w, int op) |
|
{ |
|
int cmp; |
|
PyObject *res; |
|
|
|
if (!PyDict_Check(v) || !PyDict_Check(w)) { |
|
res = Py_NotImplemented; |
|
} |
|
else if (op == Py_EQ || op == Py_NE) { |
|
cmp = dict_equal((dictobject *)v, (dictobject *)w); |
|
if (cmp < 0) |
|
return NULL; |
|
res = (cmp == (op == Py_EQ)) ? Py_True : Py_False; |
|
} |
|
else |
|
res = Py_NotImplemented; |
|
Py_INCREF(res); |
|
return res; |
|
} |
|
|
|
static PyObject * |
|
dict_has_key(register dictobject *mp, PyObject *key) |
|
{ |
|
long hash; |
|
register long ok; |
|
if (!PyString_CheckExact(key) || |
|
(hash = ((PyStringObject *) key)->ob_shash) == -1) { |
|
hash = PyObject_Hash(key); |
|
if (hash == -1) |
|
return NULL; |
|
} |
|
ok = (mp->ma_lookup)(mp, key, hash)->me_value != NULL; |
|
return PyBool_FromLong(ok); |
|
} |
|
|
|
static PyObject * |
|
dict_get(register dictobject *mp, PyObject *args) |
|
{ |
|
PyObject *key; |
|
PyObject *failobj = Py_None; |
|
PyObject *val = NULL; |
|
long hash; |
|
|
|
if (!PyArg_UnpackTuple(args, "get", 1, 2, &key, &failobj)) |
|
return NULL; |
|
|
|
if (!PyString_CheckExact(key) || |
|
(hash = ((PyStringObject *) key)->ob_shash) == -1) { |
|
hash = PyObject_Hash(key); |
|
if (hash == -1) |
|
return NULL; |
|
} |
|
val = (mp->ma_lookup)(mp, key, hash)->me_value; |
|
|
|
if (val == NULL) |
|
val = failobj; |
|
Py_INCREF(val); |
|
return val; |
|
} |
|
|
|
|
|
static PyObject * |
|
dict_setdefault(register dictobject *mp, PyObject *args) |
|
{ |
|
PyObject *key; |
|
PyObject *failobj = Py_None; |
|
PyObject *val = NULL; |
|
long hash; |
|
|
|
if (!PyArg_UnpackTuple(args, "setdefault", 1, 2, &key, &failobj)) |
|
return NULL; |
|
|
|
if (!PyString_CheckExact(key) || |
|
(hash = ((PyStringObject *) key)->ob_shash) == -1) { |
|
hash = PyObject_Hash(key); |
|
if (hash == -1) |
|
return NULL; |
|
} |
|
val = (mp->ma_lookup)(mp, key, hash)->me_value; |
|
if (val == NULL) { |
|
val = failobj; |
|
if (PyDict_SetItem((PyObject*)mp, key, failobj)) |
|
val = NULL; |
|
} |
|
Py_XINCREF(val); |
|
return val; |
|
} |
|
|
|
|
|
static PyObject * |
|
dict_clear(register dictobject *mp) |
|
{ |
|
PyDict_Clear((PyObject *)mp); |
|
Py_INCREF(Py_None); |
|
return Py_None; |
|
} |
|
|
|
static PyObject * |
|
dict_pop(dictobject *mp, PyObject *args) |
|
{ |
|
long hash; |
|
dictentry *ep; |
|
PyObject *old_value, *old_key; |
|
PyObject *key, *deflt = NULL; |
|
|
|
if(!PyArg_UnpackTuple(args, "pop", 1, 2, &key, &deflt)) |
|
return NULL; |
|
if (mp->ma_used == 0) { |
|
if (deflt) { |
|
Py_INCREF(deflt); |
|
return deflt; |
|
} |
|
PyErr_SetString(PyExc_KeyError, |
|
"pop(): dictionary is empty"); |
|
return NULL; |
|
} |
|
if (!PyString_CheckExact(key) || |
|
(hash = ((PyStringObject *) key)->ob_shash) == -1) { |
|
hash = PyObject_Hash(key); |
|
if (hash == -1) |
|
return NULL; |
|
} |
|
ep = (mp->ma_lookup)(mp, key, hash); |
|
if (ep->me_value == NULL) { |
|
if (deflt) { |
|
Py_INCREF(deflt); |
|
return deflt; |
|
} |
|
PyErr_SetObject(PyExc_KeyError, key); |
|
return NULL; |
|
} |
|
old_key = ep->me_key; |
|
Py_INCREF(dummy); |
|
ep->me_key = dummy; |
|
old_value = ep->me_value; |
|
ep->me_value = NULL; |
|
mp->ma_used--; |
|
Py_DECREF(old_key); |
|
return old_value; |
|
} |
|
|
|
static PyObject * |
|
dict_popitem(dictobject *mp) |
|
{ |
|
int i = 0; |
|
dictentry *ep; |
|
PyObject *res; |
|
|
|
/* Allocate the result tuple before checking the size. Believe it |
|
* or not, this allocation could trigger a garbage collection which |
|
* could empty the dict, so if we checked the size first and that |
|
* happened, the result would be an infinite loop (searching for an |
|
* entry that no longer exists). Note that the usual popitem() |
|
* idiom is "while d: k, v = d.popitem()". so needing to throw the |
|
* tuple away if the dict *is* empty isn't a significant |
|
* inefficiency -- possible, but unlikely in practice. |
|
*/ |
|
res = PyTuple_New(2); |
|
if (res == NULL) |
|
return NULL; |
|
if (mp->ma_used == 0) { |
|
Py_DECREF(res); |
|
PyErr_SetString(PyExc_KeyError, |
|
"popitem(): dictionary is empty"); |
|
return NULL; |
|
} |
|
/* Set ep to "the first" dict entry with a value. We abuse the hash |
|
* field of slot 0 to hold a search finger: |
|
* If slot 0 has a value, use slot 0. |
|
* Else slot 0 is being used to hold a search finger, |
|
* and we use its hash value as the first index to look. |
|
*/ |
|
ep = &mp->ma_table[0]; |
|
if (ep->me_value == NULL) { |
|
i = (int)ep->me_hash; |
|
/* The hash field may be a real hash value, or it may be a |
|
* legit search finger, or it may be a once-legit search |
|
* finger that's out of bounds now because it wrapped around |
|
* or the table shrunk -- simply make sure it's in bounds now. |
|
*/ |
|
if (i > mp->ma_mask || i < 1) |
|
i = 1; /* skip slot 0 */ |
|
while ((ep = &mp->ma_table[i])->me_value == NULL) { |
|
i++; |
|
if (i > mp->ma_mask) |
|
i = 1; |
|
} |
|
} |
|
PyTuple_SET_ITEM(res, 0, ep->me_key); |
|
PyTuple_SET_ITEM(res, 1, ep->me_value); |
|
Py_INCREF(dummy); |
|
ep->me_key = dummy; |
|
ep->me_value = NULL; |
|
mp->ma_used--; |
|
assert(mp->ma_table[0].me_value == NULL); |
|
mp->ma_table[0].me_hash = i + 1; /* next place to start */ |
|
return res; |
|
} |
|
|
|
static int |
|
dict_traverse(PyObject *op, visitproc visit, void *arg) |
|
{ |
|
int i = 0, err; |
|
PyObject *pk; |
|
PyObject *pv; |
|
|
|
while (PyDict_Next(op, &i, &pk, &pv)) { |
|
err = visit(pk, arg); |
|
if (err) |
|
return err; |
|
err = visit(pv, arg); |
|
if (err) |
|
return err; |
|
} |
|
return 0; |
|
} |
|
|
|
static int |
|
dict_tp_clear(PyObject *op) |
|
{ |
|
PyDict_Clear(op); |
|
return 0; |
|
} |
|
|
|
|
|
static PyObject *dictiter_new(dictobject *, binaryfunc); |
|
|
|
static PyObject * |
|
select_key(PyObject *key, PyObject *value) |
|
{ |
|
Py_INCREF(key); |
|
return key; |
|
} |
|
|
|
static PyObject * |
|
select_value(PyObject *key, PyObject *value) |
|
{ |
|
Py_INCREF(value); |
|
return value; |
|
} |
|
|
|
static PyObject * |
|
select_item(PyObject *key, PyObject *value) |
|
{ |
|
PyObject *res = PyTuple_New(2); |
|
|
|
if (res != NULL) { |
|
Py_INCREF(key); |
|
Py_INCREF(value); |
|
PyTuple_SET_ITEM(res, 0, key); |
|
PyTuple_SET_ITEM(res, 1, value); |
|
} |
|
return res; |
|
} |
|
|
|
static PyObject * |
|
dict_iterkeys(dictobject *dict) |
|
{ |
|
return dictiter_new(dict, select_key); |
|
} |
|
|
|
static PyObject * |
|
dict_itervalues(dictobject *dict) |
|
{ |
|
return dictiter_new(dict, select_value); |
|
} |
|
|
|
static PyObject * |
|
dict_iteritems(dictobject *dict) |
|
{ |
|
return dictiter_new(dict, select_item); |
|
} |
|
|
|
|
|
PyDoc_STRVAR(has_key__doc__, |
|
"D.has_key(k) -> True if D has a key k, else False"); |
|
|
|
PyDoc_STRVAR(get__doc__, |
|
"D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None."); |
|
|
|
PyDoc_STRVAR(setdefault_doc__, |
|
"D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D"); |
|
|
|
PyDoc_STRVAR(pop__doc__, |
|
"D.pop(k[,d]) -> v, remove specified key and return the corresponding value\n\ |
|
If key is not found, d is returned if given, otherwise KeyError is raised"); |
|
|
|
PyDoc_STRVAR(popitem__doc__, |
|
"D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\ |
|
2-tuple; but raise KeyError if D is empty"); |
|
|
|
PyDoc_STRVAR(keys__doc__, |
|
"D.keys() -> list of D's keys"); |
|
|
|
PyDoc_STRVAR(items__doc__, |
|
"D.items() -> list of D's (key, value) pairs, as 2-tuples"); |
|
|
|
PyDoc_STRVAR(values__doc__, |
|
"D.values() -> list of D's values"); |
|
|
|
PyDoc_STRVAR(update__doc__, |
|
"D.update(E) -> None. Update D from E: for k in E.keys(): D[k] = E[k]"); |
|
|
|
PyDoc_STRVAR(fromkeys__doc__, |
|
"dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.\n\ |
|
v defaults to None."); |
|
|
|
PyDoc_STRVAR(clear__doc__, |
|
"D.clear() -> None. Remove all items from D."); |
|
|
|
PyDoc_STRVAR(copy__doc__, |
|
"D.copy() -> a shallow copy of D"); |
|
|
|
PyDoc_STRVAR(iterkeys__doc__, |
|
"D.iterkeys() -> an iterator over the keys of D"); |
|
|
|
PyDoc_STRVAR(itervalues__doc__, |
|
"D.itervalues() -> an iterator over the values of D"); |
|
|
|
PyDoc_STRVAR(iteritems__doc__, |
|
"D.iteritems() -> an iterator over the (key, value) items of D"); |
|
|
|
static PyMethodDef mapp_methods[] = { |
|
{"has_key", (PyCFunction)dict_has_key, METH_O, |
|
has_key__doc__}, |
|
{"get", (PyCFunction)dict_get, METH_VARARGS, |
|
get__doc__}, |
|
{"setdefault", (PyCFunction)dict_setdefault, METH_VARARGS, |
|
setdefault_doc__}, |
|
{"pop", (PyCFunction)dict_pop, METH_VARARGS, |
|
pop__doc__}, |
|
{"popitem", (PyCFunction)dict_popitem, METH_NOARGS, |
|
popitem__doc__}, |
|
{"keys", (PyCFunction)dict_keys, METH_NOARGS, |
|
keys__doc__}, |
|
{"items", (PyCFunction)dict_items, METH_NOARGS, |
|
items__doc__}, |
|
{"values", (PyCFunction)dict_values, METH_NOARGS, |
|
values__doc__}, |
|
{"update", (PyCFunction)dict_update, METH_O, |
|
update__doc__}, |
|
{"fromkeys", (PyCFunction)dict_fromkeys, METH_VARARGS | METH_CLASS, |
|
fromkeys__doc__}, |
|
{"clear", (PyCFunction)dict_clear, METH_NOARGS, |
|
clear__doc__}, |
|
{"copy", (PyCFunction)dict_copy, METH_NOARGS, |
|
copy__doc__}, |
|
{"iterkeys", (PyCFunction)dict_iterkeys, METH_NOARGS, |
|
iterkeys__doc__}, |
|
{"itervalues", (PyCFunction)dict_itervalues, METH_NOARGS, |
|
itervalues__doc__}, |
|
{"iteritems", (PyCFunction)dict_iteritems, METH_NOARGS, |
|
iteritems__doc__}, |
|
{NULL, NULL} /* sentinel */ |
|
}; |
|
|
|
static int |
|
dict_contains(dictobject *mp, PyObject *key) |
|
{ |
|
long hash; |
|
|
|
if (!PyString_CheckExact(key) || |
|
(hash = ((PyStringObject *) key)->ob_shash) == -1) { |
|
hash = PyObject_Hash(key); |
|
if (hash == -1) |
|
return -1; |
|
} |
|
return (mp->ma_lookup)(mp, key, hash)->me_value != NULL; |
|
} |
|
|
|
/* Hack to implement "key in dict" */ |
|
static PySequenceMethods dict_as_sequence = { |
|
0, /* sq_length */ |
|
0, /* sq_concat */ |
|
0, /* sq_repeat */ |
|
0, /* sq_item */ |
|
0, /* sq_slice */ |
|
0, /* sq_ass_item */ |
|
0, /* sq_ass_slice */ |
|
(objobjproc)dict_contains, /* sq_contains */ |
|
0, /* sq_inplace_concat */ |
|
0, /* sq_inplace_repeat */ |
|
}; |
|
|
|
static PyObject * |
|
dict_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
|
{ |
|
PyObject *self; |
|
|
|
assert(type != NULL && type->tp_alloc != NULL); |
|
self = type->tp_alloc(type, 0); |
|
if (self != NULL) { |
|
PyDictObject *d = (PyDictObject *)self; |
|
/* It's guaranteed that tp->alloc zeroed out the struct. */ |
|
assert(d->ma_table == NULL && d->ma_fill == 0 && d->ma_used == 0); |
|
INIT_NONZERO_DICT_SLOTS(d); |
|
d->ma_lookup = lookdict_string; |
|
#ifdef SHOW_CONVERSION_COUNTS |
|
++created; |
|
#endif |
|
} |
|
return self; |
|
} |
|
|
|
static int |
|
dict_init(PyObject *self, PyObject *args, PyObject *kwds) |
|
{ |
|
PyObject *arg = NULL; |
|
int result = 0; |
|
|
|
if (!PyArg_UnpackTuple(args, "dict", 0, 1, &arg)) |
|
result = -1; |
|
|
|
else if (arg != NULL) { |
|
if (PyObject_HasAttrString(arg, "keys")) |
|
result = PyDict_Merge(self, arg, 1); |
|
else |
|
result = PyDict_MergeFromSeq2(self, arg, 1); |
|
} |
|
if (result == 0 && kwds != NULL) |
|
result = PyDict_Merge(self, kwds, 1); |
|
return result; |
|
} |
|
|
|
static long |
|
dict_nohash(PyObject *self) |
|
{ |
|
PyErr_SetString(PyExc_TypeError, "dict objects are unhashable"); |
|
return -1; |
|
} |
|
|
|
static PyObject * |
|
dict_iter(dictobject *dict) |
|
{ |
|
return dictiter_new(dict, select_key); |
|
} |
|
|
|
PyDoc_STRVAR(dictionary_doc, |
|
"dict() -> new empty dictionary.\n" |
|
"dict(mapping) -> new dictionary initialized from a mapping object's\n" |
|
" (key, value) pairs.\n" |
|
"dict(seq) -> new dictionary initialized as if via:\n" |
|
" d = {}\n" |
|
" for k, v in seq:\n" |
|
" d[k] = v\n" |
|
"dict(**kwargs) -> new dictionary initialized with the name=value pairs\n" |
|
" in the keyword argument list. For example: dict(one=1, two=2)"); |
|
|
|
PyTypeObject PyDict_Type = { |
|
PyObject_HEAD_INIT(&PyType_Type) |
|
0, |
|
"dict", |
|
sizeof(dictobject), |
|
0, |
|
(destructor)dict_dealloc, /* tp_dealloc */ |
|
(printfunc)dict_print, /* tp_print */ |
|
0, /* tp_getattr */ |
|
0, /* tp_setattr */ |
|
(cmpfunc)dict_compare, /* tp_compare */ |
|
(reprfunc)dict_repr, /* tp_repr */ |
|
0, /* tp_as_number */ |
|
&dict_as_sequence, /* tp_as_sequence */ |
|
&dict_as_mapping, /* tp_as_mapping */ |
|
dict_nohash, /* tp_hash */ |
|
0, /* tp_call */ |
|
0, /* tp_str */ |
|
PyObject_GenericGetAttr, /* tp_getattro */ |
|
0, /* tp_setattro */ |
|
0, /* tp_as_buffer */ |
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | |
|
Py_TPFLAGS_BASETYPE, /* tp_flags */ |
|
dictionary_doc, /* tp_doc */ |
|
(traverseproc)dict_traverse, /* tp_traverse */ |
|
(inquiry)dict_tp_clear, /* tp_clear */ |
|
dict_richcompare, /* tp_richcompare */ |
|
0, /* tp_weaklistoffset */ |
|
(getiterfunc)dict_iter, /* tp_iter */ |
|
0, /* tp_iternext */ |
|
mapp_methods, /* tp_methods */ |
|
0, /* tp_members */ |
|
0, /* tp_getset */ |
|
0, /* tp_base */ |
|
0, /* tp_dict */ |
|
0, /* tp_descr_get */ |
|
0, /* tp_descr_set */ |
|
0, /* tp_dictoffset */ |
|
(initproc)dict_init, /* tp_init */ |
|
PyType_GenericAlloc, /* tp_alloc */ |
|
dict_new, /* tp_new */ |
|
PyObject_GC_Del, /* tp_free */ |
|
}; |
|
|
|
/* For backward compatibility with old dictionary interface */ |
|
|
|
PyObject * |
|
PyDict_GetItemString(PyObject *v, const char *key) |
|
{ |
|
PyObject *kv, *rv; |
|
kv = PyString_FromString(key); |
|
if (kv == NULL) |
|
return NULL; |
|
rv = PyDict_GetItem(v, kv); |
|
Py_DECREF(kv); |
|
return rv; |
|
} |
|
|
|
int |
|
PyDict_SetItemString(PyObject *v, const char *key, PyObject *item) |
|
{ |
|
PyObject *kv; |
|
int err; |
|
kv = PyString_FromString(key); |
|
if (kv == NULL) |
|
return -1; |
|
PyString_InternInPlace(&kv); /* XXX Should we really? */ |
|
err = PyDict_SetItem(v, kv, item); |
|
Py_DECREF(kv); |
|
return err; |
|
} |
|
|
|
int |
|
PyDict_DelItemString(PyObject *v, const char *key) |
|
{ |
|
PyObject *kv; |
|
int err; |
|
kv = PyString_FromString(key); |
|
if (kv == NULL) |
|
return -1; |
|
err = PyDict_DelItem(v, kv); |
|
Py_DECREF(kv); |
|
return err; |
|
} |
|
|
|
/* Dictionary iterator type */ |
|
|
|
extern PyTypeObject PyDictIter_Type; /* Forward */ |
|
|
|
typedef struct { |
|
PyObject_HEAD |
|
dictobject *di_dict; /* Set to NULL when iterator is exhausted */ |
|
int di_used; |
|
int di_pos; |
|
binaryfunc di_select; |
|
} dictiterobject; |
|
|
|
static PyObject * |
|
dictiter_new(dictobject *dict, binaryfunc select) |
|
{ |
|
dictiterobject *di; |
|
di = PyObject_New(dictiterobject, &PyDictIter_Type); |
|
if (di == NULL) |
|
return NULL; |
|
Py_INCREF(dict); |
|
di->di_dict = dict; |
|
di->di_used = dict->ma_used; |
|
di->di_pos = 0; |
|
di->di_select = select; |
|
return (PyObject *)di; |
|
} |
|
|
|
static void |
|
dictiter_dealloc(dictiterobject *di) |
|
{ |
|
Py_XDECREF(di->di_dict); |
|
PyObject_Del(di); |
|
} |
|
|
|
static PyObject *dictiter_iternext(dictiterobject *di) |
|
{ |
|
PyObject *key, *value; |
|
|
|
if (di->di_dict == NULL) |
|
return NULL; |
|
|
|
if (di->di_used != di->di_dict->ma_used) { |
|
PyErr_SetString(PyExc_RuntimeError, |
|
"dictionary changed size during iteration"); |
|
di->di_used = -1; /* Make this state sticky */ |
|
return NULL; |
|
} |
|
if (PyDict_Next((PyObject *)(di->di_dict), &di->di_pos, &key, &value)) |
|
return (*di->di_select)(key, value); |
|
|
|
Py_DECREF(di->di_dict); |
|
di->di_dict = NULL; |
|
return NULL; |
|
} |
|
|
|
PyTypeObject PyDictIter_Type = { |
|
PyObject_HEAD_INIT(&PyType_Type) |
|
0, /* ob_size */ |
|
"dictionary-iterator", /* tp_name */ |
|
sizeof(dictiterobject), /* tp_basicsize */ |
|
0, /* tp_itemsize */ |
|
/* methods */ |
|
(destructor)dictiter_dealloc, /* tp_dealloc */ |
|
0, /* tp_print */ |
|
0, /* tp_getattr */ |
|
0, /* tp_setattr */ |
|
0, /* tp_compare */ |
|
0, /* tp_repr */ |
|
0, /* tp_as_number */ |
|
0, /* tp_as_sequence */ |
|
0, /* tp_as_mapping */ |
|
0, /* tp_hash */ |
|
0, /* tp_call */ |
|
0, /* tp_str */ |
|
PyObject_GenericGetAttr, /* tp_getattro */ |
|
0, /* tp_setattro */ |
|
0, /* tp_as_buffer */ |
|
Py_TPFLAGS_DEFAULT, /* tp_flags */ |
|
0, /* tp_doc */ |
|
0, /* tp_traverse */ |
|
0, /* tp_clear */ |
|
0, /* tp_richcompare */ |
|
0, /* tp_weaklistoffset */ |
|
PyObject_SelfIter, /* tp_iter */ |
|
(iternextfunc)dictiter_iternext, /* tp_iternext */ |
|
0, /* tp_methods */ |
|
0, /* tp_members */ |
|
0, /* tp_getset */ |
|
0, /* tp_base */ |
|
0, /* tp_dict */ |
|
0, /* tp_descr_get */ |
|
0, /* tp_descr_set */ |
|
};
|
|
|