777 lines
26 KiB
777 lines
26 KiB
"""Random variable generators. |
|
|
|
integers |
|
-------- |
|
uniform within range |
|
|
|
sequences |
|
--------- |
|
pick random element |
|
generate random permutation |
|
|
|
distributions on the real line: |
|
------------------------------ |
|
uniform |
|
normal (Gaussian) |
|
lognormal |
|
negative exponential |
|
gamma |
|
beta |
|
|
|
distributions on the circle (angles 0 to 2pi) |
|
--------------------------------------------- |
|
circular uniform |
|
von Mises |
|
|
|
Translated from anonymously contributed C/C++ source. |
|
|
|
Multi-threading note: the random number generator used here is not thread- |
|
safe; it is possible that two calls return the same random value. However, |
|
you can instantiate a different instance of Random() in each thread to get |
|
generators that don't share state, then use .setstate() and .jumpahead() to |
|
move the generators to disjoint segments of the full period. For example, |
|
|
|
def create_generators(num, delta, firstseed=None): |
|
""\"Return list of num distinct generators. |
|
Each generator has its own unique segment of delta elements from |
|
Random.random()'s full period. |
|
Seed the first generator with optional arg firstseed (default is |
|
None, to seed from current time). |
|
""\" |
|
|
|
from random import Random |
|
g = Random(firstseed) |
|
result = [g] |
|
for i in range(num - 1): |
|
laststate = g.getstate() |
|
g = Random() |
|
g.setstate(laststate) |
|
g.jumpahead(delta) |
|
result.append(g) |
|
return result |
|
|
|
gens = create_generators(10, 1000000) |
|
|
|
That creates 10 distinct generators, which can be passed out to 10 distinct |
|
threads. The generators don't share state so can be called safely in |
|
parallel. So long as no thread calls its g.random() more than a million |
|
times (the second argument to create_generators), the sequences seen by |
|
each thread will not overlap. |
|
|
|
The period of the underlying Wichmann-Hill generator is 6,953,607,871,644, |
|
and that limits how far this technique can be pushed. |
|
|
|
Just for fun, note that since we know the period, .jumpahead() can also be |
|
used to "move backward in time": |
|
|
|
>>> g = Random(42) # arbitrary |
|
>>> g.random() |
|
0.25420336316883324 |
|
>>> g.jumpahead(6953607871644L - 1) # move *back* one |
|
>>> g.random() |
|
0.25420336316883324 |
|
""" |
|
# XXX The docstring sucks. |
|
|
|
from math import log as _log, exp as _exp, pi as _pi, e as _e |
|
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin |
|
from math import floor as _floor |
|
|
|
__all__ = ["Random","seed","random","uniform","randint","choice", |
|
"randrange","shuffle","normalvariate","lognormvariate", |
|
"cunifvariate","expovariate","vonmisesvariate","gammavariate", |
|
"stdgamma","gauss","betavariate","paretovariate","weibullvariate", |
|
"getstate","setstate","jumpahead","whseed"] |
|
|
|
def _verify(name, computed, expected): |
|
if abs(computed - expected) > 1e-7: |
|
raise ValueError( |
|
"computed value for %s deviates too much " |
|
"(computed %g, expected %g)" % (name, computed, expected)) |
|
|
|
NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0) |
|
_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141) |
|
|
|
TWOPI = 2.0*_pi |
|
_verify('TWOPI', TWOPI, 6.28318530718) |
|
|
|
LOG4 = _log(4.0) |
|
_verify('LOG4', LOG4, 1.38629436111989) |
|
|
|
SG_MAGICCONST = 1.0 + _log(4.5) |
|
_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627) |
|
|
|
del _verify |
|
|
|
# Translated by Guido van Rossum from C source provided by |
|
# Adrian Baddeley. |
|
|
|
class Random: |
|
"""Random number generator base class used by bound module functions. |
|
|
|
Used to instantiate instances of Random to get generators that don't |
|
share state. Especially useful for multi-threaded programs, creating |
|
a different instance of Random for each thread, and using the jumpahead() |
|
method to ensure that the generated sequences seen by each thread don't |
|
overlap. |
|
|
|
Class Random can also be subclassed if you want to use a different basic |
|
generator of your own devising: in that case, override the following |
|
methods: random(), seed(), getstate(), setstate() and jumpahead(). |
|
|
|
""" |
|
|
|
VERSION = 1 # used by getstate/setstate |
|
|
|
def __init__(self, x=None): |
|
"""Initialize an instance. |
|
|
|
Optional argument x controls seeding, as for Random.seed(). |
|
""" |
|
|
|
self.seed(x) |
|
|
|
## -------------------- core generator ------------------- |
|
|
|
# Specific to Wichmann-Hill generator. Subclasses wishing to use a |
|
# different core generator should override the seed(), random(), |
|
# getstate(), setstate() and jumpahead() methods. |
|
|
|
def seed(self, a=None): |
|
"""Initialize internal state from hashable object. |
|
|
|
None or no argument seeds from current time. |
|
|
|
If a is not None or an int or long, hash(a) is used instead. |
|
|
|
If a is an int or long, a is used directly. Distinct values between |
|
0 and 27814431486575L inclusive are guaranteed to yield distinct |
|
internal states (this guarantee is specific to the default |
|
Wichmann-Hill generator). |
|
""" |
|
|
|
if a is None: |
|
# Initialize from current time |
|
import time |
|
a = long(time.time() * 256) |
|
|
|
if type(a) not in (type(3), type(3L)): |
|
a = hash(a) |
|
|
|
a, x = divmod(a, 30268) |
|
a, y = divmod(a, 30306) |
|
a, z = divmod(a, 30322) |
|
self._seed = int(x)+1, int(y)+1, int(z)+1 |
|
|
|
self.gauss_next = None |
|
|
|
def random(self): |
|
"""Get the next random number in the range [0.0, 1.0).""" |
|
|
|
# Wichman-Hill random number generator. |
|
# |
|
# Wichmann, B. A. & Hill, I. D. (1982) |
|
# Algorithm AS 183: |
|
# An efficient and portable pseudo-random number generator |
|
# Applied Statistics 31 (1982) 188-190 |
|
# |
|
# see also: |
|
# Correction to Algorithm AS 183 |
|
# Applied Statistics 33 (1984) 123 |
|
# |
|
# McLeod, A. I. (1985) |
|
# A remark on Algorithm AS 183 |
|
# Applied Statistics 34 (1985),198-200 |
|
|
|
# This part is thread-unsafe: |
|
# BEGIN CRITICAL SECTION |
|
x, y, z = self._seed |
|
x = (171 * x) % 30269 |
|
y = (172 * y) % 30307 |
|
z = (170 * z) % 30323 |
|
self._seed = x, y, z |
|
# END CRITICAL SECTION |
|
|
|
# Note: on a platform using IEEE-754 double arithmetic, this can |
|
# never return 0.0 (asserted by Tim; proof too long for a comment). |
|
return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0 |
|
|
|
def getstate(self): |
|
"""Return internal state; can be passed to setstate() later.""" |
|
return self.VERSION, self._seed, self.gauss_next |
|
|
|
def setstate(self, state): |
|
"""Restore internal state from object returned by getstate().""" |
|
version = state[0] |
|
if version == 1: |
|
version, self._seed, self.gauss_next = state |
|
else: |
|
raise ValueError("state with version %s passed to " |
|
"Random.setstate() of version %s" % |
|
(version, self.VERSION)) |
|
|
|
def jumpahead(self, n): |
|
"""Act as if n calls to random() were made, but quickly. |
|
|
|
n is an int, greater than or equal to 0. |
|
|
|
Example use: If you have 2 threads and know that each will |
|
consume no more than a million random numbers, create two Random |
|
objects r1 and r2, then do |
|
r2.setstate(r1.getstate()) |
|
r2.jumpahead(1000000) |
|
Then r1 and r2 will use guaranteed-disjoint segments of the full |
|
period. |
|
""" |
|
|
|
if not n >= 0: |
|
raise ValueError("n must be >= 0") |
|
x, y, z = self._seed |
|
x = int(x * pow(171, n, 30269)) % 30269 |
|
y = int(y * pow(172, n, 30307)) % 30307 |
|
z = int(z * pow(170, n, 30323)) % 30323 |
|
self._seed = x, y, z |
|
|
|
def __whseed(self, x=0, y=0, z=0): |
|
"""Set the Wichmann-Hill seed from (x, y, z). |
|
|
|
These must be integers in the range [0, 256). |
|
""" |
|
|
|
if not type(x) == type(y) == type(z) == type(0): |
|
raise TypeError('seeds must be integers') |
|
if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256): |
|
raise ValueError('seeds must be in range(0, 256)') |
|
if 0 == x == y == z: |
|
# Initialize from current time |
|
import time |
|
t = long(time.time() * 256) |
|
t = int((t&0xffffff) ^ (t>>24)) |
|
t, x = divmod(t, 256) |
|
t, y = divmod(t, 256) |
|
t, z = divmod(t, 256) |
|
# Zero is a poor seed, so substitute 1 |
|
self._seed = (x or 1, y or 1, z or 1) |
|
|
|
self.gauss_next = None |
|
|
|
def whseed(self, a=None): |
|
"""Seed from hashable object's hash code. |
|
|
|
None or no argument seeds from current time. It is not guaranteed |
|
that objects with distinct hash codes lead to distinct internal |
|
states. |
|
|
|
This is obsolete, provided for compatibility with the seed routine |
|
used prior to Python 2.1. Use the .seed() method instead. |
|
""" |
|
|
|
if a is None: |
|
self.__whseed() |
|
return |
|
a = hash(a) |
|
a, x = divmod(a, 256) |
|
a, y = divmod(a, 256) |
|
a, z = divmod(a, 256) |
|
x = (x + a) % 256 or 1 |
|
y = (y + a) % 256 or 1 |
|
z = (z + a) % 256 or 1 |
|
self.__whseed(x, y, z) |
|
|
|
## ---- Methods below this point do not need to be overridden when |
|
## ---- subclassing for the purpose of using a different core generator. |
|
|
|
## -------------------- pickle support ------------------- |
|
|
|
def __getstate__(self): # for pickle |
|
return self.getstate() |
|
|
|
def __setstate__(self, state): # for pickle |
|
self.setstate(state) |
|
|
|
## -------------------- integer methods ------------------- |
|
|
|
def randrange(self, start, stop=None, step=1, int=int, default=None): |
|
"""Choose a random item from range(start, stop[, step]). |
|
|
|
This fixes the problem with randint() which includes the |
|
endpoint; in Python this is usually not what you want. |
|
Do not supply the 'int' and 'default' arguments. |
|
""" |
|
|
|
# This code is a bit messy to make it fast for the |
|
# common case while still doing adequate error checking. |
|
istart = int(start) |
|
if istart != start: |
|
raise ValueError, "non-integer arg 1 for randrange()" |
|
if stop is default: |
|
if istart > 0: |
|
return int(self.random() * istart) |
|
raise ValueError, "empty range for randrange()" |
|
|
|
# stop argument supplied. |
|
istop = int(stop) |
|
if istop != stop: |
|
raise ValueError, "non-integer stop for randrange()" |
|
if step == 1 and istart < istop: |
|
try: |
|
return istart + int(self.random()*(istop - istart)) |
|
except OverflowError: |
|
# This can happen if istop-istart > sys.maxint + 1, and |
|
# multiplying by random() doesn't reduce it to something |
|
# <= sys.maxint. We know that the overall result fits |
|
# in an int, and can still do it correctly via math.floor(). |
|
# But that adds another function call, so for speed we |
|
# avoided that whenever possible. |
|
return int(istart + _floor(self.random()*(istop - istart))) |
|
if step == 1: |
|
raise ValueError, "empty range for randrange()" |
|
|
|
# Non-unit step argument supplied. |
|
istep = int(step) |
|
if istep != step: |
|
raise ValueError, "non-integer step for randrange()" |
|
if istep > 0: |
|
n = (istop - istart + istep - 1) / istep |
|
elif istep < 0: |
|
n = (istop - istart + istep + 1) / istep |
|
else: |
|
raise ValueError, "zero step for randrange()" |
|
|
|
if n <= 0: |
|
raise ValueError, "empty range for randrange()" |
|
return istart + istep*int(self.random() * n) |
|
|
|
def randint(self, a, b): |
|
"""Return random integer in range [a, b], including both end points. |
|
""" |
|
|
|
return self.randrange(a, b+1) |
|
|
|
## -------------------- sequence methods ------------------- |
|
|
|
def choice(self, seq): |
|
"""Choose a random element from a non-empty sequence.""" |
|
return seq[int(self.random() * len(seq))] |
|
|
|
def shuffle(self, x, random=None, int=int): |
|
"""x, random=random.random -> shuffle list x in place; return None. |
|
|
|
Optional arg random is a 0-argument function returning a random |
|
float in [0.0, 1.0); by default, the standard random.random. |
|
|
|
Note that for even rather small len(x), the total number of |
|
permutations of x is larger than the period of most random number |
|
generators; this implies that "most" permutations of a long |
|
sequence can never be generated. |
|
""" |
|
|
|
if random is None: |
|
random = self.random |
|
for i in xrange(len(x)-1, 0, -1): |
|
# pick an element in x[:i+1] with which to exchange x[i] |
|
j = int(random() * (i+1)) |
|
x[i], x[j] = x[j], x[i] |
|
|
|
## -------------------- real-valued distributions ------------------- |
|
|
|
## -------------------- uniform distribution ------------------- |
|
|
|
def uniform(self, a, b): |
|
"""Get a random number in the range [a, b).""" |
|
return a + (b-a) * self.random() |
|
|
|
## -------------------- normal distribution -------------------- |
|
|
|
def normalvariate(self, mu, sigma): |
|
"""Normal distribution. |
|
|
|
mu is the mean, and sigma is the standard deviation. |
|
|
|
""" |
|
# mu = mean, sigma = standard deviation |
|
|
|
# Uses Kinderman and Monahan method. Reference: Kinderman, |
|
# A.J. and Monahan, J.F., "Computer generation of random |
|
# variables using the ratio of uniform deviates", ACM Trans |
|
# Math Software, 3, (1977), pp257-260. |
|
|
|
random = self.random |
|
while 1: |
|
u1 = random() |
|
u2 = random() |
|
z = NV_MAGICCONST*(u1-0.5)/u2 |
|
zz = z*z/4.0 |
|
if zz <= -_log(u2): |
|
break |
|
return mu + z*sigma |
|
|
|
## -------------------- lognormal distribution -------------------- |
|
|
|
def lognormvariate(self, mu, sigma): |
|
"""Log normal distribution. |
|
|
|
If you take the natural logarithm of this distribution, you'll get a |
|
normal distribution with mean mu and standard deviation sigma. |
|
mu can have any value, and sigma must be greater than zero. |
|
|
|
""" |
|
return _exp(self.normalvariate(mu, sigma)) |
|
|
|
## -------------------- circular uniform -------------------- |
|
|
|
def cunifvariate(self, mean, arc): |
|
"""Circular uniform distribution. |
|
|
|
mean is the mean angle, and arc is the range of the distribution, |
|
centered around the mean angle. Both values must be expressed in |
|
radians. Returned values range between mean - arc/2 and |
|
mean + arc/2 and are normalized to between 0 and pi. |
|
|
|
Deprecated in version 2.3. Use: |
|
(mean + arc * (Random.random() - 0.5)) % Math.pi |
|
|
|
""" |
|
# mean: mean angle (in radians between 0 and pi) |
|
# arc: range of distribution (in radians between 0 and pi) |
|
|
|
return (mean + arc * (self.random() - 0.5)) % _pi |
|
|
|
## -------------------- exponential distribution -------------------- |
|
|
|
def expovariate(self, lambd): |
|
"""Exponential distribution. |
|
|
|
lambd is 1.0 divided by the desired mean. (The parameter would be |
|
called "lambda", but that is a reserved word in Python.) Returned |
|
values range from 0 to positive infinity. |
|
|
|
""" |
|
# lambd: rate lambd = 1/mean |
|
# ('lambda' is a Python reserved word) |
|
|
|
random = self.random |
|
u = random() |
|
while u <= 1e-7: |
|
u = random() |
|
return -_log(u)/lambd |
|
|
|
## -------------------- von Mises distribution -------------------- |
|
|
|
def vonmisesvariate(self, mu, kappa): |
|
"""Circular data distribution. |
|
|
|
mu is the mean angle, expressed in radians between 0 and 2*pi, and |
|
kappa is the concentration parameter, which must be greater than or |
|
equal to zero. If kappa is equal to zero, this distribution reduces |
|
to a uniform random angle over the range 0 to 2*pi. |
|
|
|
""" |
|
# mu: mean angle (in radians between 0 and 2*pi) |
|
# kappa: concentration parameter kappa (>= 0) |
|
# if kappa = 0 generate uniform random angle |
|
|
|
# Based upon an algorithm published in: Fisher, N.I., |
|
# "Statistical Analysis of Circular Data", Cambridge |
|
# University Press, 1993. |
|
|
|
# Thanks to Magnus Kessler for a correction to the |
|
# implementation of step 4. |
|
|
|
random = self.random |
|
if kappa <= 1e-6: |
|
return TWOPI * random() |
|
|
|
a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa) |
|
b = (a - _sqrt(2.0 * a))/(2.0 * kappa) |
|
r = (1.0 + b * b)/(2.0 * b) |
|
|
|
while 1: |
|
u1 = random() |
|
|
|
z = _cos(_pi * u1) |
|
f = (1.0 + r * z)/(r + z) |
|
c = kappa * (r - f) |
|
|
|
u2 = random() |
|
|
|
if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)): |
|
break |
|
|
|
u3 = random() |
|
if u3 > 0.5: |
|
theta = (mu % TWOPI) + _acos(f) |
|
else: |
|
theta = (mu % TWOPI) - _acos(f) |
|
|
|
return theta |
|
|
|
## -------------------- gamma distribution -------------------- |
|
|
|
def gammavariate(self, alpha, beta): |
|
"""Gamma distribution. Not the gamma function! |
|
|
|
Conditions on the parameters are alpha > 0 and beta > 0. |
|
|
|
""" |
|
|
|
# alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2 |
|
|
|
# Warning: a few older sources define the gamma distribution in terms |
|
# of alpha > -1.0 |
|
if alpha <= 0.0 or beta <= 0.0: |
|
raise ValueError, 'gammavariate: alpha and beta must be > 0.0' |
|
|
|
random = self.random |
|
if alpha > 1.0: |
|
|
|
# Uses R.C.H. Cheng, "The generation of Gamma |
|
# variables with non-integral shape parameters", |
|
# Applied Statistics, (1977), 26, No. 1, p71-74 |
|
|
|
ainv = _sqrt(2.0 * alpha - 1.0) |
|
bbb = alpha - LOG4 |
|
ccc = alpha + ainv |
|
|
|
while 1: |
|
u1 = random() |
|
u2 = random() |
|
v = _log(u1/(1.0-u1))/ainv |
|
x = alpha*_exp(v) |
|
z = u1*u1*u2 |
|
r = bbb+ccc*v-x |
|
if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z): |
|
return x * beta |
|
|
|
elif alpha == 1.0: |
|
# expovariate(1) |
|
u = random() |
|
while u <= 1e-7: |
|
u = random() |
|
return -_log(u) * beta |
|
|
|
else: # alpha is between 0 and 1 (exclusive) |
|
|
|
# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle |
|
|
|
while 1: |
|
u = random() |
|
b = (_e + alpha)/_e |
|
p = b*u |
|
if p <= 1.0: |
|
x = pow(p, 1.0/alpha) |
|
else: |
|
# p > 1 |
|
x = -_log((b-p)/alpha) |
|
u1 = random() |
|
if not (((p <= 1.0) and (u1 > _exp(-x))) or |
|
((p > 1) and (u1 > pow(x, alpha - 1.0)))): |
|
break |
|
return x * beta |
|
|
|
|
|
def stdgamma(self, alpha, ainv, bbb, ccc): |
|
# This method was (and shall remain) undocumented. |
|
# This method is deprecated |
|
# for the following reasons: |
|
# 1. Returns same as .gammavariate(alpha, 1.0) |
|
# 2. Requires caller to provide 3 extra arguments |
|
# that are functions of alpha anyway |
|
# 3. Can't be used for alpha < 0.5 |
|
|
|
# ainv = sqrt(2 * alpha - 1) |
|
# bbb = alpha - log(4) |
|
# ccc = alpha + ainv |
|
import warnings |
|
warnings.warn("The stdgamma function is deprecated; " |
|
"use gammavariate() instead", |
|
DeprecationWarning) |
|
return self.gammavariate(alpha, 1.0) |
|
|
|
|
|
|
|
## -------------------- Gauss (faster alternative) -------------------- |
|
|
|
def gauss(self, mu, sigma): |
|
"""Gaussian distribution. |
|
|
|
mu is the mean, and sigma is the standard deviation. This is |
|
slightly faster than the normalvariate() function. |
|
|
|
Not thread-safe without a lock around calls. |
|
|
|
""" |
|
|
|
# When x and y are two variables from [0, 1), uniformly |
|
# distributed, then |
|
# |
|
# cos(2*pi*x)*sqrt(-2*log(1-y)) |
|
# sin(2*pi*x)*sqrt(-2*log(1-y)) |
|
# |
|
# are two *independent* variables with normal distribution |
|
# (mu = 0, sigma = 1). |
|
# (Lambert Meertens) |
|
# (corrected version; bug discovered by Mike Miller, fixed by LM) |
|
|
|
# Multithreading note: When two threads call this function |
|
# simultaneously, it is possible that they will receive the |
|
# same return value. The window is very small though. To |
|
# avoid this, you have to use a lock around all calls. (I |
|
# didn't want to slow this down in the serial case by using a |
|
# lock here.) |
|
|
|
random = self.random |
|
z = self.gauss_next |
|
self.gauss_next = None |
|
if z is None: |
|
x2pi = random() * TWOPI |
|
g2rad = _sqrt(-2.0 * _log(1.0 - random())) |
|
z = _cos(x2pi) * g2rad |
|
self.gauss_next = _sin(x2pi) * g2rad |
|
|
|
return mu + z*sigma |
|
|
|
## -------------------- beta -------------------- |
|
## See |
|
## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470 |
|
## for Ivan Frohne's insightful analysis of why the original implementation: |
|
## |
|
## def betavariate(self, alpha, beta): |
|
## # Discrete Event Simulation in C, pp 87-88. |
|
## |
|
## y = self.expovariate(alpha) |
|
## z = self.expovariate(1.0/beta) |
|
## return z/(y+z) |
|
## |
|
## was dead wrong, and how it probably got that way. |
|
|
|
def betavariate(self, alpha, beta): |
|
"""Beta distribution. |
|
|
|
Conditions on the parameters are alpha > -1 and beta} > -1. |
|
Returned values range between 0 and 1. |
|
|
|
""" |
|
|
|
# This version due to Janne Sinkkonen, and matches all the std |
|
# texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution"). |
|
y = self.gammavariate(alpha, 1.) |
|
if y == 0: |
|
return 0.0 |
|
else: |
|
return y / (y + self.gammavariate(beta, 1.)) |
|
|
|
## -------------------- Pareto -------------------- |
|
|
|
def paretovariate(self, alpha): |
|
"""Pareto distribution. alpha is the shape parameter.""" |
|
# Jain, pg. 495 |
|
|
|
u = self.random() |
|
return 1.0 / pow(u, 1.0/alpha) |
|
|
|
## -------------------- Weibull -------------------- |
|
|
|
def weibullvariate(self, alpha, beta): |
|
"""Weibull distribution. |
|
|
|
alpha is the scale parameter and beta is the shape parameter. |
|
|
|
""" |
|
# Jain, pg. 499; bug fix courtesy Bill Arms |
|
|
|
u = self.random() |
|
return alpha * pow(-_log(u), 1.0/beta) |
|
|
|
## -------------------- test program -------------------- |
|
|
|
def _test_generator(n, funccall): |
|
import time |
|
print n, 'times', funccall |
|
code = compile(funccall, funccall, 'eval') |
|
sum = 0.0 |
|
sqsum = 0.0 |
|
smallest = 1e10 |
|
largest = -1e10 |
|
t0 = time.time() |
|
for i in range(n): |
|
x = eval(code) |
|
sum = sum + x |
|
sqsum = sqsum + x*x |
|
smallest = min(x, smallest) |
|
largest = max(x, largest) |
|
t1 = time.time() |
|
print round(t1-t0, 3), 'sec,', |
|
avg = sum/n |
|
stddev = _sqrt(sqsum/n - avg*avg) |
|
print 'avg %g, stddev %g, min %g, max %g' % \ |
|
(avg, stddev, smallest, largest) |
|
|
|
def _test(N=20000): |
|
print 'TWOPI =', TWOPI |
|
print 'LOG4 =', LOG4 |
|
print 'NV_MAGICCONST =', NV_MAGICCONST |
|
print 'SG_MAGICCONST =', SG_MAGICCONST |
|
_test_generator(N, 'random()') |
|
_test_generator(N, 'normalvariate(0.0, 1.0)') |
|
_test_generator(N, 'lognormvariate(0.0, 1.0)') |
|
_test_generator(N, 'cunifvariate(0.0, 1.0)') |
|
_test_generator(N, 'expovariate(1.0)') |
|
_test_generator(N, 'vonmisesvariate(0.0, 1.0)') |
|
_test_generator(N, 'gammavariate(0.01, 1.0)') |
|
_test_generator(N, 'gammavariate(0.1, 1.0)') |
|
_test_generator(N, 'gammavariate(0.1, 2.0)') |
|
_test_generator(N, 'gammavariate(0.5, 1.0)') |
|
_test_generator(N, 'gammavariate(0.9, 1.0)') |
|
_test_generator(N, 'gammavariate(1.0, 1.0)') |
|
_test_generator(N, 'gammavariate(2.0, 1.0)') |
|
_test_generator(N, 'gammavariate(20.0, 1.0)') |
|
_test_generator(N, 'gammavariate(200.0, 1.0)') |
|
_test_generator(N, 'gauss(0.0, 1.0)') |
|
_test_generator(N, 'betavariate(3.0, 3.0)') |
|
_test_generator(N, 'paretovariate(1.0)') |
|
_test_generator(N, 'weibullvariate(1.0, 1.0)') |
|
|
|
# Test jumpahead. |
|
s = getstate() |
|
jumpahead(N) |
|
r1 = random() |
|
# now do it the slow way |
|
setstate(s) |
|
for i in range(N): |
|
random() |
|
r2 = random() |
|
if r1 != r2: |
|
raise ValueError("jumpahead test failed " + `(N, r1, r2)`) |
|
|
|
# Create one instance, seeded from current time, and export its methods |
|
# as module-level functions. The functions are not threadsafe, and state |
|
# is shared across all uses (both in the user's code and in the Python |
|
# libraries), but that's fine for most programs and is easier for the |
|
# casual user than making them instantiate their own Random() instance. |
|
_inst = Random() |
|
seed = _inst.seed |
|
random = _inst.random |
|
uniform = _inst.uniform |
|
randint = _inst.randint |
|
choice = _inst.choice |
|
randrange = _inst.randrange |
|
shuffle = _inst.shuffle |
|
normalvariate = _inst.normalvariate |
|
lognormvariate = _inst.lognormvariate |
|
cunifvariate = _inst.cunifvariate |
|
expovariate = _inst.expovariate |
|
vonmisesvariate = _inst.vonmisesvariate |
|
gammavariate = _inst.gammavariate |
|
stdgamma = _inst.stdgamma |
|
gauss = _inst.gauss |
|
betavariate = _inst.betavariate |
|
paretovariate = _inst.paretovariate |
|
weibullvariate = _inst.weibullvariate |
|
getstate = _inst.getstate |
|
setstate = _inst.setstate |
|
jumpahead = _inst.jumpahead |
|
whseed = _inst.whseed |
|
|
|
if __name__ == '__main__': |
|
_test()
|
|
|