You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
855 lines
31 KiB
855 lines
31 KiB
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
// Author: wan@google.com (Zhanyong Wan) |
|
|
|
// Google Test - The Google C++ Testing Framework |
|
// |
|
// This file implements a universal value printer that can print a |
|
// value of any type T: |
|
// |
|
// void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); |
|
// |
|
// A user can teach this function how to print a class type T by |
|
// defining either operator<<() or PrintTo() in the namespace that |
|
// defines T. More specifically, the FIRST defined function in the |
|
// following list will be used (assuming T is defined in namespace |
|
// foo): |
|
// |
|
// 1. foo::PrintTo(const T&, ostream*) |
|
// 2. operator<<(ostream&, const T&) defined in either foo or the |
|
// global namespace. |
|
// |
|
// If none of the above is defined, it will print the debug string of |
|
// the value if it is a protocol buffer, or print the raw bytes in the |
|
// value otherwise. |
|
// |
|
// To aid debugging: when T is a reference type, the address of the |
|
// value is also printed; when T is a (const) char pointer, both the |
|
// pointer value and the NUL-terminated string it points to are |
|
// printed. |
|
// |
|
// We also provide some convenient wrappers: |
|
// |
|
// // Prints a value to a string. For a (const or not) char |
|
// // pointer, the NUL-terminated string (but not the pointer) is |
|
// // printed. |
|
// std::string ::testing::PrintToString(const T& value); |
|
// |
|
// // Prints a value tersely: for a reference type, the referenced |
|
// // value (but not the address) is printed; for a (const or not) char |
|
// // pointer, the NUL-terminated string (but not the pointer) is |
|
// // printed. |
|
// void ::testing::internal::UniversalTersePrint(const T& value, ostream*); |
|
// |
|
// // Prints value using the type inferred by the compiler. The difference |
|
// // from UniversalTersePrint() is that this function prints both the |
|
// // pointer and the NUL-terminated string for a (const or not) char pointer. |
|
// void ::testing::internal::UniversalPrint(const T& value, ostream*); |
|
// |
|
// // Prints the fields of a tuple tersely to a string vector, one |
|
// // element for each field. Tuple support must be enabled in |
|
// // gtest-port.h. |
|
// std::vector<string> UniversalTersePrintTupleFieldsToStrings( |
|
// const Tuple& value); |
|
// |
|
// Known limitation: |
|
// |
|
// The print primitives print the elements of an STL-style container |
|
// using the compiler-inferred type of *iter where iter is a |
|
// const_iterator of the container. When const_iterator is an input |
|
// iterator but not a forward iterator, this inferred type may not |
|
// match value_type, and the print output may be incorrect. In |
|
// practice, this is rarely a problem as for most containers |
|
// const_iterator is a forward iterator. We'll fix this if there's an |
|
// actual need for it. Note that this fix cannot rely on value_type |
|
// being defined as many user-defined container types don't have |
|
// value_type. |
|
|
|
#ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
|
#define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
|
|
|
#include <ostream> // NOLINT |
|
#include <sstream> |
|
#include <string> |
|
#include <utility> |
|
#include <vector> |
|
#include "gtest/internal/gtest-port.h" |
|
#include "gtest/internal/gtest-internal.h" |
|
|
|
namespace testing { |
|
|
|
// Definitions in the 'internal' and 'internal2' name spaces are |
|
// subject to change without notice. DO NOT USE THEM IN USER CODE! |
|
namespace internal2 { |
|
|
|
// Prints the given number of bytes in the given object to the given |
|
// ostream. |
|
GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, |
|
size_t count, |
|
::std::ostream* os); |
|
|
|
// For selecting which printer to use when a given type has neither << |
|
// nor PrintTo(). |
|
enum TypeKind { |
|
kProtobuf, // a protobuf type |
|
kConvertibleToInteger, // a type implicitly convertible to BiggestInt |
|
// (e.g. a named or unnamed enum type) |
|
kOtherType // anything else |
|
}; |
|
|
|
// TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called |
|
// by the universal printer to print a value of type T when neither |
|
// operator<< nor PrintTo() is defined for T, where kTypeKind is the |
|
// "kind" of T as defined by enum TypeKind. |
|
template <typename T, TypeKind kTypeKind> |
|
class TypeWithoutFormatter { |
|
public: |
|
// This default version is called when kTypeKind is kOtherType. |
|
static void PrintValue(const T& value, ::std::ostream* os) { |
|
PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value), |
|
sizeof(value), os); |
|
} |
|
}; |
|
|
|
// We print a protobuf using its ShortDebugString() when the string |
|
// doesn't exceed this many characters; otherwise we print it using |
|
// DebugString() for better readability. |
|
const size_t kProtobufOneLinerMaxLength = 50; |
|
|
|
template <typename T> |
|
class TypeWithoutFormatter<T, kProtobuf> { |
|
public: |
|
static void PrintValue(const T& value, ::std::ostream* os) { |
|
const ::testing::internal::string short_str = value.ShortDebugString(); |
|
const ::testing::internal::string pretty_str = |
|
short_str.length() <= kProtobufOneLinerMaxLength ? |
|
short_str : ("\n" + value.DebugString()); |
|
*os << ("<" + pretty_str + ">"); |
|
} |
|
}; |
|
|
|
template <typename T> |
|
class TypeWithoutFormatter<T, kConvertibleToInteger> { |
|
public: |
|
// Since T has no << operator or PrintTo() but can be implicitly |
|
// converted to BiggestInt, we print it as a BiggestInt. |
|
// |
|
// Most likely T is an enum type (either named or unnamed), in which |
|
// case printing it as an integer is the desired behavior. In case |
|
// T is not an enum, printing it as an integer is the best we can do |
|
// given that it has no user-defined printer. |
|
static void PrintValue(const T& value, ::std::ostream* os) { |
|
const internal::BiggestInt kBigInt = value; |
|
*os << kBigInt; |
|
} |
|
}; |
|
|
|
// Prints the given value to the given ostream. If the value is a |
|
// protocol message, its debug string is printed; if it's an enum or |
|
// of a type implicitly convertible to BiggestInt, it's printed as an |
|
// integer; otherwise the bytes in the value are printed. This is |
|
// what UniversalPrinter<T>::Print() does when it knows nothing about |
|
// type T and T has neither << operator nor PrintTo(). |
|
// |
|
// A user can override this behavior for a class type Foo by defining |
|
// a << operator in the namespace where Foo is defined. |
|
// |
|
// We put this operator in namespace 'internal2' instead of 'internal' |
|
// to simplify the implementation, as much code in 'internal' needs to |
|
// use << in STL, which would conflict with our own << were it defined |
|
// in 'internal'. |
|
// |
|
// Note that this operator<< takes a generic std::basic_ostream<Char, |
|
// CharTraits> type instead of the more restricted std::ostream. If |
|
// we define it to take an std::ostream instead, we'll get an |
|
// "ambiguous overloads" compiler error when trying to print a type |
|
// Foo that supports streaming to std::basic_ostream<Char, |
|
// CharTraits>, as the compiler cannot tell whether |
|
// operator<<(std::ostream&, const T&) or |
|
// operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more |
|
// specific. |
|
template <typename Char, typename CharTraits, typename T> |
|
::std::basic_ostream<Char, CharTraits>& operator<<( |
|
::std::basic_ostream<Char, CharTraits>& os, const T& x) { |
|
TypeWithoutFormatter<T, |
|
(internal::IsAProtocolMessage<T>::value ? kProtobuf : |
|
internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ? |
|
kConvertibleToInteger : kOtherType)>::PrintValue(x, &os); |
|
return os; |
|
} |
|
|
|
} // namespace internal2 |
|
} // namespace testing |
|
|
|
// This namespace MUST NOT BE NESTED IN ::testing, or the name look-up |
|
// magic needed for implementing UniversalPrinter won't work. |
|
namespace testing_internal { |
|
|
|
// Used to print a value that is not an STL-style container when the |
|
// user doesn't define PrintTo() for it. |
|
template <typename T> |
|
void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { |
|
// With the following statement, during unqualified name lookup, |
|
// testing::internal2::operator<< appears as if it was declared in |
|
// the nearest enclosing namespace that contains both |
|
// ::testing_internal and ::testing::internal2, i.e. the global |
|
// namespace. For more details, refer to the C++ Standard section |
|
// 7.3.4-1 [namespace.udir]. This allows us to fall back onto |
|
// testing::internal2::operator<< in case T doesn't come with a << |
|
// operator. |
|
// |
|
// We cannot write 'using ::testing::internal2::operator<<;', which |
|
// gcc 3.3 fails to compile due to a compiler bug. |
|
using namespace ::testing::internal2; // NOLINT |
|
|
|
// Assuming T is defined in namespace foo, in the next statement, |
|
// the compiler will consider all of: |
|
// |
|
// 1. foo::operator<< (thanks to Koenig look-up), |
|
// 2. ::operator<< (as the current namespace is enclosed in ::), |
|
// 3. testing::internal2::operator<< (thanks to the using statement above). |
|
// |
|
// The operator<< whose type matches T best will be picked. |
|
// |
|
// We deliberately allow #2 to be a candidate, as sometimes it's |
|
// impossible to define #1 (e.g. when foo is ::std, defining |
|
// anything in it is undefined behavior unless you are a compiler |
|
// vendor.). |
|
*os << value; |
|
} |
|
|
|
} // namespace testing_internal |
|
|
|
namespace testing { |
|
namespace internal { |
|
|
|
// UniversalPrinter<T>::Print(value, ostream_ptr) prints the given |
|
// value to the given ostream. The caller must ensure that |
|
// 'ostream_ptr' is not NULL, or the behavior is undefined. |
|
// |
|
// We define UniversalPrinter as a class template (as opposed to a |
|
// function template), as we need to partially specialize it for |
|
// reference types, which cannot be done with function templates. |
|
template <typename T> |
|
class UniversalPrinter; |
|
|
|
template <typename T> |
|
void UniversalPrint(const T& value, ::std::ostream* os); |
|
|
|
// Used to print an STL-style container when the user doesn't define |
|
// a PrintTo() for it. |
|
template <typename C> |
|
void DefaultPrintTo(IsContainer /* dummy */, |
|
false_type /* is not a pointer */, |
|
const C& container, ::std::ostream* os) { |
|
const size_t kMaxCount = 32; // The maximum number of elements to print. |
|
*os << '{'; |
|
size_t count = 0; |
|
for (typename C::const_iterator it = container.begin(); |
|
it != container.end(); ++it, ++count) { |
|
if (count > 0) { |
|
*os << ','; |
|
if (count == kMaxCount) { // Enough has been printed. |
|
*os << " ..."; |
|
break; |
|
} |
|
} |
|
*os << ' '; |
|
// We cannot call PrintTo(*it, os) here as PrintTo() doesn't |
|
// handle *it being a native array. |
|
internal::UniversalPrint(*it, os); |
|
} |
|
|
|
if (count > 0) { |
|
*os << ' '; |
|
} |
|
*os << '}'; |
|
} |
|
|
|
// Used to print a pointer that is neither a char pointer nor a member |
|
// pointer, when the user doesn't define PrintTo() for it. (A member |
|
// variable pointer or member function pointer doesn't really point to |
|
// a location in the address space. Their representation is |
|
// implementation-defined. Therefore they will be printed as raw |
|
// bytes.) |
|
template <typename T> |
|
void DefaultPrintTo(IsNotContainer /* dummy */, |
|
true_type /* is a pointer */, |
|
T* p, ::std::ostream* os) { |
|
if (p == NULL) { |
|
*os << "NULL"; |
|
} else { |
|
// C++ doesn't allow casting from a function pointer to any object |
|
// pointer. |
|
// |
|
// IsTrue() silences warnings: "Condition is always true", |
|
// "unreachable code". |
|
if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) { |
|
// T is not a function type. We just call << to print p, |
|
// relying on ADL to pick up user-defined << for their pointer |
|
// types, if any. |
|
*os << p; |
|
} else { |
|
// T is a function type, so '*os << p' doesn't do what we want |
|
// (it just prints p as bool). We want to print p as a const |
|
// void*. However, we cannot cast it to const void* directly, |
|
// even using reinterpret_cast, as earlier versions of gcc |
|
// (e.g. 3.4.5) cannot compile the cast when p is a function |
|
// pointer. Casting to UInt64 first solves the problem. |
|
*os << reinterpret_cast<const void*>( |
|
reinterpret_cast<internal::UInt64>(p)); |
|
} |
|
} |
|
} |
|
|
|
// Used to print a non-container, non-pointer value when the user |
|
// doesn't define PrintTo() for it. |
|
template <typename T> |
|
void DefaultPrintTo(IsNotContainer /* dummy */, |
|
false_type /* is not a pointer */, |
|
const T& value, ::std::ostream* os) { |
|
::testing_internal::DefaultPrintNonContainerTo(value, os); |
|
} |
|
|
|
// Prints the given value using the << operator if it has one; |
|
// otherwise prints the bytes in it. This is what |
|
// UniversalPrinter<T>::Print() does when PrintTo() is not specialized |
|
// or overloaded for type T. |
|
// |
|
// A user can override this behavior for a class type Foo by defining |
|
// an overload of PrintTo() in the namespace where Foo is defined. We |
|
// give the user this option as sometimes defining a << operator for |
|
// Foo is not desirable (e.g. the coding style may prevent doing it, |
|
// or there is already a << operator but it doesn't do what the user |
|
// wants). |
|
template <typename T> |
|
void PrintTo(const T& value, ::std::ostream* os) { |
|
// DefaultPrintTo() is overloaded. The type of its first two |
|
// arguments determine which version will be picked. If T is an |
|
// STL-style container, the version for container will be called; if |
|
// T is a pointer, the pointer version will be called; otherwise the |
|
// generic version will be called. |
|
// |
|
// Note that we check for container types here, prior to we check |
|
// for protocol message types in our operator<<. The rationale is: |
|
// |
|
// For protocol messages, we want to give people a chance to |
|
// override Google Mock's format by defining a PrintTo() or |
|
// operator<<. For STL containers, other formats can be |
|
// incompatible with Google Mock's format for the container |
|
// elements; therefore we check for container types here to ensure |
|
// that our format is used. |
|
// |
|
// The second argument of DefaultPrintTo() is needed to bypass a bug |
|
// in Symbian's C++ compiler that prevents it from picking the right |
|
// overload between: |
|
// |
|
// PrintTo(const T& x, ...); |
|
// PrintTo(T* x, ...); |
|
DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os); |
|
} |
|
|
|
// The following list of PrintTo() overloads tells |
|
// UniversalPrinter<T>::Print() how to print standard types (built-in |
|
// types, strings, plain arrays, and pointers). |
|
|
|
// Overloads for various char types. |
|
GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); |
|
GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); |
|
inline void PrintTo(char c, ::std::ostream* os) { |
|
// When printing a plain char, we always treat it as unsigned. This |
|
// way, the output won't be affected by whether the compiler thinks |
|
// char is signed or not. |
|
PrintTo(static_cast<unsigned char>(c), os); |
|
} |
|
|
|
// Overloads for other simple built-in types. |
|
inline void PrintTo(bool x, ::std::ostream* os) { |
|
*os << (x ? "true" : "false"); |
|
} |
|
|
|
// Overload for wchar_t type. |
|
// Prints a wchar_t as a symbol if it is printable or as its internal |
|
// code otherwise and also as its decimal code (except for L'\0'). |
|
// The L'\0' char is printed as "L'\\0'". The decimal code is printed |
|
// as signed integer when wchar_t is implemented by the compiler |
|
// as a signed type and is printed as an unsigned integer when wchar_t |
|
// is implemented as an unsigned type. |
|
GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); |
|
|
|
// Overloads for C strings. |
|
GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); |
|
inline void PrintTo(char* s, ::std::ostream* os) { |
|
PrintTo(ImplicitCast_<const char*>(s), os); |
|
} |
|
|
|
// signed/unsigned char is often used for representing binary data, so |
|
// we print pointers to it as void* to be safe. |
|
inline void PrintTo(const signed char* s, ::std::ostream* os) { |
|
PrintTo(ImplicitCast_<const void*>(s), os); |
|
} |
|
inline void PrintTo(signed char* s, ::std::ostream* os) { |
|
PrintTo(ImplicitCast_<const void*>(s), os); |
|
} |
|
inline void PrintTo(const unsigned char* s, ::std::ostream* os) { |
|
PrintTo(ImplicitCast_<const void*>(s), os); |
|
} |
|
inline void PrintTo(unsigned char* s, ::std::ostream* os) { |
|
PrintTo(ImplicitCast_<const void*>(s), os); |
|
} |
|
|
|
// MSVC can be configured to define wchar_t as a typedef of unsigned |
|
// short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native |
|
// type. When wchar_t is a typedef, defining an overload for const |
|
// wchar_t* would cause unsigned short* be printed as a wide string, |
|
// possibly causing invalid memory accesses. |
|
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) |
|
// Overloads for wide C strings |
|
GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); |
|
inline void PrintTo(wchar_t* s, ::std::ostream* os) { |
|
PrintTo(ImplicitCast_<const wchar_t*>(s), os); |
|
} |
|
#endif |
|
|
|
// Overload for C arrays. Multi-dimensional arrays are printed |
|
// properly. |
|
|
|
// Prints the given number of elements in an array, without printing |
|
// the curly braces. |
|
template <typename T> |
|
void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { |
|
UniversalPrint(a[0], os); |
|
for (size_t i = 1; i != count; i++) { |
|
*os << ", "; |
|
UniversalPrint(a[i], os); |
|
} |
|
} |
|
|
|
// Overloads for ::string and ::std::string. |
|
#if GTEST_HAS_GLOBAL_STRING |
|
GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); |
|
inline void PrintTo(const ::string& s, ::std::ostream* os) { |
|
PrintStringTo(s, os); |
|
} |
|
#endif // GTEST_HAS_GLOBAL_STRING |
|
|
|
GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); |
|
inline void PrintTo(const ::std::string& s, ::std::ostream* os) { |
|
PrintStringTo(s, os); |
|
} |
|
|
|
// Overloads for ::wstring and ::std::wstring. |
|
#if GTEST_HAS_GLOBAL_WSTRING |
|
GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); |
|
inline void PrintTo(const ::wstring& s, ::std::ostream* os) { |
|
PrintWideStringTo(s, os); |
|
} |
|
#endif // GTEST_HAS_GLOBAL_WSTRING |
|
|
|
#if GTEST_HAS_STD_WSTRING |
|
GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); |
|
inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { |
|
PrintWideStringTo(s, os); |
|
} |
|
#endif // GTEST_HAS_STD_WSTRING |
|
|
|
#if GTEST_HAS_TR1_TUPLE |
|
// Overload for ::std::tr1::tuple. Needed for printing function arguments, |
|
// which are packed as tuples. |
|
|
|
// Helper function for printing a tuple. T must be instantiated with |
|
// a tuple type. |
|
template <typename T> |
|
void PrintTupleTo(const T& t, ::std::ostream* os); |
|
|
|
// Overloaded PrintTo() for tuples of various arities. We support |
|
// tuples of up-to 10 fields. The following implementation works |
|
// regardless of whether tr1::tuple is implemented using the |
|
// non-standard variadic template feature or not. |
|
|
|
inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { |
|
PrintTupleTo(t, os); |
|
} |
|
|
|
template <typename T1> |
|
void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) { |
|
PrintTupleTo(t, os); |
|
} |
|
|
|
template <typename T1, typename T2> |
|
void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) { |
|
PrintTupleTo(t, os); |
|
} |
|
|
|
template <typename T1, typename T2, typename T3> |
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) { |
|
PrintTupleTo(t, os); |
|
} |
|
|
|
template <typename T1, typename T2, typename T3, typename T4> |
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) { |
|
PrintTupleTo(t, os); |
|
} |
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5> |
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t, |
|
::std::ostream* os) { |
|
PrintTupleTo(t, os); |
|
} |
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5, |
|
typename T6> |
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t, |
|
::std::ostream* os) { |
|
PrintTupleTo(t, os); |
|
} |
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5, |
|
typename T6, typename T7> |
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t, |
|
::std::ostream* os) { |
|
PrintTupleTo(t, os); |
|
} |
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5, |
|
typename T6, typename T7, typename T8> |
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t, |
|
::std::ostream* os) { |
|
PrintTupleTo(t, os); |
|
} |
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5, |
|
typename T6, typename T7, typename T8, typename T9> |
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, |
|
::std::ostream* os) { |
|
PrintTupleTo(t, os); |
|
} |
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5, |
|
typename T6, typename T7, typename T8, typename T9, typename T10> |
|
void PrintTo( |
|
const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t, |
|
::std::ostream* os) { |
|
PrintTupleTo(t, os); |
|
} |
|
#endif // GTEST_HAS_TR1_TUPLE |
|
|
|
// Overload for std::pair. |
|
template <typename T1, typename T2> |
|
void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { |
|
*os << '('; |
|
// We cannot use UniversalPrint(value.first, os) here, as T1 may be |
|
// a reference type. The same for printing value.second. |
|
UniversalPrinter<T1>::Print(value.first, os); |
|
*os << ", "; |
|
UniversalPrinter<T2>::Print(value.second, os); |
|
*os << ')'; |
|
} |
|
|
|
// Implements printing a non-reference type T by letting the compiler |
|
// pick the right overload of PrintTo() for T. |
|
template <typename T> |
|
class UniversalPrinter { |
|
public: |
|
// MSVC warns about adding const to a function type, so we want to |
|
// disable the warning. |
|
#ifdef _MSC_VER |
|
# pragma warning(push) // Saves the current warning state. |
|
# pragma warning(disable:4180) // Temporarily disables warning 4180. |
|
#endif // _MSC_VER |
|
|
|
// Note: we deliberately don't call this PrintTo(), as that name |
|
// conflicts with ::testing::internal::PrintTo in the body of the |
|
// function. |
|
static void Print(const T& value, ::std::ostream* os) { |
|
// By default, ::testing::internal::PrintTo() is used for printing |
|
// the value. |
|
// |
|
// Thanks to Koenig look-up, if T is a class and has its own |
|
// PrintTo() function defined in its namespace, that function will |
|
// be visible here. Since it is more specific than the generic ones |
|
// in ::testing::internal, it will be picked by the compiler in the |
|
// following statement - exactly what we want. |
|
PrintTo(value, os); |
|
} |
|
|
|
#ifdef _MSC_VER |
|
# pragma warning(pop) // Restores the warning state. |
|
#endif // _MSC_VER |
|
}; |
|
|
|
// UniversalPrintArray(begin, len, os) prints an array of 'len' |
|
// elements, starting at address 'begin'. |
|
template <typename T> |
|
void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { |
|
if (len == 0) { |
|
*os << "{}"; |
|
} else { |
|
*os << "{ "; |
|
const size_t kThreshold = 18; |
|
const size_t kChunkSize = 8; |
|
// If the array has more than kThreshold elements, we'll have to |
|
// omit some details by printing only the first and the last |
|
// kChunkSize elements. |
|
// TODO(wan@google.com): let the user control the threshold using a flag. |
|
if (len <= kThreshold) { |
|
PrintRawArrayTo(begin, len, os); |
|
} else { |
|
PrintRawArrayTo(begin, kChunkSize, os); |
|
*os << ", ..., "; |
|
PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); |
|
} |
|
*os << " }"; |
|
} |
|
} |
|
// This overload prints a (const) char array compactly. |
|
GTEST_API_ void UniversalPrintArray( |
|
const char* begin, size_t len, ::std::ostream* os); |
|
|
|
// This overload prints a (const) wchar_t array compactly. |
|
GTEST_API_ void UniversalPrintArray( |
|
const wchar_t* begin, size_t len, ::std::ostream* os); |
|
|
|
// Implements printing an array type T[N]. |
|
template <typename T, size_t N> |
|
class UniversalPrinter<T[N]> { |
|
public: |
|
// Prints the given array, omitting some elements when there are too |
|
// many. |
|
static void Print(const T (&a)[N], ::std::ostream* os) { |
|
UniversalPrintArray(a, N, os); |
|
} |
|
}; |
|
|
|
// Implements printing a reference type T&. |
|
template <typename T> |
|
class UniversalPrinter<T&> { |
|
public: |
|
// MSVC warns about adding const to a function type, so we want to |
|
// disable the warning. |
|
#ifdef _MSC_VER |
|
# pragma warning(push) // Saves the current warning state. |
|
# pragma warning(disable:4180) // Temporarily disables warning 4180. |
|
#endif // _MSC_VER |
|
|
|
static void Print(const T& value, ::std::ostream* os) { |
|
// Prints the address of the value. We use reinterpret_cast here |
|
// as static_cast doesn't compile when T is a function type. |
|
*os << "@" << reinterpret_cast<const void*>(&value) << " "; |
|
|
|
// Then prints the value itself. |
|
UniversalPrint(value, os); |
|
} |
|
|
|
#ifdef _MSC_VER |
|
# pragma warning(pop) // Restores the warning state. |
|
#endif // _MSC_VER |
|
}; |
|
|
|
// Prints a value tersely: for a reference type, the referenced value |
|
// (but not the address) is printed; for a (const) char pointer, the |
|
// NUL-terminated string (but not the pointer) is printed. |
|
|
|
template <typename T> |
|
class UniversalTersePrinter { |
|
public: |
|
static void Print(const T& value, ::std::ostream* os) { |
|
UniversalPrint(value, os); |
|
} |
|
}; |
|
template <typename T> |
|
class UniversalTersePrinter<T&> { |
|
public: |
|
static void Print(const T& value, ::std::ostream* os) { |
|
UniversalPrint(value, os); |
|
} |
|
}; |
|
template <typename T, size_t N> |
|
class UniversalTersePrinter<T[N]> { |
|
public: |
|
static void Print(const T (&value)[N], ::std::ostream* os) { |
|
UniversalPrinter<T[N]>::Print(value, os); |
|
} |
|
}; |
|
template <> |
|
class UniversalTersePrinter<const char*> { |
|
public: |
|
static void Print(const char* str, ::std::ostream* os) { |
|
if (str == NULL) { |
|
*os << "NULL"; |
|
} else { |
|
UniversalPrint(string(str), os); |
|
} |
|
} |
|
}; |
|
template <> |
|
class UniversalTersePrinter<char*> { |
|
public: |
|
static void Print(char* str, ::std::ostream* os) { |
|
UniversalTersePrinter<const char*>::Print(str, os); |
|
} |
|
}; |
|
|
|
#if GTEST_HAS_STD_WSTRING |
|
template <> |
|
class UniversalTersePrinter<const wchar_t*> { |
|
public: |
|
static void Print(const wchar_t* str, ::std::ostream* os) { |
|
if (str == NULL) { |
|
*os << "NULL"; |
|
} else { |
|
UniversalPrint(::std::wstring(str), os); |
|
} |
|
} |
|
}; |
|
#endif |
|
|
|
template <> |
|
class UniversalTersePrinter<wchar_t*> { |
|
public: |
|
static void Print(wchar_t* str, ::std::ostream* os) { |
|
UniversalTersePrinter<const wchar_t*>::Print(str, os); |
|
} |
|
}; |
|
|
|
template <typename T> |
|
void UniversalTersePrint(const T& value, ::std::ostream* os) { |
|
UniversalTersePrinter<T>::Print(value, os); |
|
} |
|
|
|
// Prints a value using the type inferred by the compiler. The |
|
// difference between this and UniversalTersePrint() is that for a |
|
// (const) char pointer, this prints both the pointer and the |
|
// NUL-terminated string. |
|
template <typename T> |
|
void UniversalPrint(const T& value, ::std::ostream* os) { |
|
// A workarond for the bug in VC++ 7.1 that prevents us from instantiating |
|
// UniversalPrinter with T directly. |
|
typedef T T1; |
|
UniversalPrinter<T1>::Print(value, os); |
|
} |
|
|
|
#if GTEST_HAS_TR1_TUPLE |
|
typedef ::std::vector<string> Strings; |
|
|
|
// This helper template allows PrintTo() for tuples and |
|
// UniversalTersePrintTupleFieldsToStrings() to be defined by |
|
// induction on the number of tuple fields. The idea is that |
|
// TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N |
|
// fields in tuple t, and can be defined in terms of |
|
// TuplePrefixPrinter<N - 1>. |
|
|
|
// The inductive case. |
|
template <size_t N> |
|
struct TuplePrefixPrinter { |
|
// Prints the first N fields of a tuple. |
|
template <typename Tuple> |
|
static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { |
|
TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os); |
|
*os << ", "; |
|
UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type> |
|
::Print(::std::tr1::get<N - 1>(t), os); |
|
} |
|
|
|
// Tersely prints the first N fields of a tuple to a string vector, |
|
// one element for each field. |
|
template <typename Tuple> |
|
static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { |
|
TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings); |
|
::std::stringstream ss; |
|
UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss); |
|
strings->push_back(ss.str()); |
|
} |
|
}; |
|
|
|
// Base cases. |
|
template <> |
|
struct TuplePrefixPrinter<0> { |
|
template <typename Tuple> |
|
static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} |
|
|
|
template <typename Tuple> |
|
static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} |
|
}; |
|
// We have to specialize the entire TuplePrefixPrinter<> class |
|
// template here, even though the definition of |
|
// TersePrintPrefixToStrings() is the same as the generic version, as |
|
// Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't |
|
// support specializing a method template of a class template. |
|
template <> |
|
struct TuplePrefixPrinter<1> { |
|
template <typename Tuple> |
|
static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { |
|
UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>:: |
|
Print(::std::tr1::get<0>(t), os); |
|
} |
|
|
|
template <typename Tuple> |
|
static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { |
|
::std::stringstream ss; |
|
UniversalTersePrint(::std::tr1::get<0>(t), &ss); |
|
strings->push_back(ss.str()); |
|
} |
|
}; |
|
|
|
// Helper function for printing a tuple. T must be instantiated with |
|
// a tuple type. |
|
template <typename T> |
|
void PrintTupleTo(const T& t, ::std::ostream* os) { |
|
*os << "("; |
|
TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>:: |
|
PrintPrefixTo(t, os); |
|
*os << ")"; |
|
} |
|
|
|
// Prints the fields of a tuple tersely to a string vector, one |
|
// element for each field. See the comment before |
|
// UniversalTersePrint() for how we define "tersely". |
|
template <typename Tuple> |
|
Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { |
|
Strings result; |
|
TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>:: |
|
TersePrintPrefixToStrings(value, &result); |
|
return result; |
|
} |
|
#endif // GTEST_HAS_TR1_TUPLE |
|
|
|
} // namespace internal |
|
|
|
template <typename T> |
|
::std::string PrintToString(const T& value) { |
|
::std::stringstream ss; |
|
internal::UniversalTersePrinter<T>::Print(value, &ss); |
|
return ss.str(); |
|
} |
|
|
|
} // namespace testing |
|
|
|
#endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
|
|
|