245 lines
7.2 KiB
245 lines
7.2 KiB
vs.1.1 |
|
|
|
dcl_position v0 |
|
dcl_color v5 |
|
dcl_texcoord0 v7 |
|
|
|
// Store our input position in world space in r6 |
|
m4x3 r6, v0, c25; // v0 * l2w |
|
// Fill out our w (m4x3 doesn't touch w). |
|
mov r6.w, c16.z; |
|
|
|
// |
|
|
|
// Input diffuse v5 color is: |
|
// v5.r = overall transparency |
|
// v5.g = reflection strength (transparency) |
|
// v5.b = overall wave scaling |
|
// |
|
// v5.a is: |
|
// v5.w = 1/(2.f * edge length) |
|
// So per wave filtering is: |
|
// min(max( (waveLen * v5.wwww) - 1), 0), 1.f); |
|
// So a wave effect starts dying out when the wave is 4 times the sampling frequency, |
|
// and is completely filtered at 2 times sampling frequency. |
|
|
|
// We'd like to make this autocalculated based on the depth of the water. |
|
// The frequency filtering (v5.w) still needs to be calculated offline, because |
|
// it's dependent on edge length, but the first 3 filterings can be calculated |
|
// based on this vertex. |
|
// Basically, we want the transparency, reflection strength, and wave scaling |
|
// to go to zero as the water depth goes to zero. Linear falloffs are as good |
|
// a place to start as any. |
|
// |
|
// depth = waterlevel - r6.z => depth in feet (may be negative) |
|
// depthNorm = depth / depthFalloff => zero at watertable, one at depthFalloff beneath |
|
// atten = minAtten + depthNorm * (maxAtten - minAtten); |
|
// These are all vector ops. |
|
// This provides separate ramp ups for each of the channels (they reach full unfiltered |
|
// values at different depths), but doesn't provide separate controls for where they |
|
// go to zero (they all go to zero at zero depth). For that we need an offset. An offset |
|
// in feet (depth) is probably the most intuitive. So that changes the first calculation |
|
// of depth to: |
|
// depth = waterlevel - r6.z + offset |
|
// = (waterlevel + offset) - r6.z |
|
// And since we only need offsets for 3 channels, we can make the waterlevel constant |
|
// waterlevel[chan] = watertableheight + offset[chan], |
|
// with waterlevel.w = watertableheight. |
|
// |
|
// So: |
|
// c30 = waterlevel + offset |
|
// c31 = (maxAtten - minAtten) / depthFalloff |
|
// c32 = minAtten. |
|
// And in particular: |
|
// c30.w = waterlevel |
|
// c31.w = 1.f; |
|
// c32.w = 0; |
|
// So r4.w is the depth of this vertex in feet. |
|
|
|
// Dot our position with our direction vectors. |
|
mul r0, c8, r6.xxxx; |
|
mad r0, c9, r6.yyyy, r0; |
|
|
|
// |
|
// dist = mad( dist, kFreq.xyzw, kPhase.xyzw); |
|
mul r0, r0, c5; |
|
add r0, r0, c6; |
|
// |
|
// // Now we need dist mod'd into range [-Pi..Pi] |
|
// dist *= rcp(kTwoPi); |
|
rcp r4, c15.wwww; |
|
add r0, r0, c15.zzzz; |
|
mul r0, r0, r4; |
|
// dist = frac(dist); |
|
expp r1.y, r0.xxxx |
|
mov r1.x, r1.yyyy |
|
expp r1.y, r0.zzzz |
|
mov r1.z, r1.yyyy |
|
expp r1.y, r0.wwww |
|
mov r1.w, r1.yyyy |
|
expp r1.y, r0.yyyy |
|
// dist *= kTwoPi; |
|
mul r0, r1, c15.wwww; |
|
// dist += -kPi; |
|
sub r0, r0, c15.zzzz; |
|
|
|
// |
|
// sincos(dist, sinDist, cosDist); |
|
// sin = r0 + r0^3 * vSin.y + r0^5 * vSin.z |
|
// cos = 1 + r0^2 * vCos.y + r0^4 * vCos.z |
|
mul r1, r0, r0; // r0^2 |
|
mul r2, r1, r0; // r0^3 - probably stall |
|
mul r3, r1, r1; // r0^4 |
|
mul r4, r1, r2; // r0^5 |
|
mul r5, r2, r3; // r0^7 |
|
|
|
mul r1, r1, c14.yyyy; // r1 = r0^2 * vCos.y |
|
mad r2, r2, c13.yyyy, r0; // r2 = r0 + r0^3 * vSin.y |
|
add r1, r1, c14.xxxx; // r1 = 1 + r0^2 * vCos.y |
|
mad r2, r4, c13.zzzz, r2; // r2 = r0 + r0^3 * vSin.y + r0^5 * vSin.z |
|
mad r1, r3, c14.zzzz, r1; // r1 = 1 + r0^2 * vCos.y + r0^4 * vCos.z |
|
|
|
// r0^7 & r0^6 terms |
|
mul r4, r4, r0; // r0^6 |
|
mad r2, r5, c13.wwww, r2; |
|
mad r1, r4, c14.wwww, r1; |
|
|
|
// Calc our depth based filtering here into r4 (because we don't use it again |
|
// after here, and we need our filtering shortly). |
|
sub r4, c30, r6.zzzz; |
|
mul r4, r4, c31; |
|
add r4, r4, c32; |
|
// Clamp .xyz to range [0..1] |
|
min r4.xyz, r4, c16.zzzz; |
|
max r4.xyz, r4, c16.xxxx; |
|
|
|
// Calc our filter (see above). |
|
mul r11, v5.wwww, c29; |
|
max r11, r11, c16.xxxx; |
|
min r11, r11, c16.zzzz; |
|
|
|
//mov r2, r1; |
|
// r2 == sinDist |
|
// r1 == cosDist |
|
// sinDist *= filter; |
|
mul r2, r2, r11; |
|
// sinDist *= kAmplitude.xyzw |
|
mul r2, r2, c7; |
|
// height = dp4(sinDist, kOne); |
|
// accumPos.z += height; (but accumPos.z is currently 0). |
|
dp4 r8.x, r2, c16.zzzz; |
|
|
|
// Smooth the approach to the shore. |
|
sub r10.x, r6.z, c30.w; // r10.x = height |
|
mul r10.x, r10.x, r10.x; // r10.x = h^2 |
|
mul r10.x, r10.x, c10.x; // r10.x = -h^2 * k1 / k2^2 |
|
add r10.x, r10.x, c10.y; // r10.x = k1 + -h^2 * k1 / k2^2 |
|
max r10.x, r10.x, c16.xxxx; // Clamp to >= zero |
|
add r8.x, r8.x, r10.x; // r8.x += del |
|
|
|
mul r8.y, r8.x, r4.z; |
|
add r8.z, r8.y, c30.w; |
|
max r6.z, r6.z, r8.z; |
|
add r6.z, r6.z, c12.z; |
|
// r8.x == wave height relative to 0 |
|
// r8.y == dampened wave relative to 0 |
|
// r8.z == dampened wave height in world space |
|
// r6.z == wave height clamped to never go beneath ground level |
|
// |
|
// cosDist *= kFreq.xyzw; |
|
mul r1, r1, c5; |
|
// cosDist *= kAmplitude.xyzw; // Combine? |
|
mul r1, r1, c7; |
|
// cosDist *= filter; |
|
mul r1, r1, r11; |
|
// |
|
// accumCos = (0, 0, 0, 0); |
|
mov r7, c16.xxxx; |
|
// temp = dp4( cosDist, toCenter_X ); |
|
// accumCos.x += temp.xxxx; (but accumCos = (0,0,0,0) |
|
dp4 r7.x, r1, -c8 |
|
// |
|
// temp = dp4( cosDist, toCenter_Y ); |
|
// accumCos.y += temp.xxxx; |
|
dp4 r7.y, r1, -c9 |
|
// |
|
// } |
|
// |
|
// accumBin = (1, 0, -accumCos.x); |
|
// accumTan = (0, 1, -accumCos.y); |
|
// accumNorm = (accumCos.x, accumCos.y, 1); |
|
mov r11, c16.xxzx; |
|
add r11, r11, r7; |
|
dp3 r10.x, r11, r11; |
|
rsq r10.x, r10.x; |
|
mul r11, r11, r10.xxxx; |
|
|
|
// |
|
// Add in our scrunch (offset in X/Y plane). |
|
// Scale down our scrunch amount by the wave scaling |
|
mul r10.x, c12.y, r4.z; |
|
mad r6.xy, r11.xy, r10.xx, r6.xy; |
|
|
|
// mul r6.z, r6.z, r10.xxxx; DEBUG |
|
|
|
// mad r6, r11, c12.yyzz, r6; |
|
|
|
// accumNorm = mul (accumNorm, kScrunchScale ); // kScrunchScale = (scrunchScale, scrunchScale, 1, 1); |
|
// accumCos *= (scrunchScale, scrunchScale, 0, 0); |
|
|
|
//##mul r2.x, r6.z, c12.x; |
|
//##add r2.x, r2.x, c16.z; |
|
|
|
//##mul r7.xy, r7.xy, r2.xx; |
|
|
|
// This is actually wrong, but useful right now for visualizing the generated coords. |
|
// See below for correct version. |
|
|
|
//##sub r3, c16.xxzx, r7.xyzz; |
|
|
|
// Normalize? |
|
|
|
|
|
// Now rotate our normal vector into the wind |
|
//##dp3 r0.x, r3, c18.xyww; |
|
//##dp3 r0.y, r3, c18.zxww; |
|
//##mov r3.xy, r0; |
|
|
|
// Initialize r0.w |
|
mov r0.w, c16.zzzz; |
|
|
|
//##dp3 r0.x, r3, r3; |
|
//##rsq r0.x, r0.x; |
|
//##mul r3, r3, r0.xxxw; |
|
|
|
|
|
// |
|
// // Transform position to screen |
|
// |
|
// |
|
//m4x3 r6, v0, c25; // HACKAGE |
|
//mov r6.w, c16.z; // HACKAGE |
|
//m4x4 oPos, r6, c0; // ADDFOG |
|
m4x4 r9, r6, c0; |
|
add r10.x, r9.w, c11.x; |
|
mul oFog, r10.x, c11.y; |
|
mov oPos, r9; |
|
|
|
|
|
// Color |
|
mul oD0, c4, v5.xxxx; |
|
|
|
// UVW0 |
|
// This layer just stays put. The motion's in the texture |
|
// U = transformed U |
|
// V = transformed V |
|
dp4 r0.x, v7, c19; |
|
dp4 r0.y, v7, c20; |
|
//mul r0.y, r0.y, -c16.z; |
|
//add r0.y, r0.y, c16.z; |
|
//add r0.y, r0.y, c16.z; |
|
//add r0.y, r0.y, c16.y; |
|
mov oT0, r0.xyww; |
|
mov oT1, r0.xyww; |
|
mov oT2, r0.xyww; |
|
|
|
|