You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
650 lines
19 KiB
650 lines
19 KiB
/* Return the initial module search path. */ |
|
|
|
#include "Python.h" |
|
#include "osdefs.h" |
|
|
|
#include <sys/types.h> |
|
#include <string.h> |
|
|
|
#ifdef WITH_NEXT_FRAMEWORK |
|
#include <mach-o/dyld.h> |
|
#endif |
|
|
|
/* Search in some common locations for the associated Python libraries. |
|
* |
|
* Two directories must be found, the platform independent directory |
|
* (prefix), containing the common .py and .pyc files, and the platform |
|
* dependent directory (exec_prefix), containing the shared library |
|
* modules. Note that prefix and exec_prefix can be the same directory, |
|
* but for some installations, they are different. |
|
* |
|
* Py_GetPath() carries out separate searches for prefix and exec_prefix. |
|
* Each search tries a number of different locations until a ``landmark'' |
|
* file or directory is found. If no prefix or exec_prefix is found, a |
|
* warning message is issued and the preprocessor defined PREFIX and |
|
* EXEC_PREFIX are used (even though they will not work); python carries on |
|
* as best as is possible, but most imports will fail. |
|
* |
|
* Before any searches are done, the location of the executable is |
|
* determined. If argv[0] has one or more slashs in it, it is used |
|
* unchanged. Otherwise, it must have been invoked from the shell's path, |
|
* so we search $PATH for the named executable and use that. If the |
|
* executable was not found on $PATH (or there was no $PATH environment |
|
* variable), the original argv[0] string is used. |
|
* |
|
* Next, the executable location is examined to see if it is a symbolic |
|
* link. If so, the link is chased (correctly interpreting a relative |
|
* pathname if one is found) and the directory of the link target is used. |
|
* |
|
* Finally, argv0_path is set to the directory containing the executable |
|
* (i.e. the last component is stripped). |
|
* |
|
* With argv0_path in hand, we perform a number of steps. The same steps |
|
* are performed for prefix and for exec_prefix, but with a different |
|
* landmark. |
|
* |
|
* Step 1. Are we running python out of the build directory? This is |
|
* checked by looking for a different kind of landmark relative to |
|
* argv0_path. For prefix, the landmark's path is derived from the VPATH |
|
* preprocessor variable (taking into account that its value is almost, but |
|
* not quite, what we need). For exec_prefix, the landmark is |
|
* Modules/Setup. If the landmark is found, we're done. |
|
* |
|
* For the remaining steps, the prefix landmark will always be |
|
* lib/python$VERSION/os.py and the exec_prefix will always be |
|
* lib/python$VERSION/lib-dynload, where $VERSION is Python's version |
|
* number as supplied by the Makefile. Note that this means that no more |
|
* build directory checking is performed; if the first step did not find |
|
* the landmarks, the assumption is that python is running from an |
|
* installed setup. |
|
* |
|
* Step 2. See if the $PYTHONHOME environment variable points to the |
|
* installed location of the Python libraries. If $PYTHONHOME is set, then |
|
* it points to prefix and exec_prefix. $PYTHONHOME can be a single |
|
* directory, which is used for both, or the prefix and exec_prefix |
|
* directories separated by a colon. |
|
* |
|
* Step 3. Try to find prefix and exec_prefix relative to argv0_path, |
|
* backtracking up the path until it is exhausted. This is the most common |
|
* step to succeed. Note that if prefix and exec_prefix are different, |
|
* exec_prefix is more likely to be found; however if exec_prefix is a |
|
* subdirectory of prefix, both will be found. |
|
* |
|
* Step 4. Search the directories pointed to by the preprocessor variables |
|
* PREFIX and EXEC_PREFIX. These are supplied by the Makefile but can be |
|
* passed in as options to the configure script. |
|
* |
|
* That's it! |
|
* |
|
* Well, almost. Once we have determined prefix and exec_prefix, the |
|
* preprocessor variable PYTHONPATH is used to construct a path. Each |
|
* relative path on PYTHONPATH is prefixed with prefix. Then the directory |
|
* containing the shared library modules is appended. The environment |
|
* variable $PYTHONPATH is inserted in front of it all. Finally, the |
|
* prefix and exec_prefix globals are tweaked so they reflect the values |
|
* expected by other code, by stripping the "lib/python$VERSION/..." stuff |
|
* off. If either points to the build directory, the globals are reset to |
|
* the corresponding preprocessor variables (so sys.prefix will reflect the |
|
* installation location, even though sys.path points into the build |
|
* directory). This seems to make more sense given that currently the only |
|
* known use of sys.prefix and sys.exec_prefix is for the ILU installation |
|
* process to find the installed Python tree. |
|
*/ |
|
|
|
#ifndef VERSION |
|
#if defined(__VMS) |
|
#define VERSION "2_1" |
|
#else |
|
#define VERSION "2.1" |
|
#endif |
|
#endif |
|
|
|
#ifndef VPATH |
|
#define VPATH "." |
|
#endif |
|
|
|
#ifndef PREFIX |
|
#define PREFIX "/usr/local" |
|
#endif |
|
|
|
#ifndef EXEC_PREFIX |
|
#define EXEC_PREFIX PREFIX |
|
#endif |
|
|
|
#ifndef PYTHONPATH |
|
#define PYTHONPATH PREFIX "/lib/python" VERSION ":" \ |
|
EXEC_PREFIX "/lib/python" VERSION "/lib-dynload" |
|
#endif |
|
|
|
#ifndef LANDMARK |
|
#define LANDMARK "os.py" |
|
#endif |
|
|
|
static char prefix[MAXPATHLEN+1]; |
|
static char exec_prefix[MAXPATHLEN+1]; |
|
static char progpath[MAXPATHLEN+1]; |
|
static char *module_search_path = NULL; |
|
static char lib_python[] = "lib/python" VERSION; |
|
|
|
static void |
|
reduce(char *dir) |
|
{ |
|
size_t i = strlen(dir); |
|
while (i > 0 && dir[i] != SEP) |
|
--i; |
|
dir[i] = '\0'; |
|
} |
|
|
|
|
|
static int |
|
isfile(char *filename) /* Is file, not directory */ |
|
{ |
|
struct stat buf; |
|
if (stat(filename, &buf) != 0) |
|
return 0; |
|
if (!S_ISREG(buf.st_mode)) |
|
return 0; |
|
return 1; |
|
} |
|
|
|
|
|
static int |
|
ismodule(char *filename) /* Is module -- check for .pyc/.pyo too */ |
|
{ |
|
if (isfile(filename)) |
|
return 1; |
|
|
|
/* Check for the compiled version of prefix. */ |
|
if (strlen(filename) < MAXPATHLEN) { |
|
strcat(filename, Py_OptimizeFlag ? "o" : "c"); |
|
if (isfile(filename)) |
|
return 1; |
|
} |
|
return 0; |
|
} |
|
|
|
|
|
static int |
|
isxfile(char *filename) /* Is executable file */ |
|
{ |
|
struct stat buf; |
|
if (stat(filename, &buf) != 0) |
|
return 0; |
|
if (!S_ISREG(buf.st_mode)) |
|
return 0; |
|
if ((buf.st_mode & 0111) == 0) |
|
return 0; |
|
return 1; |
|
} |
|
|
|
|
|
static int |
|
isdir(char *filename) /* Is directory */ |
|
{ |
|
struct stat buf; |
|
if (stat(filename, &buf) != 0) |
|
return 0; |
|
if (!S_ISDIR(buf.st_mode)) |
|
return 0; |
|
return 1; |
|
} |
|
|
|
|
|
/* joinpath requires that any buffer argument passed to it has at |
|
least MAXPATHLEN + 1 bytes allocated. If this requirement is met, |
|
it guarantees that it will never overflow the buffer. If stuff |
|
is too long, buffer will contain a truncated copy of stuff. |
|
*/ |
|
static void |
|
joinpath(char *buffer, char *stuff) |
|
{ |
|
size_t n, k; |
|
if (stuff[0] == SEP) |
|
n = 0; |
|
else { |
|
n = strlen(buffer); |
|
if (n > 0 && buffer[n-1] != SEP && n < MAXPATHLEN) |
|
buffer[n++] = SEP; |
|
} |
|
k = strlen(stuff); |
|
if (n + k > MAXPATHLEN) |
|
k = MAXPATHLEN - n; |
|
strncpy(buffer+n, stuff, k); |
|
buffer[n+k] = '\0'; |
|
} |
|
|
|
/* copy_absolute requires that path be allocated at least |
|
MAXPATHLEN + 1 bytes and that p be no more than MAXPATHLEN bytes. */ |
|
static void |
|
copy_absolute(char *path, char *p) |
|
{ |
|
if (p[0] == SEP) |
|
strcpy(path, p); |
|
else { |
|
getcwd(path, MAXPATHLEN); |
|
if (p[0] == '.' && p[1] == SEP) |
|
p += 2; |
|
joinpath(path, p); |
|
} |
|
} |
|
|
|
/* absolutize() requires that path be allocated at least MAXPATHLEN+1 bytes. */ |
|
static void |
|
absolutize(char *path) |
|
{ |
|
char buffer[MAXPATHLEN + 1]; |
|
|
|
if (path[0] == SEP) |
|
return; |
|
copy_absolute(buffer, path); |
|
strcpy(path, buffer); |
|
} |
|
|
|
/* search_for_prefix requires that argv0_path be no more than MAXPATHLEN |
|
bytes long. |
|
*/ |
|
static int |
|
search_for_prefix(char *argv0_path, char *home) |
|
{ |
|
size_t n; |
|
char *vpath; |
|
|
|
/* If PYTHONHOME is set, we believe it unconditionally */ |
|
if (home) { |
|
char *delim; |
|
strncpy(prefix, home, MAXPATHLEN); |
|
delim = strchr(prefix, DELIM); |
|
if (delim) |
|
*delim = '\0'; |
|
joinpath(prefix, lib_python); |
|
joinpath(prefix, LANDMARK); |
|
return 1; |
|
} |
|
|
|
/* Check to see if argv[0] is in the build directory */ |
|
strcpy(prefix, argv0_path); |
|
joinpath(prefix, "Modules/Setup"); |
|
if (isfile(prefix)) { |
|
/* Check VPATH to see if argv0_path is in the build directory. */ |
|
vpath = VPATH; |
|
strcpy(prefix, argv0_path); |
|
joinpath(prefix, vpath); |
|
joinpath(prefix, "Lib"); |
|
joinpath(prefix, LANDMARK); |
|
if (ismodule(prefix)) |
|
return -1; |
|
} |
|
|
|
/* Search from argv0_path, until root is found */ |
|
copy_absolute(prefix, argv0_path); |
|
do { |
|
n = strlen(prefix); |
|
joinpath(prefix, lib_python); |
|
joinpath(prefix, LANDMARK); |
|
if (ismodule(prefix)) |
|
return 1; |
|
prefix[n] = '\0'; |
|
reduce(prefix); |
|
} while (prefix[0]); |
|
|
|
/* Look at configure's PREFIX */ |
|
strncpy(prefix, PREFIX, MAXPATHLEN); |
|
joinpath(prefix, lib_python); |
|
joinpath(prefix, LANDMARK); |
|
if (ismodule(prefix)) |
|
return 1; |
|
|
|
/* Fail */ |
|
return 0; |
|
} |
|
|
|
|
|
/* search_for_exec_prefix requires that argv0_path be no more than |
|
MAXPATHLEN bytes long. |
|
*/ |
|
static int |
|
search_for_exec_prefix(char *argv0_path, char *home) |
|
{ |
|
size_t n; |
|
|
|
/* If PYTHONHOME is set, we believe it unconditionally */ |
|
if (home) { |
|
char *delim; |
|
delim = strchr(home, DELIM); |
|
if (delim) |
|
strncpy(exec_prefix, delim+1, MAXPATHLEN); |
|
else |
|
strncpy(exec_prefix, home, MAXPATHLEN); |
|
joinpath(exec_prefix, lib_python); |
|
joinpath(exec_prefix, "lib-dynload"); |
|
return 1; |
|
} |
|
|
|
/* Check to see if argv[0] is in the build directory */ |
|
strcpy(exec_prefix, argv0_path); |
|
joinpath(exec_prefix, "Modules/Setup"); |
|
if (isfile(exec_prefix)) { |
|
reduce(exec_prefix); |
|
return -1; |
|
} |
|
|
|
/* Search from argv0_path, until root is found */ |
|
copy_absolute(exec_prefix, argv0_path); |
|
do { |
|
n = strlen(exec_prefix); |
|
joinpath(exec_prefix, lib_python); |
|
joinpath(exec_prefix, "lib-dynload"); |
|
if (isdir(exec_prefix)) |
|
return 1; |
|
exec_prefix[n] = '\0'; |
|
reduce(exec_prefix); |
|
} while (exec_prefix[0]); |
|
|
|
/* Look at configure's EXEC_PREFIX */ |
|
strncpy(exec_prefix, EXEC_PREFIX, MAXPATHLEN); |
|
joinpath(exec_prefix, lib_python); |
|
joinpath(exec_prefix, "lib-dynload"); |
|
if (isdir(exec_prefix)) |
|
return 1; |
|
|
|
/* Fail */ |
|
return 0; |
|
} |
|
|
|
|
|
static void |
|
calculate_path(void) |
|
{ |
|
extern char *Py_GetProgramName(void); |
|
|
|
static char delimiter[2] = {DELIM, '\0'}; |
|
static char separator[2] = {SEP, '\0'}; |
|
char *pythonpath = PYTHONPATH; |
|
char *rtpypath = Py_GETENV("PYTHONPATH"); |
|
char *home = Py_GetPythonHome(); |
|
char *path = getenv("PATH"); |
|
char *prog = Py_GetProgramName(); |
|
char argv0_path[MAXPATHLEN+1]; |
|
char zip_path[MAXPATHLEN+1]; |
|
int pfound, efound; /* 1 if found; -1 if found build directory */ |
|
char *buf; |
|
size_t bufsz; |
|
size_t prefixsz; |
|
char *defpath = pythonpath; |
|
#ifdef WITH_NEXT_FRAMEWORK |
|
NSModule pythonModule; |
|
#endif |
|
|
|
/* If there is no slash in the argv0 path, then we have to |
|
* assume python is on the user's $PATH, since there's no |
|
* other way to find a directory to start the search from. If |
|
* $PATH isn't exported, you lose. |
|
*/ |
|
if (strchr(prog, SEP)) |
|
strncpy(progpath, prog, MAXPATHLEN); |
|
else if (path) { |
|
while (1) { |
|
char *delim = strchr(path, DELIM); |
|
|
|
if (delim) { |
|
size_t len = delim - path; |
|
if (len > MAXPATHLEN) |
|
len = MAXPATHLEN; |
|
strncpy(progpath, path, len); |
|
*(progpath + len) = '\0'; |
|
} |
|
else |
|
strncpy(progpath, path, MAXPATHLEN); |
|
|
|
joinpath(progpath, prog); |
|
if (isxfile(progpath)) |
|
break; |
|
|
|
if (!delim) { |
|
progpath[0] = '\0'; |
|
break; |
|
} |
|
path = delim + 1; |
|
} |
|
} |
|
else |
|
progpath[0] = '\0'; |
|
if (progpath[0] != SEP) |
|
absolutize(progpath); |
|
strncpy(argv0_path, progpath, MAXPATHLEN); |
|
argv0_path[MAXPATHLEN] = '\0'; |
|
|
|
#ifdef WITH_NEXT_FRAMEWORK |
|
/* On Mac OS X we have a special case if we're running from a framework. |
|
** This is because the python home should be set relative to the library, |
|
** which is in the framework, not relative to the executable, which may |
|
** be outside of the framework. Except when we're in the build directory... |
|
*/ |
|
pythonModule = NSModuleForSymbol(NSLookupAndBindSymbol("_Py_Initialize")); |
|
/* Use dylib functions to find out where the framework was loaded from */ |
|
buf = (char *)NSLibraryNameForModule(pythonModule); |
|
if (buf != NULL) { |
|
/* We're in a framework. */ |
|
/* See if we might be in the build directory. The framework in the |
|
** build directory is incomplete, it only has the .dylib and a few |
|
** needed symlinks, it doesn't have the Lib directories and such. |
|
** If we're running with the framework from the build directory we must |
|
** be running the interpreter in the build directory, so we use the |
|
** build-directory-specific logic to find Lib and such. |
|
*/ |
|
strncpy(argv0_path, buf, MAXPATHLEN); |
|
reduce(argv0_path); |
|
joinpath(argv0_path, lib_python); |
|
joinpath(argv0_path, LANDMARK); |
|
if (!ismodule(argv0_path)) { |
|
/* We are in the build directory so use the name of the |
|
executable - we know that the absolute path is passed */ |
|
strncpy(argv0_path, prog, MAXPATHLEN); |
|
} |
|
else { |
|
/* Use the location of the library as the progpath */ |
|
strncpy(argv0_path, buf, MAXPATHLEN); |
|
} |
|
} |
|
#endif |
|
|
|
#if HAVE_READLINK |
|
{ |
|
char tmpbuffer[MAXPATHLEN+1]; |
|
int linklen = readlink(progpath, tmpbuffer, MAXPATHLEN); |
|
while (linklen != -1) { |
|
/* It's not null terminated! */ |
|
tmpbuffer[linklen] = '\0'; |
|
if (tmpbuffer[0] == SEP) |
|
/* tmpbuffer should never be longer than MAXPATHLEN, |
|
but extra check does not hurt */ |
|
strncpy(argv0_path, tmpbuffer, MAXPATHLEN); |
|
else { |
|
/* Interpret relative to progpath */ |
|
reduce(argv0_path); |
|
joinpath(argv0_path, tmpbuffer); |
|
} |
|
linklen = readlink(argv0_path, tmpbuffer, MAXPATHLEN); |
|
} |
|
} |
|
#endif /* HAVE_READLINK */ |
|
|
|
reduce(argv0_path); |
|
/* At this point, argv0_path is guaranteed to be less than |
|
MAXPATHLEN bytes long. |
|
*/ |
|
|
|
if (!(pfound = search_for_prefix(argv0_path, home))) { |
|
if (!Py_FrozenFlag) |
|
fprintf(stderr, |
|
"Could not find platform independent libraries <prefix>\n"); |
|
strncpy(prefix, PREFIX, MAXPATHLEN); |
|
joinpath(prefix, lib_python); |
|
} |
|
else |
|
reduce(prefix); |
|
|
|
strncpy(zip_path, prefix, MAXPATHLEN); |
|
zip_path[MAXPATHLEN] = '\0'; |
|
if (pfound > 0) { /* Use the reduced prefix returned by Py_GetPrefix() */ |
|
reduce(zip_path); |
|
reduce(zip_path); |
|
} |
|
else |
|
strncpy(zip_path, PREFIX, MAXPATHLEN); |
|
joinpath(zip_path, "lib/python00.zip"); |
|
bufsz = strlen(zip_path); /* Replace "00" with version */ |
|
zip_path[bufsz - 6] = VERSION[0]; |
|
zip_path[bufsz - 5] = VERSION[2]; |
|
|
|
if (!(efound = search_for_exec_prefix(argv0_path, home))) { |
|
if (!Py_FrozenFlag) |
|
fprintf(stderr, |
|
"Could not find platform dependent libraries <exec_prefix>\n"); |
|
strncpy(exec_prefix, EXEC_PREFIX, MAXPATHLEN); |
|
joinpath(exec_prefix, "lib/lib-dynload"); |
|
} |
|
/* If we found EXEC_PREFIX do *not* reduce it! (Yet.) */ |
|
|
|
if ((!pfound || !efound) && !Py_FrozenFlag) |
|
fprintf(stderr, |
|
"Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>]\n"); |
|
|
|
/* Calculate size of return buffer. |
|
*/ |
|
bufsz = 0; |
|
|
|
if (rtpypath) |
|
bufsz += strlen(rtpypath) + 1; |
|
|
|
prefixsz = strlen(prefix) + 1; |
|
|
|
while (1) { |
|
char *delim = strchr(defpath, DELIM); |
|
|
|
if (defpath[0] != SEP) |
|
/* Paths are relative to prefix */ |
|
bufsz += prefixsz; |
|
|
|
if (delim) |
|
bufsz += delim - defpath + 1; |
|
else { |
|
bufsz += strlen(defpath) + 1; |
|
break; |
|
} |
|
defpath = delim + 1; |
|
} |
|
|
|
bufsz += strlen(zip_path) + 1; |
|
bufsz += strlen(exec_prefix) + 1; |
|
|
|
/* This is the only malloc call in this file */ |
|
buf = PyMem_Malloc(bufsz); |
|
|
|
if (buf == NULL) { |
|
/* We can't exit, so print a warning and limp along */ |
|
fprintf(stderr, "Not enough memory for dynamic PYTHONPATH.\n"); |
|
fprintf(stderr, "Using default static PYTHONPATH.\n"); |
|
module_search_path = PYTHONPATH; |
|
} |
|
else { |
|
/* Run-time value of $PYTHONPATH goes first */ |
|
if (rtpypath) { |
|
strcpy(buf, rtpypath); |
|
strcat(buf, delimiter); |
|
} |
|
else |
|
buf[0] = '\0'; |
|
|
|
/* Next is the default zip path */ |
|
strcat(buf, zip_path); |
|
strcat(buf, delimiter); |
|
|
|
/* Next goes merge of compile-time $PYTHONPATH with |
|
* dynamically located prefix. |
|
*/ |
|
defpath = pythonpath; |
|
while (1) { |
|
char *delim = strchr(defpath, DELIM); |
|
|
|
if (defpath[0] != SEP) { |
|
strcat(buf, prefix); |
|
strcat(buf, separator); |
|
} |
|
|
|
if (delim) { |
|
size_t len = delim - defpath + 1; |
|
size_t end = strlen(buf) + len; |
|
strncat(buf, defpath, len); |
|
*(buf + end) = '\0'; |
|
} |
|
else { |
|
strcat(buf, defpath); |
|
break; |
|
} |
|
defpath = delim + 1; |
|
} |
|
strcat(buf, delimiter); |
|
|
|
/* Finally, on goes the directory for dynamic-load modules */ |
|
strcat(buf, exec_prefix); |
|
|
|
/* And publish the results */ |
|
module_search_path = buf; |
|
} |
|
|
|
/* Reduce prefix and exec_prefix to their essence, |
|
* e.g. /usr/local/lib/python1.5 is reduced to /usr/local. |
|
* If we're loading relative to the build directory, |
|
* return the compiled-in defaults instead. |
|
*/ |
|
if (pfound > 0) { |
|
reduce(prefix); |
|
reduce(prefix); |
|
} |
|
else |
|
strncpy(prefix, PREFIX, MAXPATHLEN); |
|
|
|
if (efound > 0) { |
|
reduce(exec_prefix); |
|
reduce(exec_prefix); |
|
reduce(exec_prefix); |
|
} |
|
else |
|
strncpy(exec_prefix, EXEC_PREFIX, MAXPATHLEN); |
|
} |
|
|
|
|
|
/* External interface */ |
|
|
|
char * |
|
Py_GetPath(void) |
|
{ |
|
if (!module_search_path) |
|
calculate_path(); |
|
return module_search_path; |
|
} |
|
|
|
char * |
|
Py_GetPrefix(void) |
|
{ |
|
if (!module_search_path) |
|
calculate_path(); |
|
return prefix; |
|
} |
|
|
|
char * |
|
Py_GetExecPrefix(void) |
|
{ |
|
if (!module_search_path) |
|
calculate_path(); |
|
return exec_prefix; |
|
} |
|
|
|
char * |
|
Py_GetProgramFullPath(void) |
|
{ |
|
if (!module_search_path) |
|
calculate_path(); |
|
return progpath; |
|
}
|
|
|