You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
542 lines
16 KiB
542 lines
16 KiB
/* SHA module */ |
|
|
|
/* This module provides an interface to NIST's Secure Hash Algorithm */ |
|
|
|
/* See below for information about the original code this module was |
|
based upon. Additional work performed by: |
|
|
|
Andrew Kuchling (amk@amk.ca) |
|
Greg Stein (gstein@lyra.org) |
|
*/ |
|
|
|
/* SHA objects */ |
|
|
|
#include "Python.h" |
|
|
|
|
|
/* Endianness testing and definitions */ |
|
#define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\ |
|
if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;} |
|
|
|
#define PCT_LITTLE_ENDIAN 1 |
|
#define PCT_BIG_ENDIAN 0 |
|
|
|
/* Some useful types */ |
|
|
|
typedef unsigned char SHA_BYTE; |
|
|
|
#if SIZEOF_INT == 4 |
|
typedef unsigned int SHA_INT32; /* 32-bit integer */ |
|
#else |
|
/* not defined. compilation will die. */ |
|
#endif |
|
|
|
/* The SHA block size and message digest sizes, in bytes */ |
|
|
|
#define SHA_BLOCKSIZE 64 |
|
#define SHA_DIGESTSIZE 20 |
|
|
|
/* The structure for storing SHS info */ |
|
|
|
typedef struct { |
|
PyObject_HEAD |
|
SHA_INT32 digest[5]; /* Message digest */ |
|
SHA_INT32 count_lo, count_hi; /* 64-bit bit count */ |
|
SHA_BYTE data[SHA_BLOCKSIZE]; /* SHA data buffer */ |
|
int Endianness; |
|
int local; /* unprocessed amount in data */ |
|
} SHAobject; |
|
|
|
/* When run on a little-endian CPU we need to perform byte reversal on an |
|
array of longwords. */ |
|
|
|
static void longReverse(SHA_INT32 *buffer, int byteCount, int Endianness) |
|
{ |
|
SHA_INT32 value; |
|
|
|
if ( Endianness == PCT_BIG_ENDIAN ) |
|
return; |
|
|
|
byteCount /= sizeof(*buffer); |
|
while (byteCount--) { |
|
value = *buffer; |
|
value = ( ( value & 0xFF00FF00L ) >> 8 ) | \ |
|
( ( value & 0x00FF00FFL ) << 8 ); |
|
*buffer++ = ( value << 16 ) | ( value >> 16 ); |
|
} |
|
} |
|
|
|
static void SHAcopy(SHAobject *src, SHAobject *dest) |
|
{ |
|
dest->Endianness = src->Endianness; |
|
dest->local = src->local; |
|
dest->count_lo = src->count_lo; |
|
dest->count_hi = src->count_hi; |
|
memcpy(dest->digest, src->digest, sizeof(src->digest)); |
|
memcpy(dest->data, src->data, sizeof(src->data)); |
|
} |
|
|
|
|
|
/* ------------------------------------------------------------------------ |
|
* |
|
* This code for the SHA algorithm was noted as public domain. The original |
|
* headers are pasted below. |
|
* |
|
* Several changes have been made to make it more compatible with the |
|
* Python environment and desired interface. |
|
* |
|
*/ |
|
|
|
/* NIST Secure Hash Algorithm */ |
|
/* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu> */ |
|
/* from Peter C. Gutmann's implementation as found in */ |
|
/* Applied Cryptography by Bruce Schneier */ |
|
/* Further modifications to include the "UNRAVEL" stuff, below */ |
|
|
|
/* This code is in the public domain */ |
|
|
|
/* UNRAVEL should be fastest & biggest */ |
|
/* UNROLL_LOOPS should be just as big, but slightly slower */ |
|
/* both undefined should be smallest and slowest */ |
|
|
|
#define UNRAVEL |
|
/* #define UNROLL_LOOPS */ |
|
|
|
/* The SHA f()-functions. The f1 and f3 functions can be optimized to |
|
save one boolean operation each - thanks to Rich Schroeppel, |
|
rcs@cs.arizona.edu for discovering this */ |
|
|
|
/*#define f1(x,y,z) ((x & y) | (~x & z)) // Rounds 0-19 */ |
|
#define f1(x,y,z) (z ^ (x & (y ^ z))) /* Rounds 0-19 */ |
|
#define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39 */ |
|
/*#define f3(x,y,z) ((x & y) | (x & z) | (y & z)) // Rounds 40-59 */ |
|
#define f3(x,y,z) ((x & y) | (z & (x | y))) /* Rounds 40-59 */ |
|
#define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79 */ |
|
|
|
/* SHA constants */ |
|
|
|
#define CONST1 0x5a827999L /* Rounds 0-19 */ |
|
#define CONST2 0x6ed9eba1L /* Rounds 20-39 */ |
|
#define CONST3 0x8f1bbcdcL /* Rounds 40-59 */ |
|
#define CONST4 0xca62c1d6L /* Rounds 60-79 */ |
|
|
|
/* 32-bit rotate */ |
|
|
|
#define R32(x,n) ((x << n) | (x >> (32 - n))) |
|
|
|
/* the generic case, for when the overall rotation is not unraveled */ |
|
|
|
#define FG(n) \ |
|
T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; \ |
|
E = D; D = C; C = R32(B,30); B = A; A = T |
|
|
|
/* specific cases, for when the overall rotation is unraveled */ |
|
|
|
#define FA(n) \ |
|
T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; B = R32(B,30) |
|
|
|
#define FB(n) \ |
|
E = R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n; A = R32(A,30) |
|
|
|
#define FC(n) \ |
|
D = R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n; T = R32(T,30) |
|
|
|
#define FD(n) \ |
|
C = R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n; E = R32(E,30) |
|
|
|
#define FE(n) \ |
|
B = R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n; D = R32(D,30) |
|
|
|
#define FT(n) \ |
|
A = R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n; C = R32(C,30) |
|
|
|
/* do SHA transformation */ |
|
|
|
static void |
|
sha_transform(SHAobject *sha_info) |
|
{ |
|
int i; |
|
SHA_INT32 T, A, B, C, D, E, W[80], *WP; |
|
|
|
memcpy(W, sha_info->data, sizeof(sha_info->data)); |
|
longReverse(W, (int)sizeof(sha_info->data), sha_info->Endianness); |
|
|
|
for (i = 16; i < 80; ++i) { |
|
W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16]; |
|
|
|
/* extra rotation fix */ |
|
W[i] = R32(W[i], 1); |
|
} |
|
A = sha_info->digest[0]; |
|
B = sha_info->digest[1]; |
|
C = sha_info->digest[2]; |
|
D = sha_info->digest[3]; |
|
E = sha_info->digest[4]; |
|
WP = W; |
|
#ifdef UNRAVEL |
|
FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); |
|
FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); |
|
FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); |
|
FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); |
|
FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); |
|
FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); |
|
FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); |
|
FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); |
|
sha_info->digest[0] += E; |
|
sha_info->digest[1] += T; |
|
sha_info->digest[2] += A; |
|
sha_info->digest[3] += B; |
|
sha_info->digest[4] += C; |
|
#else /* !UNRAVEL */ |
|
#ifdef UNROLL_LOOPS |
|
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); |
|
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); |
|
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); |
|
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); |
|
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); |
|
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); |
|
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); |
|
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); |
|
#else /* !UNROLL_LOOPS */ |
|
for (i = 0; i < 20; ++i) { FG(1); } |
|
for (i = 20; i < 40; ++i) { FG(2); } |
|
for (i = 40; i < 60; ++i) { FG(3); } |
|
for (i = 60; i < 80; ++i) { FG(4); } |
|
#endif /* !UNROLL_LOOPS */ |
|
sha_info->digest[0] += A; |
|
sha_info->digest[1] += B; |
|
sha_info->digest[2] += C; |
|
sha_info->digest[3] += D; |
|
sha_info->digest[4] += E; |
|
#endif /* !UNRAVEL */ |
|
} |
|
|
|
/* initialize the SHA digest */ |
|
|
|
static void |
|
sha_init(SHAobject *sha_info) |
|
{ |
|
TestEndianness(sha_info->Endianness) |
|
|
|
sha_info->digest[0] = 0x67452301L; |
|
sha_info->digest[1] = 0xefcdab89L; |
|
sha_info->digest[2] = 0x98badcfeL; |
|
sha_info->digest[3] = 0x10325476L; |
|
sha_info->digest[4] = 0xc3d2e1f0L; |
|
sha_info->count_lo = 0L; |
|
sha_info->count_hi = 0L; |
|
sha_info->local = 0; |
|
} |
|
|
|
/* update the SHA digest */ |
|
|
|
static void |
|
sha_update(SHAobject *sha_info, SHA_BYTE *buffer, int count) |
|
{ |
|
int i; |
|
SHA_INT32 clo; |
|
|
|
clo = sha_info->count_lo + ((SHA_INT32) count << 3); |
|
if (clo < sha_info->count_lo) { |
|
++sha_info->count_hi; |
|
} |
|
sha_info->count_lo = clo; |
|
sha_info->count_hi += (SHA_INT32) count >> 29; |
|
if (sha_info->local) { |
|
i = SHA_BLOCKSIZE - sha_info->local; |
|
if (i > count) { |
|
i = count; |
|
} |
|
memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i); |
|
count -= i; |
|
buffer += i; |
|
sha_info->local += i; |
|
if (sha_info->local == SHA_BLOCKSIZE) { |
|
sha_transform(sha_info); |
|
} |
|
else { |
|
return; |
|
} |
|
} |
|
while (count >= SHA_BLOCKSIZE) { |
|
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE); |
|
buffer += SHA_BLOCKSIZE; |
|
count -= SHA_BLOCKSIZE; |
|
sha_transform(sha_info); |
|
} |
|
memcpy(sha_info->data, buffer, count); |
|
sha_info->local = count; |
|
} |
|
|
|
/* finish computing the SHA digest */ |
|
|
|
static void |
|
sha_final(unsigned char digest[20], SHAobject *sha_info) |
|
{ |
|
int count; |
|
SHA_INT32 lo_bit_count, hi_bit_count; |
|
|
|
lo_bit_count = sha_info->count_lo; |
|
hi_bit_count = sha_info->count_hi; |
|
count = (int) ((lo_bit_count >> 3) & 0x3f); |
|
((SHA_BYTE *) sha_info->data)[count++] = 0x80; |
|
if (count > SHA_BLOCKSIZE - 8) { |
|
memset(((SHA_BYTE *) sha_info->data) + count, 0, |
|
SHA_BLOCKSIZE - count); |
|
sha_transform(sha_info); |
|
memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8); |
|
} |
|
else { |
|
memset(((SHA_BYTE *) sha_info->data) + count, 0, |
|
SHA_BLOCKSIZE - 8 - count); |
|
} |
|
|
|
/* GJS: note that we add the hi/lo in big-endian. sha_transform will |
|
swap these values into host-order. */ |
|
sha_info->data[56] = (hi_bit_count >> 24) & 0xff; |
|
sha_info->data[57] = (hi_bit_count >> 16) & 0xff; |
|
sha_info->data[58] = (hi_bit_count >> 8) & 0xff; |
|
sha_info->data[59] = (hi_bit_count >> 0) & 0xff; |
|
sha_info->data[60] = (lo_bit_count >> 24) & 0xff; |
|
sha_info->data[61] = (lo_bit_count >> 16) & 0xff; |
|
sha_info->data[62] = (lo_bit_count >> 8) & 0xff; |
|
sha_info->data[63] = (lo_bit_count >> 0) & 0xff; |
|
sha_transform(sha_info); |
|
digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff); |
|
digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff); |
|
digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff); |
|
digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff); |
|
digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff); |
|
digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff); |
|
digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff); |
|
digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff); |
|
digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff); |
|
digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff); |
|
digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff); |
|
digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff); |
|
digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff); |
|
digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff); |
|
digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff); |
|
digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff); |
|
digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff); |
|
digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff); |
|
digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff); |
|
digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff); |
|
} |
|
|
|
/* |
|
* End of copied SHA code. |
|
* |
|
* ------------------------------------------------------------------------ |
|
*/ |
|
|
|
static PyTypeObject SHAtype; |
|
|
|
|
|
static SHAobject * |
|
newSHAobject(void) |
|
{ |
|
return (SHAobject *)PyObject_New(SHAobject, &SHAtype); |
|
} |
|
|
|
/* Internal methods for a hashing object */ |
|
|
|
static void |
|
SHA_dealloc(PyObject *ptr) |
|
{ |
|
PyObject_Del(ptr); |
|
} |
|
|
|
|
|
/* External methods for a hashing object */ |
|
|
|
PyDoc_STRVAR(SHA_copy__doc__, "Return a copy of the hashing object."); |
|
|
|
static PyObject * |
|
SHA_copy(SHAobject *self, PyObject *args) |
|
{ |
|
SHAobject *newobj; |
|
|
|
if (!PyArg_ParseTuple(args, ":copy")) { |
|
return NULL; |
|
} |
|
if ( (newobj = newSHAobject())==NULL) |
|
return NULL; |
|
|
|
SHAcopy(self, newobj); |
|
return (PyObject *)newobj; |
|
} |
|
|
|
PyDoc_STRVAR(SHA_digest__doc__, |
|
"Return the digest value as a string of binary data."); |
|
|
|
static PyObject * |
|
SHA_digest(SHAobject *self, PyObject *args) |
|
{ |
|
unsigned char digest[SHA_DIGESTSIZE]; |
|
SHAobject temp; |
|
|
|
if (!PyArg_ParseTuple(args, ":digest")) |
|
return NULL; |
|
|
|
SHAcopy(self, &temp); |
|
sha_final(digest, &temp); |
|
return PyString_FromStringAndSize((const char *)digest, sizeof(digest)); |
|
} |
|
|
|
PyDoc_STRVAR(SHA_hexdigest__doc__, |
|
"Return the digest value as a string of hexadecimal digits."); |
|
|
|
static PyObject * |
|
SHA_hexdigest(SHAobject *self, PyObject *args) |
|
{ |
|
unsigned char digest[SHA_DIGESTSIZE]; |
|
SHAobject temp; |
|
PyObject *retval; |
|
char *hex_digest; |
|
int i, j; |
|
|
|
if (!PyArg_ParseTuple(args, ":hexdigest")) |
|
return NULL; |
|
|
|
/* Get the raw (binary) digest value */ |
|
SHAcopy(self, &temp); |
|
sha_final(digest, &temp); |
|
|
|
/* Create a new string */ |
|
retval = PyString_FromStringAndSize(NULL, sizeof(digest) * 2); |
|
if (!retval) |
|
return NULL; |
|
hex_digest = PyString_AsString(retval); |
|
if (!hex_digest) { |
|
Py_DECREF(retval); |
|
return NULL; |
|
} |
|
|
|
/* Make hex version of the digest */ |
|
for(i=j=0; i<sizeof(digest); i++) { |
|
char c; |
|
c = (digest[i] >> 4) & 0xf; |
|
c = (c>9) ? c+'a'-10 : c + '0'; |
|
hex_digest[j++] = c; |
|
c = (digest[i] & 0xf); |
|
c = (c>9) ? c+'a'-10 : c + '0'; |
|
hex_digest[j++] = c; |
|
} |
|
return retval; |
|
} |
|
|
|
PyDoc_STRVAR(SHA_update__doc__, |
|
"Update this hashing object's state with the provided string."); |
|
|
|
static PyObject * |
|
SHA_update(SHAobject *self, PyObject *args) |
|
{ |
|
unsigned char *cp; |
|
int len; |
|
|
|
if (!PyArg_ParseTuple(args, "s#:update", &cp, &len)) |
|
return NULL; |
|
|
|
sha_update(self, cp, len); |
|
|
|
Py_INCREF(Py_None); |
|
return Py_None; |
|
} |
|
|
|
static PyMethodDef SHA_methods[] = { |
|
{"copy", (PyCFunction)SHA_copy, METH_VARARGS, SHA_copy__doc__}, |
|
{"digest", (PyCFunction)SHA_digest, METH_VARARGS, SHA_digest__doc__}, |
|
{"hexdigest", (PyCFunction)SHA_hexdigest, METH_VARARGS, SHA_hexdigest__doc__}, |
|
{"update", (PyCFunction)SHA_update, METH_VARARGS, SHA_update__doc__}, |
|
{NULL, NULL} /* sentinel */ |
|
}; |
|
|
|
static PyObject * |
|
SHA_getattr(PyObject *self, char *name) |
|
{ |
|
if (strcmp(name, "blocksize")==0) |
|
return PyInt_FromLong(1); |
|
if (strcmp(name, "digest_size")==0 || strcmp(name, "digestsize")==0) |
|
return PyInt_FromLong(20); |
|
|
|
return Py_FindMethod(SHA_methods, self, name); |
|
} |
|
|
|
static PyTypeObject SHAtype = { |
|
PyObject_HEAD_INIT(NULL) |
|
0, /*ob_size*/ |
|
"sha.SHA", /*tp_name*/ |
|
sizeof(SHAobject), /*tp_size*/ |
|
0, /*tp_itemsize*/ |
|
/* methods */ |
|
SHA_dealloc, /*tp_dealloc*/ |
|
0, /*tp_print*/ |
|
SHA_getattr, /*tp_getattr*/ |
|
}; |
|
|
|
|
|
/* The single module-level function: new() */ |
|
|
|
PyDoc_STRVAR(SHA_new__doc__, |
|
"Return a new SHA hashing object. An optional string argument\n\ |
|
may be provided; if present, this string will be automatically\n\ |
|
hashed."); |
|
|
|
static PyObject * |
|
SHA_new(PyObject *self, PyObject *args, PyObject *kwdict) |
|
{ |
|
static char *kwlist[] = {"string", NULL}; |
|
SHAobject *new; |
|
unsigned char *cp = NULL; |
|
int len; |
|
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist, |
|
&cp, &len)) { |
|
return NULL; |
|
} |
|
|
|
if ((new = newSHAobject()) == NULL) |
|
return NULL; |
|
|
|
sha_init(new); |
|
|
|
if (PyErr_Occurred()) { |
|
Py_DECREF(new); |
|
return NULL; |
|
} |
|
if (cp) |
|
sha_update(new, cp, len); |
|
|
|
return (PyObject *)new; |
|
} |
|
|
|
|
|
/* List of functions exported by this module */ |
|
|
|
static struct PyMethodDef SHA_functions[] = { |
|
{"new", (PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__}, |
|
{"sha", (PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__}, |
|
{NULL, NULL} /* Sentinel */ |
|
}; |
|
|
|
|
|
/* Initialize this module. */ |
|
|
|
#define insint(n,v) { PyModule_AddIntConstant(m,n,v); } |
|
|
|
PyMODINIT_FUNC |
|
initsha(void) |
|
{ |
|
PyObject *m; |
|
|
|
SHAtype.ob_type = &PyType_Type; |
|
m = Py_InitModule("sha", SHA_functions); |
|
|
|
/* Add some symbolic constants to the module */ |
|
insint("blocksize", 1); /* For future use, in case some hash |
|
functions require an integral number of |
|
blocks */ |
|
insint("digestsize", 20); |
|
insint("digest_size", 20); |
|
}
|
|
|