You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
404 lines
7.9 KiB
404 lines
7.9 KiB
/* Complex math module */ |
|
|
|
/* much code borrowed from mathmodule.c */ |
|
|
|
#include "Python.h" |
|
|
|
#ifndef M_PI |
|
#define M_PI (3.141592653589793239) |
|
#endif |
|
|
|
/* First, the C functions that do the real work */ |
|
|
|
/* constants */ |
|
static Py_complex c_one = {1., 0.}; |
|
static Py_complex c_half = {0.5, 0.}; |
|
static Py_complex c_i = {0., 1.}; |
|
static Py_complex c_halfi = {0., 0.5}; |
|
|
|
/* forward declarations */ |
|
static Py_complex c_log(Py_complex); |
|
static Py_complex c_prodi(Py_complex); |
|
static Py_complex c_sqrt(Py_complex); |
|
|
|
|
|
static Py_complex |
|
c_acos(Py_complex x) |
|
{ |
|
return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i, |
|
c_sqrt(c_diff(c_one,c_prod(x,x)))))))); |
|
} |
|
|
|
PyDoc_STRVAR(c_acos_doc, |
|
"acos(x)\n" |
|
"\n" |
|
"Return the arc cosine of x."); |
|
|
|
|
|
static Py_complex |
|
c_acosh(Py_complex x) |
|
{ |
|
Py_complex z; |
|
z = c_sqrt(c_half); |
|
z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_one)), |
|
c_sqrt(c_diff(x,c_one))))); |
|
return c_sum(z, z); |
|
} |
|
|
|
PyDoc_STRVAR(c_acosh_doc, |
|
"acosh(x)\n" |
|
"\n" |
|
"Return the hyperbolic arccosine of x."); |
|
|
|
|
|
static Py_complex |
|
c_asin(Py_complex x) |
|
{ |
|
/* -i * log[(sqrt(1-x**2) + i*x] */ |
|
const Py_complex squared = c_prod(x, x); |
|
const Py_complex sqrt_1_minus_x_sq = c_sqrt(c_diff(c_one, squared)); |
|
return c_neg(c_prodi(c_log( |
|
c_sum(sqrt_1_minus_x_sq, c_prodi(x)) |
|
) ) ); |
|
} |
|
|
|
PyDoc_STRVAR(c_asin_doc, |
|
"asin(x)\n" |
|
"\n" |
|
"Return the arc sine of x."); |
|
|
|
|
|
static Py_complex |
|
c_asinh(Py_complex x) |
|
{ |
|
Py_complex z; |
|
z = c_sqrt(c_half); |
|
z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x, c_i)), |
|
c_sqrt(c_diff(x, c_i))))); |
|
return c_sum(z, z); |
|
} |
|
|
|
PyDoc_STRVAR(c_asinh_doc, |
|
"asinh(x)\n" |
|
"\n" |
|
"Return the hyperbolic arc sine of x."); |
|
|
|
|
|
static Py_complex |
|
c_atan(Py_complex x) |
|
{ |
|
return c_prod(c_halfi,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x)))); |
|
} |
|
|
|
PyDoc_STRVAR(c_atan_doc, |
|
"atan(x)\n" |
|
"\n" |
|
"Return the arc tangent of x."); |
|
|
|
|
|
static Py_complex |
|
c_atanh(Py_complex x) |
|
{ |
|
return c_prod(c_half,c_log(c_quot(c_sum(c_one,x),c_diff(c_one,x)))); |
|
} |
|
|
|
PyDoc_STRVAR(c_atanh_doc, |
|
"atanh(x)\n" |
|
"\n" |
|
"Return the hyperbolic arc tangent of x."); |
|
|
|
|
|
static Py_complex |
|
c_cos(Py_complex x) |
|
{ |
|
Py_complex r; |
|
r.real = cos(x.real)*cosh(x.imag); |
|
r.imag = -sin(x.real)*sinh(x.imag); |
|
return r; |
|
} |
|
|
|
PyDoc_STRVAR(c_cos_doc, |
|
"cos(x)\n" |
|
"n" |
|
"Return the cosine of x."); |
|
|
|
|
|
static Py_complex |
|
c_cosh(Py_complex x) |
|
{ |
|
Py_complex r; |
|
r.real = cos(x.imag)*cosh(x.real); |
|
r.imag = sin(x.imag)*sinh(x.real); |
|
return r; |
|
} |
|
|
|
PyDoc_STRVAR(c_cosh_doc, |
|
"cosh(x)\n" |
|
"n" |
|
"Return the hyperbolic cosine of x."); |
|
|
|
|
|
static Py_complex |
|
c_exp(Py_complex x) |
|
{ |
|
Py_complex r; |
|
double l = exp(x.real); |
|
r.real = l*cos(x.imag); |
|
r.imag = l*sin(x.imag); |
|
return r; |
|
} |
|
|
|
PyDoc_STRVAR(c_exp_doc, |
|
"exp(x)\n" |
|
"\n" |
|
"Return the exponential value e**x."); |
|
|
|
|
|
static Py_complex |
|
c_log(Py_complex x) |
|
{ |
|
Py_complex r; |
|
double l = hypot(x.real,x.imag); |
|
r.imag = atan2(x.imag, x.real); |
|
r.real = log(l); |
|
return r; |
|
} |
|
|
|
PyDoc_STRVAR(c_log_doc, |
|
"log(x)\n" |
|
"\n" |
|
"Return the natural logarithm of x."); |
|
|
|
|
|
static Py_complex |
|
c_log10(Py_complex x) |
|
{ |
|
Py_complex r; |
|
double l = hypot(x.real,x.imag); |
|
r.imag = atan2(x.imag, x.real)/log(10.); |
|
r.real = log10(l); |
|
return r; |
|
} |
|
|
|
PyDoc_STRVAR(c_log10_doc, |
|
"log10(x)\n" |
|
"\n" |
|
"Return the base-10 logarithm of x."); |
|
|
|
|
|
/* internal function not available from Python */ |
|
static Py_complex |
|
c_prodi(Py_complex x) |
|
{ |
|
Py_complex r; |
|
r.real = -x.imag; |
|
r.imag = x.real; |
|
return r; |
|
} |
|
|
|
|
|
static Py_complex |
|
c_sin(Py_complex x) |
|
{ |
|
Py_complex r; |
|
r.real = sin(x.real) * cosh(x.imag); |
|
r.imag = cos(x.real) * sinh(x.imag); |
|
return r; |
|
} |
|
|
|
PyDoc_STRVAR(c_sin_doc, |
|
"sin(x)\n" |
|
"\n" |
|
"Return the sine of x."); |
|
|
|
|
|
static Py_complex |
|
c_sinh(Py_complex x) |
|
{ |
|
Py_complex r; |
|
r.real = cos(x.imag) * sinh(x.real); |
|
r.imag = sin(x.imag) * cosh(x.real); |
|
return r; |
|
} |
|
|
|
PyDoc_STRVAR(c_sinh_doc, |
|
"sinh(x)\n" |
|
"\n" |
|
"Return the hyperbolic sine of x."); |
|
|
|
|
|
static Py_complex |
|
c_sqrt(Py_complex x) |
|
{ |
|
Py_complex r; |
|
double s,d; |
|
if (x.real == 0. && x.imag == 0.) |
|
r = x; |
|
else { |
|
s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag))); |
|
d = 0.5*x.imag/s; |
|
if (x.real > 0.) { |
|
r.real = s; |
|
r.imag = d; |
|
} |
|
else if (x.imag >= 0.) { |
|
r.real = d; |
|
r.imag = s; |
|
} |
|
else { |
|
r.real = -d; |
|
r.imag = -s; |
|
} |
|
} |
|
return r; |
|
} |
|
|
|
PyDoc_STRVAR(c_sqrt_doc, |
|
"sqrt(x)\n" |
|
"\n" |
|
"Return the square root of x."); |
|
|
|
|
|
static Py_complex |
|
c_tan(Py_complex x) |
|
{ |
|
Py_complex r; |
|
double sr,cr,shi,chi; |
|
double rs,is,rc,ic; |
|
double d; |
|
sr = sin(x.real); |
|
cr = cos(x.real); |
|
shi = sinh(x.imag); |
|
chi = cosh(x.imag); |
|
rs = sr * chi; |
|
is = cr * shi; |
|
rc = cr * chi; |
|
ic = -sr * shi; |
|
d = rc*rc + ic * ic; |
|
r.real = (rs*rc + is*ic) / d; |
|
r.imag = (is*rc - rs*ic) / d; |
|
return r; |
|
} |
|
|
|
PyDoc_STRVAR(c_tan_doc, |
|
"tan(x)\n" |
|
"\n" |
|
"Return the tangent of x."); |
|
|
|
|
|
static Py_complex |
|
c_tanh(Py_complex x) |
|
{ |
|
Py_complex r; |
|
double si,ci,shr,chr; |
|
double rs,is,rc,ic; |
|
double d; |
|
si = sin(x.imag); |
|
ci = cos(x.imag); |
|
shr = sinh(x.real); |
|
chr = cosh(x.real); |
|
rs = ci * shr; |
|
is = si * chr; |
|
rc = ci * chr; |
|
ic = si * shr; |
|
d = rc*rc + ic*ic; |
|
r.real = (rs*rc + is*ic) / d; |
|
r.imag = (is*rc - rs*ic) / d; |
|
return r; |
|
} |
|
|
|
PyDoc_STRVAR(c_tanh_doc, |
|
"tanh(x)\n" |
|
"\n" |
|
"Return the hyperbolic tangent of x."); |
|
|
|
|
|
/* And now the glue to make them available from Python: */ |
|
|
|
static PyObject * |
|
math_error(void) |
|
{ |
|
if (errno == EDOM) |
|
PyErr_SetString(PyExc_ValueError, "math domain error"); |
|
else if (errno == ERANGE) |
|
PyErr_SetString(PyExc_OverflowError, "math range error"); |
|
else /* Unexpected math error */ |
|
PyErr_SetFromErrno(PyExc_ValueError); |
|
return NULL; |
|
} |
|
|
|
static PyObject * |
|
math_1(PyObject *args, Py_complex (*func)(Py_complex)) |
|
{ |
|
Py_complex x; |
|
if (!PyArg_ParseTuple(args, "D", &x)) |
|
return NULL; |
|
errno = 0; |
|
PyFPE_START_PROTECT("complex function", return 0) |
|
x = (*func)(x); |
|
PyFPE_END_PROTECT(x) |
|
Py_ADJUST_ERANGE2(x.real, x.imag); |
|
if (errno != 0) |
|
return math_error(); |
|
else |
|
return PyComplex_FromCComplex(x); |
|
} |
|
|
|
#define FUNC1(stubname, func) \ |
|
static PyObject * stubname(PyObject *self, PyObject *args) { \ |
|
return math_1(args, func); \ |
|
} |
|
|
|
FUNC1(cmath_acos, c_acos) |
|
FUNC1(cmath_acosh, c_acosh) |
|
FUNC1(cmath_asin, c_asin) |
|
FUNC1(cmath_asinh, c_asinh) |
|
FUNC1(cmath_atan, c_atan) |
|
FUNC1(cmath_atanh, c_atanh) |
|
FUNC1(cmath_cos, c_cos) |
|
FUNC1(cmath_cosh, c_cosh) |
|
FUNC1(cmath_exp, c_exp) |
|
FUNC1(cmath_log, c_log) |
|
FUNC1(cmath_log10, c_log10) |
|
FUNC1(cmath_sin, c_sin) |
|
FUNC1(cmath_sinh, c_sinh) |
|
FUNC1(cmath_sqrt, c_sqrt) |
|
FUNC1(cmath_tan, c_tan) |
|
FUNC1(cmath_tanh, c_tanh) |
|
|
|
|
|
PyDoc_STRVAR(module_doc, |
|
"This module is always available. It provides access to mathematical\n" |
|
"functions for complex numbers."); |
|
|
|
static PyMethodDef cmath_methods[] = { |
|
{"acos", cmath_acos, METH_VARARGS, c_acos_doc}, |
|
{"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc}, |
|
{"asin", cmath_asin, METH_VARARGS, c_asin_doc}, |
|
{"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc}, |
|
{"atan", cmath_atan, METH_VARARGS, c_atan_doc}, |
|
{"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc}, |
|
{"cos", cmath_cos, METH_VARARGS, c_cos_doc}, |
|
{"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc}, |
|
{"exp", cmath_exp, METH_VARARGS, c_exp_doc}, |
|
{"log", cmath_log, METH_VARARGS, c_log_doc}, |
|
{"log10", cmath_log10, METH_VARARGS, c_log10_doc}, |
|
{"sin", cmath_sin, METH_VARARGS, c_sin_doc}, |
|
{"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc}, |
|
{"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc}, |
|
{"tan", cmath_tan, METH_VARARGS, c_tan_doc}, |
|
{"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc}, |
|
{NULL, NULL} /* sentinel */ |
|
}; |
|
|
|
PyMODINIT_FUNC |
|
initcmath(void) |
|
{ |
|
PyObject *m; |
|
|
|
m = Py_InitModule3("cmath", cmath_methods, module_doc); |
|
|
|
PyModule_AddObject(m, "pi", |
|
PyFloat_FromDouble(atan(1.0) * 4.0)); |
|
PyModule_AddObject(m, "e", PyFloat_FromDouble(exp(1.0))); |
|
}
|
|
|