You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1022 lines
24 KiB
1022 lines
24 KiB
|
|
/* Complex object implementation */ |
|
|
|
/* Borrows heavily from floatobject.c */ |
|
|
|
/* Submitted by Jim Hugunin */ |
|
|
|
#include "Python.h" |
|
#include "structmember.h" |
|
|
|
#ifndef WITHOUT_COMPLEX |
|
|
|
/* Precisions used by repr() and str(), respectively. |
|
|
|
The repr() precision (17 significant decimal digits) is the minimal number |
|
that is guaranteed to have enough precision so that if the number is read |
|
back in the exact same binary value is recreated. This is true for IEEE |
|
floating point by design, and also happens to work for all other modern |
|
hardware. |
|
|
|
The str() precision is chosen so that in most cases, the rounding noise |
|
created by various operations is suppressed, while giving plenty of |
|
precision for practical use. |
|
*/ |
|
|
|
#define PREC_REPR 17 |
|
#define PREC_STR 12 |
|
|
|
/* elementary operations on complex numbers */ |
|
|
|
static Py_complex c_1 = {1., 0.}; |
|
|
|
Py_complex |
|
c_sum(Py_complex a, Py_complex b) |
|
{ |
|
Py_complex r; |
|
r.real = a.real + b.real; |
|
r.imag = a.imag + b.imag; |
|
return r; |
|
} |
|
|
|
Py_complex |
|
c_diff(Py_complex a, Py_complex b) |
|
{ |
|
Py_complex r; |
|
r.real = a.real - b.real; |
|
r.imag = a.imag - b.imag; |
|
return r; |
|
} |
|
|
|
Py_complex |
|
c_neg(Py_complex a) |
|
{ |
|
Py_complex r; |
|
r.real = -a.real; |
|
r.imag = -a.imag; |
|
return r; |
|
} |
|
|
|
Py_complex |
|
c_prod(Py_complex a, Py_complex b) |
|
{ |
|
Py_complex r; |
|
r.real = a.real*b.real - a.imag*b.imag; |
|
r.imag = a.real*b.imag + a.imag*b.real; |
|
return r; |
|
} |
|
|
|
Py_complex |
|
c_quot(Py_complex a, Py_complex b) |
|
{ |
|
/****************************************************************** |
|
This was the original algorithm. It's grossly prone to spurious |
|
overflow and underflow errors. It also merrily divides by 0 despite |
|
checking for that(!). The code still serves a doc purpose here, as |
|
the algorithm following is a simple by-cases transformation of this |
|
one: |
|
|
|
Py_complex r; |
|
double d = b.real*b.real + b.imag*b.imag; |
|
if (d == 0.) |
|
errno = EDOM; |
|
r.real = (a.real*b.real + a.imag*b.imag)/d; |
|
r.imag = (a.imag*b.real - a.real*b.imag)/d; |
|
return r; |
|
******************************************************************/ |
|
|
|
/* This algorithm is better, and is pretty obvious: first divide the |
|
* numerators and denominator by whichever of {b.real, b.imag} has |
|
* larger magnitude. The earliest reference I found was to CACM |
|
* Algorithm 116 (Complex Division, Robert L. Smith, Stanford |
|
* University). As usual, though, we're still ignoring all IEEE |
|
* endcases. |
|
*/ |
|
Py_complex r; /* the result */ |
|
const double abs_breal = b.real < 0 ? -b.real : b.real; |
|
const double abs_bimag = b.imag < 0 ? -b.imag : b.imag; |
|
|
|
if (abs_breal >= abs_bimag) { |
|
/* divide tops and bottom by b.real */ |
|
if (abs_breal == 0.0) { |
|
errno = EDOM; |
|
r.real = r.imag = 0.0; |
|
} |
|
else { |
|
const double ratio = b.imag / b.real; |
|
const double denom = b.real + b.imag * ratio; |
|
r.real = (a.real + a.imag * ratio) / denom; |
|
r.imag = (a.imag - a.real * ratio) / denom; |
|
} |
|
} |
|
else { |
|
/* divide tops and bottom by b.imag */ |
|
const double ratio = b.real / b.imag; |
|
const double denom = b.real * ratio + b.imag; |
|
assert(b.imag != 0.0); |
|
r.real = (a.real * ratio + a.imag) / denom; |
|
r.imag = (a.imag * ratio - a.real) / denom; |
|
} |
|
return r; |
|
} |
|
|
|
Py_complex |
|
c_pow(Py_complex a, Py_complex b) |
|
{ |
|
Py_complex r; |
|
double vabs,len,at,phase; |
|
if (b.real == 0. && b.imag == 0.) { |
|
r.real = 1.; |
|
r.imag = 0.; |
|
} |
|
else if (a.real == 0. && a.imag == 0.) { |
|
if (b.imag != 0. || b.real < 0.) |
|
errno = EDOM; |
|
r.real = 0.; |
|
r.imag = 0.; |
|
} |
|
else { |
|
vabs = hypot(a.real,a.imag); |
|
len = pow(vabs,b.real); |
|
at = atan2(a.imag, a.real); |
|
phase = at*b.real; |
|
if (b.imag != 0.0) { |
|
len /= exp(at*b.imag); |
|
phase += b.imag*log(vabs); |
|
} |
|
r.real = len*cos(phase); |
|
r.imag = len*sin(phase); |
|
} |
|
return r; |
|
} |
|
|
|
static Py_complex |
|
c_powu(Py_complex x, long n) |
|
{ |
|
Py_complex r, p; |
|
long mask = 1; |
|
r = c_1; |
|
p = x; |
|
while (mask > 0 && n >= mask) { |
|
if (n & mask) |
|
r = c_prod(r,p); |
|
mask <<= 1; |
|
p = c_prod(p,p); |
|
} |
|
return r; |
|
} |
|
|
|
static Py_complex |
|
c_powi(Py_complex x, long n) |
|
{ |
|
Py_complex cn; |
|
|
|
if (n > 100 || n < -100) { |
|
cn.real = (double) n; |
|
cn.imag = 0.; |
|
return c_pow(x,cn); |
|
} |
|
else if (n > 0) |
|
return c_powu(x,n); |
|
else |
|
return c_quot(c_1,c_powu(x,-n)); |
|
|
|
} |
|
|
|
static PyObject * |
|
complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval) |
|
{ |
|
PyObject *op; |
|
|
|
op = PyType_GenericAlloc(type, 0); |
|
if (op != NULL) |
|
((PyComplexObject *)op)->cval = cval; |
|
return op; |
|
} |
|
|
|
PyObject * |
|
PyComplex_FromCComplex(Py_complex cval) |
|
{ |
|
register PyComplexObject *op; |
|
|
|
/* Inline PyObject_New */ |
|
op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject)); |
|
if (op == NULL) |
|
return PyErr_NoMemory(); |
|
PyObject_INIT(op, &PyComplex_Type); |
|
op->cval = cval; |
|
return (PyObject *) op; |
|
} |
|
|
|
static PyObject * |
|
complex_subtype_from_doubles(PyTypeObject *type, double real, double imag) |
|
{ |
|
Py_complex c; |
|
c.real = real; |
|
c.imag = imag; |
|
return complex_subtype_from_c_complex(type, c); |
|
} |
|
|
|
PyObject * |
|
PyComplex_FromDoubles(double real, double imag) |
|
{ |
|
Py_complex c; |
|
c.real = real; |
|
c.imag = imag; |
|
return PyComplex_FromCComplex(c); |
|
} |
|
|
|
double |
|
PyComplex_RealAsDouble(PyObject *op) |
|
{ |
|
if (PyComplex_Check(op)) { |
|
return ((PyComplexObject *)op)->cval.real; |
|
} |
|
else { |
|
return PyFloat_AsDouble(op); |
|
} |
|
} |
|
|
|
double |
|
PyComplex_ImagAsDouble(PyObject *op) |
|
{ |
|
if (PyComplex_Check(op)) { |
|
return ((PyComplexObject *)op)->cval.imag; |
|
} |
|
else { |
|
return 0.0; |
|
} |
|
} |
|
|
|
Py_complex |
|
PyComplex_AsCComplex(PyObject *op) |
|
{ |
|
Py_complex cv; |
|
if (PyComplex_Check(op)) { |
|
return ((PyComplexObject *)op)->cval; |
|
} |
|
else { |
|
cv.real = PyFloat_AsDouble(op); |
|
cv.imag = 0.; |
|
return cv; |
|
} |
|
} |
|
|
|
static void |
|
complex_dealloc(PyObject *op) |
|
{ |
|
op->ob_type->tp_free(op); |
|
} |
|
|
|
|
|
static void |
|
complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision) |
|
{ |
|
if (v->cval.real == 0.) |
|
PyOS_snprintf(buf, bufsz, "%.*gj", |
|
precision, v->cval.imag); |
|
else |
|
PyOS_snprintf(buf, bufsz, "(%.*g%+.*gj)", |
|
precision, v->cval.real, |
|
precision, v->cval.imag); |
|
} |
|
|
|
static int |
|
complex_print(PyComplexObject *v, FILE *fp, int flags) |
|
{ |
|
char buf[100]; |
|
complex_to_buf(buf, sizeof(buf), v, |
|
(flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR); |
|
fputs(buf, fp); |
|
return 0; |
|
} |
|
|
|
static PyObject * |
|
complex_repr(PyComplexObject *v) |
|
{ |
|
char buf[100]; |
|
complex_to_buf(buf, sizeof(buf), v, PREC_REPR); |
|
return PyString_FromString(buf); |
|
} |
|
|
|
static PyObject * |
|
complex_str(PyComplexObject *v) |
|
{ |
|
char buf[100]; |
|
complex_to_buf(buf, sizeof(buf), v, PREC_STR); |
|
return PyString_FromString(buf); |
|
} |
|
|
|
static long |
|
complex_hash(PyComplexObject *v) |
|
{ |
|
long hashreal, hashimag, combined; |
|
hashreal = _Py_HashDouble(v->cval.real); |
|
if (hashreal == -1) |
|
return -1; |
|
hashimag = _Py_HashDouble(v->cval.imag); |
|
if (hashimag == -1) |
|
return -1; |
|
/* Note: if the imaginary part is 0, hashimag is 0 now, |
|
* so the following returns hashreal unchanged. This is |
|
* important because numbers of different types that |
|
* compare equal must have the same hash value, so that |
|
* hash(x + 0*j) must equal hash(x). |
|
*/ |
|
combined = hashreal + 1000003 * hashimag; |
|
if (combined == -1) |
|
combined = -2; |
|
return combined; |
|
} |
|
|
|
static PyObject * |
|
complex_add(PyComplexObject *v, PyComplexObject *w) |
|
{ |
|
Py_complex result; |
|
PyFPE_START_PROTECT("complex_add", return 0) |
|
result = c_sum(v->cval,w->cval); |
|
PyFPE_END_PROTECT(result) |
|
return PyComplex_FromCComplex(result); |
|
} |
|
|
|
static PyObject * |
|
complex_sub(PyComplexObject *v, PyComplexObject *w) |
|
{ |
|
Py_complex result; |
|
PyFPE_START_PROTECT("complex_sub", return 0) |
|
result = c_diff(v->cval,w->cval); |
|
PyFPE_END_PROTECT(result) |
|
return PyComplex_FromCComplex(result); |
|
} |
|
|
|
static PyObject * |
|
complex_mul(PyComplexObject *v, PyComplexObject *w) |
|
{ |
|
Py_complex result; |
|
PyFPE_START_PROTECT("complex_mul", return 0) |
|
result = c_prod(v->cval,w->cval); |
|
PyFPE_END_PROTECT(result) |
|
return PyComplex_FromCComplex(result); |
|
} |
|
|
|
static PyObject * |
|
complex_div(PyComplexObject *v, PyComplexObject *w) |
|
{ |
|
Py_complex quot; |
|
PyFPE_START_PROTECT("complex_div", return 0) |
|
errno = 0; |
|
quot = c_quot(v->cval,w->cval); |
|
PyFPE_END_PROTECT(quot) |
|
if (errno == EDOM) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, "complex division"); |
|
return NULL; |
|
} |
|
return PyComplex_FromCComplex(quot); |
|
} |
|
|
|
static PyObject * |
|
complex_classic_div(PyComplexObject *v, PyComplexObject *w) |
|
{ |
|
Py_complex quot; |
|
|
|
if (Py_DivisionWarningFlag >= 2 && |
|
PyErr_Warn(PyExc_DeprecationWarning, |
|
"classic complex division") < 0) |
|
return NULL; |
|
|
|
PyFPE_START_PROTECT("complex_classic_div", return 0) |
|
errno = 0; |
|
quot = c_quot(v->cval,w->cval); |
|
PyFPE_END_PROTECT(quot) |
|
if (errno == EDOM) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, "complex division"); |
|
return NULL; |
|
} |
|
return PyComplex_FromCComplex(quot); |
|
} |
|
|
|
static PyObject * |
|
complex_remainder(PyComplexObject *v, PyComplexObject *w) |
|
{ |
|
Py_complex div, mod; |
|
|
|
if (PyErr_Warn(PyExc_DeprecationWarning, |
|
"complex divmod(), // and % are deprecated") < 0) |
|
return NULL; |
|
|
|
errno = 0; |
|
div = c_quot(v->cval,w->cval); /* The raw divisor value. */ |
|
if (errno == EDOM) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder"); |
|
return NULL; |
|
} |
|
div.real = floor(div.real); /* Use the floor of the real part. */ |
|
div.imag = 0.0; |
|
mod = c_diff(v->cval, c_prod(w->cval, div)); |
|
|
|
return PyComplex_FromCComplex(mod); |
|
} |
|
|
|
|
|
static PyObject * |
|
complex_divmod(PyComplexObject *v, PyComplexObject *w) |
|
{ |
|
Py_complex div, mod; |
|
PyObject *d, *m, *z; |
|
|
|
if (PyErr_Warn(PyExc_DeprecationWarning, |
|
"complex divmod(), // and % are deprecated") < 0) |
|
return NULL; |
|
|
|
errno = 0; |
|
div = c_quot(v->cval,w->cval); /* The raw divisor value. */ |
|
if (errno == EDOM) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()"); |
|
return NULL; |
|
} |
|
div.real = floor(div.real); /* Use the floor of the real part. */ |
|
div.imag = 0.0; |
|
mod = c_diff(v->cval, c_prod(w->cval, div)); |
|
d = PyComplex_FromCComplex(div); |
|
m = PyComplex_FromCComplex(mod); |
|
z = Py_BuildValue("(OO)", d, m); |
|
Py_XDECREF(d); |
|
Py_XDECREF(m); |
|
return z; |
|
} |
|
|
|
static PyObject * |
|
complex_pow(PyComplexObject *v, PyObject *w, PyComplexObject *z) |
|
{ |
|
Py_complex p; |
|
Py_complex exponent; |
|
long int_exponent; |
|
|
|
if ((PyObject *)z!=Py_None) { |
|
PyErr_SetString(PyExc_ValueError, "complex modulo"); |
|
return NULL; |
|
} |
|
PyFPE_START_PROTECT("complex_pow", return 0) |
|
errno = 0; |
|
exponent = ((PyComplexObject*)w)->cval; |
|
int_exponent = (long)exponent.real; |
|
if (exponent.imag == 0. && exponent.real == int_exponent) |
|
p = c_powi(v->cval,int_exponent); |
|
else |
|
p = c_pow(v->cval,exponent); |
|
|
|
PyFPE_END_PROTECT(p) |
|
Py_ADJUST_ERANGE2(p.real, p.imag); |
|
if (errno == EDOM) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, |
|
"0.0 to a negative or complex power"); |
|
return NULL; |
|
} |
|
else if (errno == ERANGE) { |
|
PyErr_SetString(PyExc_OverflowError, |
|
"complex exponentiaion"); |
|
return NULL; |
|
} |
|
return PyComplex_FromCComplex(p); |
|
} |
|
|
|
static PyObject * |
|
complex_int_div(PyComplexObject *v, PyComplexObject *w) |
|
{ |
|
PyObject *t, *r; |
|
|
|
t = complex_divmod(v, w); |
|
if (t != NULL) { |
|
r = PyTuple_GET_ITEM(t, 0); |
|
Py_INCREF(r); |
|
Py_DECREF(t); |
|
return r; |
|
} |
|
return NULL; |
|
} |
|
|
|
static PyObject * |
|
complex_neg(PyComplexObject *v) |
|
{ |
|
Py_complex neg; |
|
neg.real = -v->cval.real; |
|
neg.imag = -v->cval.imag; |
|
return PyComplex_FromCComplex(neg); |
|
} |
|
|
|
static PyObject * |
|
complex_pos(PyComplexObject *v) |
|
{ |
|
if (PyComplex_CheckExact(v)) { |
|
Py_INCREF(v); |
|
return (PyObject *)v; |
|
} |
|
else |
|
return PyComplex_FromCComplex(v->cval); |
|
} |
|
|
|
static PyObject * |
|
complex_abs(PyComplexObject *v) |
|
{ |
|
double result; |
|
PyFPE_START_PROTECT("complex_abs", return 0) |
|
result = hypot(v->cval.real,v->cval.imag); |
|
PyFPE_END_PROTECT(result) |
|
return PyFloat_FromDouble(result); |
|
} |
|
|
|
static int |
|
complex_nonzero(PyComplexObject *v) |
|
{ |
|
return v->cval.real != 0.0 || v->cval.imag != 0.0; |
|
} |
|
|
|
static int |
|
complex_coerce(PyObject **pv, PyObject **pw) |
|
{ |
|
Py_complex cval; |
|
cval.imag = 0.; |
|
if (PyInt_Check(*pw)) { |
|
cval.real = (double)PyInt_AsLong(*pw); |
|
*pw = PyComplex_FromCComplex(cval); |
|
Py_INCREF(*pv); |
|
return 0; |
|
} |
|
else if (PyLong_Check(*pw)) { |
|
cval.real = PyLong_AsDouble(*pw); |
|
if (cval.real == -1.0 && PyErr_Occurred()) |
|
return -1; |
|
*pw = PyComplex_FromCComplex(cval); |
|
Py_INCREF(*pv); |
|
return 0; |
|
} |
|
else if (PyFloat_Check(*pw)) { |
|
cval.real = PyFloat_AsDouble(*pw); |
|
*pw = PyComplex_FromCComplex(cval); |
|
Py_INCREF(*pv); |
|
return 0; |
|
} |
|
else if (PyComplex_Check(*pw)) { |
|
Py_INCREF(*pv); |
|
Py_INCREF(*pw); |
|
return 0; |
|
} |
|
return 1; /* Can't do it */ |
|
} |
|
|
|
static PyObject * |
|
complex_richcompare(PyObject *v, PyObject *w, int op) |
|
{ |
|
int c; |
|
Py_complex i, j; |
|
PyObject *res; |
|
|
|
c = PyNumber_CoerceEx(&v, &w); |
|
if (c < 0) |
|
return NULL; |
|
if (c > 0) { |
|
Py_INCREF(Py_NotImplemented); |
|
return Py_NotImplemented; |
|
} |
|
/* Make sure both arguments are complex. */ |
|
if (!(PyComplex_Check(v) && PyComplex_Check(w))) { |
|
Py_DECREF(v); |
|
Py_DECREF(w); |
|
Py_INCREF(Py_NotImplemented); |
|
return Py_NotImplemented; |
|
} |
|
|
|
i = ((PyComplexObject *)v)->cval; |
|
j = ((PyComplexObject *)w)->cval; |
|
Py_DECREF(v); |
|
Py_DECREF(w); |
|
|
|
if (op != Py_EQ && op != Py_NE) { |
|
PyErr_SetString(PyExc_TypeError, |
|
"cannot compare complex numbers using <, <=, >, >="); |
|
return NULL; |
|
} |
|
|
|
if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ)) |
|
res = Py_True; |
|
else |
|
res = Py_False; |
|
|
|
Py_INCREF(res); |
|
return res; |
|
} |
|
|
|
static PyObject * |
|
complex_int(PyObject *v) |
|
{ |
|
PyErr_SetString(PyExc_TypeError, |
|
"can't convert complex to int; use int(abs(z))"); |
|
return NULL; |
|
} |
|
|
|
static PyObject * |
|
complex_long(PyObject *v) |
|
{ |
|
PyErr_SetString(PyExc_TypeError, |
|
"can't convert complex to long; use long(abs(z))"); |
|
return NULL; |
|
} |
|
|
|
static PyObject * |
|
complex_float(PyObject *v) |
|
{ |
|
PyErr_SetString(PyExc_TypeError, |
|
"can't convert complex to float; use abs(z)"); |
|
return NULL; |
|
} |
|
|
|
static PyObject * |
|
complex_conjugate(PyObject *self) |
|
{ |
|
Py_complex c; |
|
c = ((PyComplexObject *)self)->cval; |
|
c.imag = -c.imag; |
|
return PyComplex_FromCComplex(c); |
|
} |
|
|
|
static PyObject * |
|
complex_getnewargs(PyComplexObject *v) |
|
{ |
|
return Py_BuildValue("(D)", &v->cval); |
|
} |
|
|
|
static PyMethodDef complex_methods[] = { |
|
{"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS}, |
|
{"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS}, |
|
{NULL, NULL} /* sentinel */ |
|
}; |
|
|
|
static PyMemberDef complex_members[] = { |
|
{"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY, |
|
"the real part of a complex number"}, |
|
{"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY, |
|
"the imaginary part of a complex number"}, |
|
{0}, |
|
}; |
|
|
|
static PyObject * |
|
complex_subtype_from_string(PyTypeObject *type, PyObject *v) |
|
{ |
|
extern double strtod(const char *, char **); |
|
const char *s, *start; |
|
char *end; |
|
double x=0.0, y=0.0, z; |
|
int got_re=0, got_im=0, done=0; |
|
int digit_or_dot; |
|
int sw_error=0; |
|
int sign; |
|
char buffer[256]; /* For errors */ |
|
#ifdef Py_USING_UNICODE |
|
char s_buffer[256]; |
|
#endif |
|
int len; |
|
|
|
if (PyString_Check(v)) { |
|
s = PyString_AS_STRING(v); |
|
len = PyString_GET_SIZE(v); |
|
} |
|
#ifdef Py_USING_UNICODE |
|
else if (PyUnicode_Check(v)) { |
|
if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"complex() literal too large to convert"); |
|
return NULL; |
|
} |
|
if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), |
|
PyUnicode_GET_SIZE(v), |
|
s_buffer, |
|
NULL)) |
|
return NULL; |
|
s = s_buffer; |
|
len = (int)strlen(s); |
|
} |
|
#endif |
|
else if (PyObject_AsCharBuffer(v, &s, &len)) { |
|
PyErr_SetString(PyExc_TypeError, |
|
"complex() arg is not a string"); |
|
return NULL; |
|
} |
|
|
|
/* position on first nonblank */ |
|
start = s; |
|
while (*s && isspace(Py_CHARMASK(*s))) |
|
s++; |
|
if (s[0] == '\0') { |
|
PyErr_SetString(PyExc_ValueError, |
|
"complex() arg is an empty string"); |
|
return NULL; |
|
} |
|
|
|
z = -1.0; |
|
sign = 1; |
|
do { |
|
|
|
switch (*s) { |
|
|
|
case '\0': |
|
if (s-start != len) { |
|
PyErr_SetString( |
|
PyExc_ValueError, |
|
"complex() arg contains a null byte"); |
|
return NULL; |
|
} |
|
if(!done) sw_error=1; |
|
break; |
|
|
|
case '-': |
|
sign = -1; |
|
/* Fallthrough */ |
|
case '+': |
|
if (done) sw_error=1; |
|
s++; |
|
if ( *s=='\0'||*s=='+'||*s=='-' || |
|
isspace(Py_CHARMASK(*s)) ) sw_error=1; |
|
break; |
|
|
|
case 'J': |
|
case 'j': |
|
if (got_im || done) { |
|
sw_error = 1; |
|
break; |
|
} |
|
if (z<0.0) { |
|
y=sign; |
|
} |
|
else{ |
|
y=sign*z; |
|
} |
|
got_im=1; |
|
s++; |
|
if (*s!='+' && *s!='-' ) |
|
done=1; |
|
break; |
|
|
|
default: |
|
if (isspace(Py_CHARMASK(*s))) { |
|
while (*s && isspace(Py_CHARMASK(*s))) |
|
s++; |
|
if (s[0] != '\0') |
|
sw_error=1; |
|
else |
|
done = 1; |
|
break; |
|
} |
|
digit_or_dot = |
|
(*s=='.' || isdigit(Py_CHARMASK(*s))); |
|
if (done||!digit_or_dot) { |
|
sw_error=1; |
|
break; |
|
} |
|
errno = 0; |
|
PyFPE_START_PROTECT("strtod", return 0) |
|
z = strtod(s, &end) ; |
|
PyFPE_END_PROTECT(z) |
|
if (errno != 0) { |
|
PyOS_snprintf(buffer, sizeof(buffer), |
|
"float() out of range: %.150s", s); |
|
PyErr_SetString( |
|
PyExc_ValueError, |
|
buffer); |
|
return NULL; |
|
} |
|
s=end; |
|
if (*s=='J' || *s=='j') { |
|
|
|
break; |
|
} |
|
if (got_re) { |
|
sw_error=1; |
|
break; |
|
} |
|
|
|
/* accept a real part */ |
|
x=sign*z; |
|
got_re=1; |
|
if (got_im) done=1; |
|
z = -1.0; |
|
sign = 1; |
|
break; |
|
|
|
} /* end of switch */ |
|
|
|
} while (s - start < len && !sw_error); |
|
|
|
if (sw_error) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"complex() arg is a malformed string"); |
|
return NULL; |
|
} |
|
|
|
return complex_subtype_from_doubles(type, x, y); |
|
} |
|
|
|
static PyObject * |
|
complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
|
{ |
|
PyObject *r, *i, *tmp, *f; |
|
PyNumberMethods *nbr, *nbi = NULL; |
|
Py_complex cr, ci; |
|
int own_r = 0; |
|
static PyObject *complexstr; |
|
static char *kwlist[] = {"real", "imag", 0}; |
|
|
|
r = Py_False; |
|
i = NULL; |
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist, |
|
&r, &i)) |
|
return NULL; |
|
|
|
/* Special-case for single argument that is already complex */ |
|
if (PyComplex_CheckExact(r) && i == NULL && |
|
type == &PyComplex_Type) { |
|
/* Note that we can't know whether it's safe to return |
|
a complex *subclass* instance as-is, hence the restriction |
|
to exact complexes here. */ |
|
Py_INCREF(r); |
|
return r; |
|
} |
|
if (PyString_Check(r) || PyUnicode_Check(r)) { |
|
if (i != NULL) { |
|
PyErr_SetString(PyExc_TypeError, |
|
"complex() can't take second arg" |
|
" if first is a string"); |
|
return NULL; |
|
} |
|
return complex_subtype_from_string(type, r); |
|
} |
|
if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) { |
|
PyErr_SetString(PyExc_TypeError, |
|
"complex() second arg can't be a string"); |
|
return NULL; |
|
} |
|
|
|
/* XXX Hack to support classes with __complex__ method */ |
|
if (complexstr == NULL) { |
|
complexstr = PyString_InternFromString("__complex__"); |
|
if (complexstr == NULL) |
|
return NULL; |
|
} |
|
f = PyObject_GetAttr(r, complexstr); |
|
if (f == NULL) |
|
PyErr_Clear(); |
|
else { |
|
PyObject *args = Py_BuildValue("()"); |
|
if (args == NULL) |
|
return NULL; |
|
r = PyEval_CallObject(f, args); |
|
Py_DECREF(args); |
|
Py_DECREF(f); |
|
if (r == NULL) |
|
return NULL; |
|
own_r = 1; |
|
} |
|
nbr = r->ob_type->tp_as_number; |
|
if (i != NULL) |
|
nbi = i->ob_type->tp_as_number; |
|
if (nbr == NULL || nbr->nb_float == NULL || |
|
((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) { |
|
PyErr_SetString(PyExc_TypeError, |
|
"complex() argument must be a string or a number"); |
|
return NULL; |
|
} |
|
if (PyComplex_Check(r)) { |
|
/* Note that if r is of a complex subtype, we're only |
|
retaining its real & imag parts here, and the return |
|
value is (properly) of the builtin complex type. */ |
|
cr = ((PyComplexObject*)r)->cval; |
|
if (own_r) { |
|
Py_DECREF(r); |
|
} |
|
} |
|
else { |
|
tmp = PyNumber_Float(r); |
|
if (own_r) { |
|
Py_DECREF(r); |
|
} |
|
if (tmp == NULL) |
|
return NULL; |
|
if (!PyFloat_Check(tmp)) { |
|
PyErr_SetString(PyExc_TypeError, |
|
"float(r) didn't return a float"); |
|
Py_DECREF(tmp); |
|
return NULL; |
|
} |
|
cr.real = PyFloat_AsDouble(tmp); |
|
Py_DECREF(tmp); |
|
cr.imag = 0.0; |
|
} |
|
if (i == NULL) { |
|
ci.real = 0.0; |
|
ci.imag = 0.0; |
|
} |
|
else if (PyComplex_Check(i)) |
|
ci = ((PyComplexObject*)i)->cval; |
|
else { |
|
tmp = (*nbi->nb_float)(i); |
|
if (tmp == NULL) |
|
return NULL; |
|
ci.real = PyFloat_AsDouble(tmp); |
|
Py_DECREF(tmp); |
|
ci.imag = 0.; |
|
} |
|
cr.real -= ci.imag; |
|
cr.imag += ci.real; |
|
return complex_subtype_from_c_complex(type, cr); |
|
} |
|
|
|
PyDoc_STRVAR(complex_doc, |
|
"complex(real[, imag]) -> complex number\n" |
|
"\n" |
|
"Create a complex number from a real part and an optional imaginary part.\n" |
|
"This is equivalent to (real + imag*1j) where imag defaults to 0."); |
|
|
|
static PyNumberMethods complex_as_number = { |
|
(binaryfunc)complex_add, /* nb_add */ |
|
(binaryfunc)complex_sub, /* nb_subtract */ |
|
(binaryfunc)complex_mul, /* nb_multiply */ |
|
(binaryfunc)complex_classic_div, /* nb_divide */ |
|
(binaryfunc)complex_remainder, /* nb_remainder */ |
|
(binaryfunc)complex_divmod, /* nb_divmod */ |
|
(ternaryfunc)complex_pow, /* nb_power */ |
|
(unaryfunc)complex_neg, /* nb_negative */ |
|
(unaryfunc)complex_pos, /* nb_positive */ |
|
(unaryfunc)complex_abs, /* nb_absolute */ |
|
(inquiry)complex_nonzero, /* nb_nonzero */ |
|
0, /* nb_invert */ |
|
0, /* nb_lshift */ |
|
0, /* nb_rshift */ |
|
0, /* nb_and */ |
|
0, /* nb_xor */ |
|
0, /* nb_or */ |
|
(coercion)complex_coerce, /* nb_coerce */ |
|
(unaryfunc)complex_int, /* nb_int */ |
|
(unaryfunc)complex_long, /* nb_long */ |
|
(unaryfunc)complex_float, /* nb_float */ |
|
0, /* nb_oct */ |
|
0, /* nb_hex */ |
|
0, /* nb_inplace_add */ |
|
0, /* nb_inplace_subtract */ |
|
0, /* nb_inplace_multiply*/ |
|
0, /* nb_inplace_divide */ |
|
0, /* nb_inplace_remainder */ |
|
0, /* nb_inplace_power */ |
|
0, /* nb_inplace_lshift */ |
|
0, /* nb_inplace_rshift */ |
|
0, /* nb_inplace_and */ |
|
0, /* nb_inplace_xor */ |
|
0, /* nb_inplace_or */ |
|
(binaryfunc)complex_int_div, /* nb_floor_divide */ |
|
(binaryfunc)complex_div, /* nb_true_divide */ |
|
0, /* nb_inplace_floor_divide */ |
|
0, /* nb_inplace_true_divide */ |
|
}; |
|
|
|
PyTypeObject PyComplex_Type = { |
|
PyObject_HEAD_INIT(&PyType_Type) |
|
0, |
|
"complex", |
|
sizeof(PyComplexObject), |
|
0, |
|
(destructor)complex_dealloc, /* tp_dealloc */ |
|
(printfunc)complex_print, /* tp_print */ |
|
0, /* tp_getattr */ |
|
0, /* tp_setattr */ |
|
0, /* tp_compare */ |
|
(reprfunc)complex_repr, /* tp_repr */ |
|
&complex_as_number, /* tp_as_number */ |
|
0, /* tp_as_sequence */ |
|
0, /* tp_as_mapping */ |
|
(hashfunc)complex_hash, /* tp_hash */ |
|
0, /* tp_call */ |
|
(reprfunc)complex_str, /* tp_str */ |
|
PyObject_GenericGetAttr, /* tp_getattro */ |
|
0, /* tp_setattro */ |
|
0, /* tp_as_buffer */ |
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
|
complex_doc, /* tp_doc */ |
|
0, /* tp_traverse */ |
|
0, /* tp_clear */ |
|
complex_richcompare, /* tp_richcompare */ |
|
0, /* tp_weaklistoffset */ |
|
0, /* tp_iter */ |
|
0, /* tp_iternext */ |
|
complex_methods, /* tp_methods */ |
|
complex_members, /* tp_members */ |
|
0, /* tp_getset */ |
|
0, /* tp_base */ |
|
0, /* tp_dict */ |
|
0, /* tp_descr_get */ |
|
0, /* tp_descr_set */ |
|
0, /* tp_dictoffset */ |
|
0, /* tp_init */ |
|
0, /* tp_alloc */ |
|
complex_new, /* tp_new */ |
|
PyObject_Del, /* tp_free */ |
|
}; |
|
|
|
#endif
|
|
|