1188 lines
28 KiB
1188 lines
28 KiB
|
|
/* Integer object implementation */ |
|
|
|
#include "Python.h" |
|
#include <ctype.h> |
|
|
|
long |
|
PyInt_GetMax(void) |
|
{ |
|
return LONG_MAX; /* To initialize sys.maxint */ |
|
} |
|
|
|
/* Return 1 if exception raised, 0 if caller should retry using longs */ |
|
static int |
|
err_ovf(char *msg) |
|
{ |
|
if (PyErr_Warn(PyExc_OverflowWarning, msg) < 0) { |
|
if (PyErr_ExceptionMatches(PyExc_OverflowWarning)) |
|
PyErr_SetString(PyExc_OverflowError, msg); |
|
return 1; |
|
} |
|
else |
|
return 0; |
|
} |
|
|
|
/* Integers are quite normal objects, to make object handling uniform. |
|
(Using odd pointers to represent integers would save much space |
|
but require extra checks for this special case throughout the code.) |
|
Since a typical Python program spends much of its time allocating |
|
and deallocating integers, these operations should be very fast. |
|
Therefore we use a dedicated allocation scheme with a much lower |
|
overhead (in space and time) than straight malloc(): a simple |
|
dedicated free list, filled when necessary with memory from malloc(). |
|
|
|
block_list is a singly-linked list of all PyIntBlocks ever allocated, |
|
linked via their next members. PyIntBlocks are never returned to the |
|
system before shutdown (PyInt_Fini). |
|
|
|
free_list is a singly-linked list of available PyIntObjects, linked |
|
via abuse of their ob_type members. |
|
*/ |
|
|
|
#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */ |
|
#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */ |
|
#define N_INTOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyIntObject)) |
|
|
|
struct _intblock { |
|
struct _intblock *next; |
|
PyIntObject objects[N_INTOBJECTS]; |
|
}; |
|
|
|
typedef struct _intblock PyIntBlock; |
|
|
|
static PyIntBlock *block_list = NULL; |
|
static PyIntObject *free_list = NULL; |
|
|
|
static PyIntObject * |
|
fill_free_list(void) |
|
{ |
|
PyIntObject *p, *q; |
|
/* Python's object allocator isn't appropriate for large blocks. */ |
|
p = (PyIntObject *) PyMem_MALLOC(sizeof(PyIntBlock)); |
|
if (p == NULL) |
|
return (PyIntObject *) PyErr_NoMemory(); |
|
((PyIntBlock *)p)->next = block_list; |
|
block_list = (PyIntBlock *)p; |
|
/* Link the int objects together, from rear to front, then return |
|
the address of the last int object in the block. */ |
|
p = &((PyIntBlock *)p)->objects[0]; |
|
q = p + N_INTOBJECTS; |
|
while (--q > p) |
|
q->ob_type = (struct _typeobject *)(q-1); |
|
q->ob_type = NULL; |
|
return p + N_INTOBJECTS - 1; |
|
} |
|
|
|
#ifndef NSMALLPOSINTS |
|
#define NSMALLPOSINTS 100 |
|
#endif |
|
#ifndef NSMALLNEGINTS |
|
#define NSMALLNEGINTS 5 |
|
#endif |
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
|
/* References to small integers are saved in this array so that they |
|
can be shared. |
|
The integers that are saved are those in the range |
|
-NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive). |
|
*/ |
|
static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS]; |
|
#endif |
|
#ifdef COUNT_ALLOCS |
|
int quick_int_allocs, quick_neg_int_allocs; |
|
#endif |
|
|
|
PyObject * |
|
PyInt_FromLong(long ival) |
|
{ |
|
register PyIntObject *v; |
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
|
if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { |
|
v = small_ints[ival + NSMALLNEGINTS]; |
|
Py_INCREF(v); |
|
#ifdef COUNT_ALLOCS |
|
if (ival >= 0) |
|
quick_int_allocs++; |
|
else |
|
quick_neg_int_allocs++; |
|
#endif |
|
return (PyObject *) v; |
|
} |
|
#endif |
|
if (free_list == NULL) { |
|
if ((free_list = fill_free_list()) == NULL) |
|
return NULL; |
|
} |
|
/* Inline PyObject_New */ |
|
v = free_list; |
|
free_list = (PyIntObject *)v->ob_type; |
|
PyObject_INIT(v, &PyInt_Type); |
|
v->ob_ival = ival; |
|
return (PyObject *) v; |
|
} |
|
|
|
static void |
|
int_dealloc(PyIntObject *v) |
|
{ |
|
if (PyInt_CheckExact(v)) { |
|
v->ob_type = (struct _typeobject *)free_list; |
|
free_list = v; |
|
} |
|
else |
|
v->ob_type->tp_free((PyObject *)v); |
|
} |
|
|
|
static void |
|
int_free(PyIntObject *v) |
|
{ |
|
v->ob_type = (struct _typeobject *)free_list; |
|
free_list = v; |
|
} |
|
|
|
long |
|
PyInt_AsLong(register PyObject *op) |
|
{ |
|
PyNumberMethods *nb; |
|
PyIntObject *io; |
|
long val; |
|
|
|
if (op && PyInt_Check(op)) |
|
return PyInt_AS_LONG((PyIntObject*) op); |
|
|
|
if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || |
|
nb->nb_int == NULL) { |
|
PyErr_SetString(PyExc_TypeError, "an integer is required"); |
|
return -1; |
|
} |
|
|
|
io = (PyIntObject*) (*nb->nb_int) (op); |
|
if (io == NULL) |
|
return -1; |
|
if (!PyInt_Check(io)) { |
|
if (PyLong_Check(io)) { |
|
/* got a long? => retry int conversion */ |
|
val = PyLong_AsLong((PyObject *)io); |
|
Py_DECREF(io); |
|
if ((val == -1) && PyErr_Occurred()) |
|
return -1; |
|
return val; |
|
} |
|
else |
|
{ |
|
Py_DECREF(io); |
|
PyErr_SetString(PyExc_TypeError, |
|
"nb_int should return int object"); |
|
return -1; |
|
} |
|
} |
|
|
|
val = PyInt_AS_LONG(io); |
|
Py_DECREF(io); |
|
|
|
return val; |
|
} |
|
|
|
unsigned long |
|
PyInt_AsUnsignedLongMask(register PyObject *op) |
|
{ |
|
PyNumberMethods *nb; |
|
PyIntObject *io; |
|
unsigned long val; |
|
|
|
if (op && PyInt_Check(op)) |
|
return PyInt_AS_LONG((PyIntObject*) op); |
|
if (op && PyLong_Check(op)) |
|
return PyLong_AsUnsignedLongMask(op); |
|
|
|
if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || |
|
nb->nb_int == NULL) { |
|
PyErr_SetString(PyExc_TypeError, "an integer is required"); |
|
return -1; |
|
} |
|
|
|
io = (PyIntObject*) (*nb->nb_int) (op); |
|
if (io == NULL) |
|
return -1; |
|
if (!PyInt_Check(io)) { |
|
if (PyLong_Check(io)) { |
|
val = PyLong_AsUnsignedLongMask((PyObject *)io); |
|
Py_DECREF(io); |
|
if (PyErr_Occurred()) |
|
return -1; |
|
return val; |
|
} |
|
else |
|
{ |
|
Py_DECREF(io); |
|
PyErr_SetString(PyExc_TypeError, |
|
"nb_int should return int object"); |
|
return -1; |
|
} |
|
} |
|
|
|
val = PyInt_AS_LONG(io); |
|
Py_DECREF(io); |
|
|
|
return val; |
|
} |
|
|
|
#ifdef HAVE_LONG_LONG |
|
unsigned PY_LONG_LONG |
|
PyInt_AsUnsignedLongLongMask(register PyObject *op) |
|
{ |
|
PyNumberMethods *nb; |
|
PyIntObject *io; |
|
unsigned PY_LONG_LONG val; |
|
|
|
if (op && PyInt_Check(op)) |
|
return PyInt_AS_LONG((PyIntObject*) op); |
|
if (op && PyLong_Check(op)) |
|
return PyLong_AsUnsignedLongLongMask(op); |
|
|
|
if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || |
|
nb->nb_int == NULL) { |
|
PyErr_SetString(PyExc_TypeError, "an integer is required"); |
|
return -1; |
|
} |
|
|
|
io = (PyIntObject*) (*nb->nb_int) (op); |
|
if (io == NULL) |
|
return -1; |
|
if (!PyInt_Check(io)) { |
|
if (PyLong_Check(io)) { |
|
val = PyLong_AsUnsignedLongLongMask((PyObject *)io); |
|
Py_DECREF(io); |
|
if (PyErr_Occurred()) |
|
return -1; |
|
return val; |
|
} |
|
else |
|
{ |
|
Py_DECREF(io); |
|
PyErr_SetString(PyExc_TypeError, |
|
"nb_int should return int object"); |
|
return -1; |
|
} |
|
} |
|
|
|
val = PyInt_AS_LONG(io); |
|
Py_DECREF(io); |
|
|
|
return val; |
|
} |
|
#endif |
|
|
|
PyObject * |
|
PyInt_FromString(char *s, char **pend, int base) |
|
{ |
|
char *end; |
|
long x; |
|
char buffer[256]; /* For errors */ |
|
int warn = 0; |
|
|
|
if ((base != 0 && base < 2) || base > 36) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"int() base must be >= 2 and <= 36"); |
|
return NULL; |
|
} |
|
|
|
while (*s && isspace(Py_CHARMASK(*s))) |
|
s++; |
|
errno = 0; |
|
if (base == 0 && s[0] == '0') { |
|
x = (long) PyOS_strtoul(s, &end, base); |
|
if (x < 0) |
|
warn = 1; |
|
} |
|
else |
|
x = PyOS_strtol(s, &end, base); |
|
if (end == s || !isalnum(Py_CHARMASK(end[-1]))) |
|
goto bad; |
|
while (*end && isspace(Py_CHARMASK(*end))) |
|
end++; |
|
if (*end != '\0') { |
|
bad: |
|
PyOS_snprintf(buffer, sizeof(buffer), |
|
"invalid literal for int(): %.200s", s); |
|
PyErr_SetString(PyExc_ValueError, buffer); |
|
return NULL; |
|
} |
|
else if (errno != 0) { |
|
if (err_ovf("string/unicode conversion")) |
|
return NULL; |
|
return PyLong_FromString(s, pend, base); |
|
} |
|
if (warn) { |
|
if (PyErr_Warn(PyExc_FutureWarning, |
|
"int('0...', 0): sign will change in Python 2.4") < 0) |
|
return NULL; |
|
} |
|
if (pend) |
|
*pend = end; |
|
return PyInt_FromLong(x); |
|
} |
|
|
|
#ifdef Py_USING_UNICODE |
|
PyObject * |
|
PyInt_FromUnicode(Py_UNICODE *s, int length, int base) |
|
{ |
|
PyObject *result; |
|
char *buffer = PyMem_MALLOC(length+1); |
|
|
|
if (buffer == NULL) |
|
return NULL; |
|
|
|
if (PyUnicode_EncodeDecimal(s, length, buffer, NULL)) { |
|
PyMem_FREE(buffer); |
|
return NULL; |
|
} |
|
result = PyInt_FromString(buffer, NULL, base); |
|
PyMem_FREE(buffer); |
|
return result; |
|
} |
|
#endif |
|
|
|
/* Methods */ |
|
|
|
/* Integers are seen as the "smallest" of all numeric types and thus |
|
don't have any knowledge about conversion of other types to |
|
integers. */ |
|
|
|
#define CONVERT_TO_LONG(obj, lng) \ |
|
if (PyInt_Check(obj)) { \ |
|
lng = PyInt_AS_LONG(obj); \ |
|
} \ |
|
else { \ |
|
Py_INCREF(Py_NotImplemented); \ |
|
return Py_NotImplemented; \ |
|
} |
|
|
|
/* ARGSUSED */ |
|
static int |
|
int_print(PyIntObject *v, FILE *fp, int flags) |
|
/* flags -- not used but required by interface */ |
|
{ |
|
fprintf(fp, "%ld", v->ob_ival); |
|
return 0; |
|
} |
|
|
|
static PyObject * |
|
int_repr(PyIntObject *v) |
|
{ |
|
char buf[64]; |
|
PyOS_snprintf(buf, sizeof(buf), "%ld", v->ob_ival); |
|
return PyString_FromString(buf); |
|
} |
|
|
|
static int |
|
int_compare(PyIntObject *v, PyIntObject *w) |
|
{ |
|
register long i = v->ob_ival; |
|
register long j = w->ob_ival; |
|
return (i < j) ? -1 : (i > j) ? 1 : 0; |
|
} |
|
|
|
static long |
|
int_hash(PyIntObject *v) |
|
{ |
|
/* XXX If this is changed, you also need to change the way |
|
Python's long, float and complex types are hashed. */ |
|
long x = v -> ob_ival; |
|
if (x == -1) |
|
x = -2; |
|
return x; |
|
} |
|
|
|
static PyObject * |
|
int_add(PyIntObject *v, PyIntObject *w) |
|
{ |
|
register long a, b, x; |
|
CONVERT_TO_LONG(v, a); |
|
CONVERT_TO_LONG(w, b); |
|
x = a + b; |
|
if ((x^a) >= 0 || (x^b) >= 0) |
|
return PyInt_FromLong(x); |
|
if (err_ovf("integer addition")) |
|
return NULL; |
|
return PyLong_Type.tp_as_number->nb_add((PyObject *)v, (PyObject *)w); |
|
} |
|
|
|
static PyObject * |
|
int_sub(PyIntObject *v, PyIntObject *w) |
|
{ |
|
register long a, b, x; |
|
CONVERT_TO_LONG(v, a); |
|
CONVERT_TO_LONG(w, b); |
|
x = a - b; |
|
if ((x^a) >= 0 || (x^~b) >= 0) |
|
return PyInt_FromLong(x); |
|
if (err_ovf("integer subtraction")) |
|
return NULL; |
|
return PyLong_Type.tp_as_number->nb_subtract((PyObject *)v, |
|
(PyObject *)w); |
|
} |
|
|
|
/* |
|
Integer overflow checking for * is painful: Python tried a couple ways, but |
|
they didn't work on all platforms, or failed in endcases (a product of |
|
-sys.maxint-1 has been a particular pain). |
|
|
|
Here's another way: |
|
|
|
The native long product x*y is either exactly right or *way* off, being |
|
just the last n bits of the true product, where n is the number of bits |
|
in a long (the delivered product is the true product plus i*2**n for |
|
some integer i). |
|
|
|
The native double product (double)x * (double)y is subject to three |
|
rounding errors: on a sizeof(long)==8 box, each cast to double can lose |
|
info, and even on a sizeof(long)==4 box, the multiplication can lose info. |
|
But, unlike the native long product, it's not in *range* trouble: even |
|
if sizeof(long)==32 (256-bit longs), the product easily fits in the |
|
dynamic range of a double. So the leading 50 (or so) bits of the double |
|
product are correct. |
|
|
|
We check these two ways against each other, and declare victory if they're |
|
approximately the same. Else, because the native long product is the only |
|
one that can lose catastrophic amounts of information, it's the native long |
|
product that must have overflowed. |
|
*/ |
|
|
|
static PyObject * |
|
int_mul(PyObject *v, PyObject *w) |
|
{ |
|
long a, b; |
|
long longprod; /* a*b in native long arithmetic */ |
|
double doubled_longprod; /* (double)longprod */ |
|
double doubleprod; /* (double)a * (double)b */ |
|
|
|
CONVERT_TO_LONG(v, a); |
|
CONVERT_TO_LONG(w, b); |
|
longprod = a * b; |
|
doubleprod = (double)a * (double)b; |
|
doubled_longprod = (double)longprod; |
|
|
|
/* Fast path for normal case: small multiplicands, and no info |
|
is lost in either method. */ |
|
if (doubled_longprod == doubleprod) |
|
return PyInt_FromLong(longprod); |
|
|
|
/* Somebody somewhere lost info. Close enough, or way off? Note |
|
that a != 0 and b != 0 (else doubled_longprod == doubleprod == 0). |
|
The difference either is or isn't significant compared to the |
|
true value (of which doubleprod is a good approximation). |
|
*/ |
|
{ |
|
const double diff = doubled_longprod - doubleprod; |
|
const double absdiff = diff >= 0.0 ? diff : -diff; |
|
const double absprod = doubleprod >= 0.0 ? doubleprod : |
|
-doubleprod; |
|
/* absdiff/absprod <= 1/32 iff |
|
32 * absdiff <= absprod -- 5 good bits is "close enough" */ |
|
if (32.0 * absdiff <= absprod) |
|
return PyInt_FromLong(longprod); |
|
else if (err_ovf("integer multiplication")) |
|
return NULL; |
|
else |
|
return PyLong_Type.tp_as_number->nb_multiply(v, w); |
|
} |
|
} |
|
|
|
/* Return type of i_divmod */ |
|
enum divmod_result { |
|
DIVMOD_OK, /* Correct result */ |
|
DIVMOD_OVERFLOW, /* Overflow, try again using longs */ |
|
DIVMOD_ERROR /* Exception raised */ |
|
}; |
|
|
|
static enum divmod_result |
|
i_divmod(register long x, register long y, |
|
long *p_xdivy, long *p_xmody) |
|
{ |
|
long xdivy, xmody; |
|
|
|
if (y == 0) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, |
|
"integer division or modulo by zero"); |
|
return DIVMOD_ERROR; |
|
} |
|
/* (-sys.maxint-1)/-1 is the only overflow case. */ |
|
if (y == -1 && x < 0 && x == -x) { |
|
if (err_ovf("integer division")) |
|
return DIVMOD_ERROR; |
|
return DIVMOD_OVERFLOW; |
|
} |
|
xdivy = x / y; |
|
xmody = x - xdivy * y; |
|
/* If the signs of x and y differ, and the remainder is non-0, |
|
* C89 doesn't define whether xdivy is now the floor or the |
|
* ceiling of the infinitely precise quotient. We want the floor, |
|
* and we have it iff the remainder's sign matches y's. |
|
*/ |
|
if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) { |
|
xmody += y; |
|
--xdivy; |
|
assert(xmody && ((y ^ xmody) >= 0)); |
|
} |
|
*p_xdivy = xdivy; |
|
*p_xmody = xmody; |
|
return DIVMOD_OK; |
|
} |
|
|
|
static PyObject * |
|
int_div(PyIntObject *x, PyIntObject *y) |
|
{ |
|
long xi, yi; |
|
long d, m; |
|
CONVERT_TO_LONG(x, xi); |
|
CONVERT_TO_LONG(y, yi); |
|
switch (i_divmod(xi, yi, &d, &m)) { |
|
case DIVMOD_OK: |
|
return PyInt_FromLong(d); |
|
case DIVMOD_OVERFLOW: |
|
return PyLong_Type.tp_as_number->nb_divide((PyObject *)x, |
|
(PyObject *)y); |
|
default: |
|
return NULL; |
|
} |
|
} |
|
|
|
static PyObject * |
|
int_classic_div(PyIntObject *x, PyIntObject *y) |
|
{ |
|
long xi, yi; |
|
long d, m; |
|
CONVERT_TO_LONG(x, xi); |
|
CONVERT_TO_LONG(y, yi); |
|
if (Py_DivisionWarningFlag && |
|
PyErr_Warn(PyExc_DeprecationWarning, "classic int division") < 0) |
|
return NULL; |
|
switch (i_divmod(xi, yi, &d, &m)) { |
|
case DIVMOD_OK: |
|
return PyInt_FromLong(d); |
|
case DIVMOD_OVERFLOW: |
|
return PyLong_Type.tp_as_number->nb_divide((PyObject *)x, |
|
(PyObject *)y); |
|
default: |
|
return NULL; |
|
} |
|
} |
|
|
|
static PyObject * |
|
int_true_divide(PyObject *v, PyObject *w) |
|
{ |
|
/* If they aren't both ints, give someone else a chance. In |
|
particular, this lets int/long get handled by longs, which |
|
underflows to 0 gracefully if the long is too big to convert |
|
to float. */ |
|
if (PyInt_Check(v) && PyInt_Check(w)) |
|
return PyFloat_Type.tp_as_number->nb_true_divide(v, w); |
|
Py_INCREF(Py_NotImplemented); |
|
return Py_NotImplemented; |
|
} |
|
|
|
static PyObject * |
|
int_mod(PyIntObject *x, PyIntObject *y) |
|
{ |
|
long xi, yi; |
|
long d, m; |
|
CONVERT_TO_LONG(x, xi); |
|
CONVERT_TO_LONG(y, yi); |
|
switch (i_divmod(xi, yi, &d, &m)) { |
|
case DIVMOD_OK: |
|
return PyInt_FromLong(m); |
|
case DIVMOD_OVERFLOW: |
|
return PyLong_Type.tp_as_number->nb_remainder((PyObject *)x, |
|
(PyObject *)y); |
|
default: |
|
return NULL; |
|
} |
|
} |
|
|
|
static PyObject * |
|
int_divmod(PyIntObject *x, PyIntObject *y) |
|
{ |
|
long xi, yi; |
|
long d, m; |
|
CONVERT_TO_LONG(x, xi); |
|
CONVERT_TO_LONG(y, yi); |
|
switch (i_divmod(xi, yi, &d, &m)) { |
|
case DIVMOD_OK: |
|
return Py_BuildValue("(ll)", d, m); |
|
case DIVMOD_OVERFLOW: |
|
return PyLong_Type.tp_as_number->nb_divmod((PyObject *)x, |
|
(PyObject *)y); |
|
default: |
|
return NULL; |
|
} |
|
} |
|
|
|
static PyObject * |
|
int_pow(PyIntObject *v, PyIntObject *w, PyIntObject *z) |
|
{ |
|
register long iv, iw, iz=0, ix, temp, prev; |
|
CONVERT_TO_LONG(v, iv); |
|
CONVERT_TO_LONG(w, iw); |
|
if (iw < 0) { |
|
if ((PyObject *)z != Py_None) { |
|
PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " |
|
"cannot be negative when 3rd argument specified"); |
|
return NULL; |
|
} |
|
/* Return a float. This works because we know that |
|
this calls float_pow() which converts its |
|
arguments to double. */ |
|
return PyFloat_Type.tp_as_number->nb_power( |
|
(PyObject *)v, (PyObject *)w, (PyObject *)z); |
|
} |
|
if ((PyObject *)z != Py_None) { |
|
CONVERT_TO_LONG(z, iz); |
|
if (iz == 0) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"pow() 3rd argument cannot be 0"); |
|
return NULL; |
|
} |
|
} |
|
/* |
|
* XXX: The original exponentiation code stopped looping |
|
* when temp hit zero; this code will continue onwards |
|
* unnecessarily, but at least it won't cause any errors. |
|
* Hopefully the speed improvement from the fast exponentiation |
|
* will compensate for the slight inefficiency. |
|
* XXX: Better handling of overflows is desperately needed. |
|
*/ |
|
temp = iv; |
|
ix = 1; |
|
while (iw > 0) { |
|
prev = ix; /* Save value for overflow check */ |
|
if (iw & 1) { |
|
ix = ix*temp; |
|
if (temp == 0) |
|
break; /* Avoid ix / 0 */ |
|
if (ix / temp != prev) { |
|
if (err_ovf("integer exponentiation")) |
|
return NULL; |
|
return PyLong_Type.tp_as_number->nb_power( |
|
(PyObject *)v, |
|
(PyObject *)w, |
|
(PyObject *)z); |
|
} |
|
} |
|
iw >>= 1; /* Shift exponent down by 1 bit */ |
|
if (iw==0) break; |
|
prev = temp; |
|
temp *= temp; /* Square the value of temp */ |
|
if (prev!=0 && temp/prev!=prev) { |
|
if (err_ovf("integer exponentiation")) |
|
return NULL; |
|
return PyLong_Type.tp_as_number->nb_power( |
|
(PyObject *)v, (PyObject *)w, (PyObject *)z); |
|
} |
|
if (iz) { |
|
/* If we did a multiplication, perform a modulo */ |
|
ix = ix % iz; |
|
temp = temp % iz; |
|
} |
|
} |
|
if (iz) { |
|
long div, mod; |
|
switch (i_divmod(ix, iz, &div, &mod)) { |
|
case DIVMOD_OK: |
|
ix = mod; |
|
break; |
|
case DIVMOD_OVERFLOW: |
|
return PyLong_Type.tp_as_number->nb_power( |
|
(PyObject *)v, (PyObject *)w, (PyObject *)z); |
|
default: |
|
return NULL; |
|
} |
|
} |
|
return PyInt_FromLong(ix); |
|
} |
|
|
|
static PyObject * |
|
int_neg(PyIntObject *v) |
|
{ |
|
register long a, x; |
|
a = v->ob_ival; |
|
x = -a; |
|
if (a < 0 && x < 0) { |
|
PyObject *o; |
|
if (err_ovf("integer negation")) |
|
return NULL; |
|
o = PyLong_FromLong(a); |
|
if (o != NULL) { |
|
PyObject *result = PyNumber_Negative(o); |
|
Py_DECREF(o); |
|
return result; |
|
} |
|
return NULL; |
|
} |
|
return PyInt_FromLong(x); |
|
} |
|
|
|
static PyObject * |
|
int_pos(PyIntObject *v) |
|
{ |
|
if (PyInt_CheckExact(v)) { |
|
Py_INCREF(v); |
|
return (PyObject *)v; |
|
} |
|
else |
|
return PyInt_FromLong(v->ob_ival); |
|
} |
|
|
|
static PyObject * |
|
int_abs(PyIntObject *v) |
|
{ |
|
if (v->ob_ival >= 0) |
|
return int_pos(v); |
|
else |
|
return int_neg(v); |
|
} |
|
|
|
static int |
|
int_nonzero(PyIntObject *v) |
|
{ |
|
return v->ob_ival != 0; |
|
} |
|
|
|
static PyObject * |
|
int_invert(PyIntObject *v) |
|
{ |
|
return PyInt_FromLong(~v->ob_ival); |
|
} |
|
|
|
static PyObject * |
|
int_lshift(PyIntObject *v, PyIntObject *w) |
|
{ |
|
long a, b, c; |
|
CONVERT_TO_LONG(v, a); |
|
CONVERT_TO_LONG(w, b); |
|
if (b < 0) { |
|
PyErr_SetString(PyExc_ValueError, "negative shift count"); |
|
return NULL; |
|
} |
|
if (a == 0 || b == 0) |
|
return int_pos(v); |
|
if (b >= LONG_BIT) { |
|
if (PyErr_Warn(PyExc_FutureWarning, |
|
"x<<y losing bits or changing sign " |
|
"will return a long in Python 2.4 and up") < 0) |
|
return NULL; |
|
return PyInt_FromLong(0L); |
|
} |
|
c = a << b; |
|
if (a != Py_ARITHMETIC_RIGHT_SHIFT(long, c, b)) { |
|
if (PyErr_Warn(PyExc_FutureWarning, |
|
"x<<y losing bits or changing sign " |
|
"will return a long in Python 2.4 and up") < 0) |
|
return NULL; |
|
} |
|
return PyInt_FromLong(c); |
|
} |
|
|
|
static PyObject * |
|
int_rshift(PyIntObject *v, PyIntObject *w) |
|
{ |
|
register long a, b; |
|
CONVERT_TO_LONG(v, a); |
|
CONVERT_TO_LONG(w, b); |
|
if (b < 0) { |
|
PyErr_SetString(PyExc_ValueError, "negative shift count"); |
|
return NULL; |
|
} |
|
if (a == 0 || b == 0) |
|
return int_pos(v); |
|
if (b >= LONG_BIT) { |
|
if (a < 0) |
|
a = -1; |
|
else |
|
a = 0; |
|
} |
|
else { |
|
a = Py_ARITHMETIC_RIGHT_SHIFT(long, a, b); |
|
} |
|
return PyInt_FromLong(a); |
|
} |
|
|
|
static PyObject * |
|
int_and(PyIntObject *v, PyIntObject *w) |
|
{ |
|
register long a, b; |
|
CONVERT_TO_LONG(v, a); |
|
CONVERT_TO_LONG(w, b); |
|
return PyInt_FromLong(a & b); |
|
} |
|
|
|
static PyObject * |
|
int_xor(PyIntObject *v, PyIntObject *w) |
|
{ |
|
register long a, b; |
|
CONVERT_TO_LONG(v, a); |
|
CONVERT_TO_LONG(w, b); |
|
return PyInt_FromLong(a ^ b); |
|
} |
|
|
|
static PyObject * |
|
int_or(PyIntObject *v, PyIntObject *w) |
|
{ |
|
register long a, b; |
|
CONVERT_TO_LONG(v, a); |
|
CONVERT_TO_LONG(w, b); |
|
return PyInt_FromLong(a | b); |
|
} |
|
|
|
static int |
|
int_coerce(PyObject **pv, PyObject **pw) |
|
{ |
|
if (PyInt_Check(*pw)) { |
|
Py_INCREF(*pv); |
|
Py_INCREF(*pw); |
|
return 0; |
|
} |
|
return 1; /* Can't do it */ |
|
} |
|
|
|
static PyObject * |
|
int_int(PyIntObject *v) |
|
{ |
|
Py_INCREF(v); |
|
return (PyObject *)v; |
|
} |
|
|
|
static PyObject * |
|
int_long(PyIntObject *v) |
|
{ |
|
return PyLong_FromLong((v -> ob_ival)); |
|
} |
|
|
|
static PyObject * |
|
int_float(PyIntObject *v) |
|
{ |
|
return PyFloat_FromDouble((double)(v -> ob_ival)); |
|
} |
|
|
|
static PyObject * |
|
int_oct(PyIntObject *v) |
|
{ |
|
char buf[100]; |
|
long x = v -> ob_ival; |
|
if (x < 0) { |
|
if (PyErr_Warn(PyExc_FutureWarning, |
|
"hex()/oct() of negative int will return " |
|
"a signed string in Python 2.4 and up") < 0) |
|
return NULL; |
|
} |
|
if (x == 0) |
|
strcpy(buf, "0"); |
|
else |
|
PyOS_snprintf(buf, sizeof(buf), "0%lo", x); |
|
return PyString_FromString(buf); |
|
} |
|
|
|
static PyObject * |
|
int_hex(PyIntObject *v) |
|
{ |
|
char buf[100]; |
|
long x = v -> ob_ival; |
|
if (x < 0) { |
|
if (PyErr_Warn(PyExc_FutureWarning, |
|
"hex()/oct() of negative int will return " |
|
"a signed string in Python 2.4 and up") < 0) |
|
return NULL; |
|
} |
|
PyOS_snprintf(buf, sizeof(buf), "0x%lx", x); |
|
return PyString_FromString(buf); |
|
} |
|
|
|
static PyObject * |
|
int_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); |
|
|
|
static PyObject * |
|
int_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
|
{ |
|
PyObject *x = NULL; |
|
int base = -909; |
|
static char *kwlist[] = {"x", "base", 0}; |
|
|
|
if (type != &PyInt_Type) |
|
return int_subtype_new(type, args, kwds); /* Wimp out */ |
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist, |
|
&x, &base)) |
|
return NULL; |
|
if (x == NULL) |
|
return PyInt_FromLong(0L); |
|
if (base == -909) |
|
return PyNumber_Int(x); |
|
if (PyString_Check(x)) |
|
return PyInt_FromString(PyString_AS_STRING(x), NULL, base); |
|
#ifdef Py_USING_UNICODE |
|
if (PyUnicode_Check(x)) |
|
return PyInt_FromUnicode(PyUnicode_AS_UNICODE(x), |
|
PyUnicode_GET_SIZE(x), |
|
base); |
|
#endif |
|
PyErr_SetString(PyExc_TypeError, |
|
"int() can't convert non-string with explicit base"); |
|
return NULL; |
|
} |
|
|
|
/* Wimpy, slow approach to tp_new calls for subtypes of int: |
|
first create a regular int from whatever arguments we got, |
|
then allocate a subtype instance and initialize its ob_ival |
|
from the regular int. The regular int is then thrown away. |
|
*/ |
|
static PyObject * |
|
int_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
|
{ |
|
PyObject *tmp, *new; |
|
long ival; |
|
|
|
assert(PyType_IsSubtype(type, &PyInt_Type)); |
|
tmp = int_new(&PyInt_Type, args, kwds); |
|
if (tmp == NULL) |
|
return NULL; |
|
if (!PyInt_Check(tmp)) { |
|
if (!PyLong_Check(tmp)) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"value must convertable to an int"); |
|
return NULL; |
|
} |
|
ival = PyLong_AsLong(tmp); |
|
if (ival == -1 && PyErr_Occurred()) |
|
return NULL; |
|
|
|
} else { |
|
ival = ((PyIntObject *)tmp)->ob_ival; |
|
} |
|
|
|
new = type->tp_alloc(type, 0); |
|
if (new == NULL) { |
|
Py_DECREF(tmp); |
|
return NULL; |
|
} |
|
((PyIntObject *)new)->ob_ival = ival; |
|
Py_DECREF(tmp); |
|
return new; |
|
} |
|
|
|
static PyObject * |
|
int_getnewargs(PyIntObject *v) |
|
{ |
|
return Py_BuildValue("(l)", v->ob_ival); |
|
} |
|
|
|
static PyMethodDef int_methods[] = { |
|
{"__getnewargs__", (PyCFunction)int_getnewargs, METH_NOARGS}, |
|
{NULL, NULL} /* sentinel */ |
|
}; |
|
|
|
PyDoc_STRVAR(int_doc, |
|
"int(x[, base]) -> integer\n\ |
|
\n\ |
|
Convert a string or number to an integer, if possible. A floating point\n\ |
|
argument will be truncated towards zero (this does not include a string\n\ |
|
representation of a floating point number!) When converting a string, use\n\ |
|
the optional base. It is an error to supply a base when converting a\n\ |
|
non-string. If the argument is outside the integer range a long object\n\ |
|
will be returned instead."); |
|
|
|
static PyNumberMethods int_as_number = { |
|
(binaryfunc)int_add, /*nb_add*/ |
|
(binaryfunc)int_sub, /*nb_subtract*/ |
|
(binaryfunc)int_mul, /*nb_multiply*/ |
|
(binaryfunc)int_classic_div, /*nb_divide*/ |
|
(binaryfunc)int_mod, /*nb_remainder*/ |
|
(binaryfunc)int_divmod, /*nb_divmod*/ |
|
(ternaryfunc)int_pow, /*nb_power*/ |
|
(unaryfunc)int_neg, /*nb_negative*/ |
|
(unaryfunc)int_pos, /*nb_positive*/ |
|
(unaryfunc)int_abs, /*nb_absolute*/ |
|
(inquiry)int_nonzero, /*nb_nonzero*/ |
|
(unaryfunc)int_invert, /*nb_invert*/ |
|
(binaryfunc)int_lshift, /*nb_lshift*/ |
|
(binaryfunc)int_rshift, /*nb_rshift*/ |
|
(binaryfunc)int_and, /*nb_and*/ |
|
(binaryfunc)int_xor, /*nb_xor*/ |
|
(binaryfunc)int_or, /*nb_or*/ |
|
int_coerce, /*nb_coerce*/ |
|
(unaryfunc)int_int, /*nb_int*/ |
|
(unaryfunc)int_long, /*nb_long*/ |
|
(unaryfunc)int_float, /*nb_float*/ |
|
(unaryfunc)int_oct, /*nb_oct*/ |
|
(unaryfunc)int_hex, /*nb_hex*/ |
|
0, /*nb_inplace_add*/ |
|
0, /*nb_inplace_subtract*/ |
|
0, /*nb_inplace_multiply*/ |
|
0, /*nb_inplace_divide*/ |
|
0, /*nb_inplace_remainder*/ |
|
0, /*nb_inplace_power*/ |
|
0, /*nb_inplace_lshift*/ |
|
0, /*nb_inplace_rshift*/ |
|
0, /*nb_inplace_and*/ |
|
0, /*nb_inplace_xor*/ |
|
0, /*nb_inplace_or*/ |
|
(binaryfunc)int_div, /* nb_floor_divide */ |
|
int_true_divide, /* nb_true_divide */ |
|
0, /* nb_inplace_floor_divide */ |
|
0, /* nb_inplace_true_divide */ |
|
}; |
|
|
|
PyTypeObject PyInt_Type = { |
|
PyObject_HEAD_INIT(&PyType_Type) |
|
0, |
|
"int", |
|
sizeof(PyIntObject), |
|
0, |
|
(destructor)int_dealloc, /* tp_dealloc */ |
|
(printfunc)int_print, /* tp_print */ |
|
0, /* tp_getattr */ |
|
0, /* tp_setattr */ |
|
(cmpfunc)int_compare, /* tp_compare */ |
|
(reprfunc)int_repr, /* tp_repr */ |
|
&int_as_number, /* tp_as_number */ |
|
0, /* tp_as_sequence */ |
|
0, /* tp_as_mapping */ |
|
(hashfunc)int_hash, /* tp_hash */ |
|
0, /* tp_call */ |
|
(reprfunc)int_repr, /* tp_str */ |
|
PyObject_GenericGetAttr, /* tp_getattro */ |
|
0, /* tp_setattro */ |
|
0, /* tp_as_buffer */ |
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | |
|
Py_TPFLAGS_BASETYPE, /* tp_flags */ |
|
int_doc, /* tp_doc */ |
|
0, /* tp_traverse */ |
|
0, /* tp_clear */ |
|
0, /* tp_richcompare */ |
|
0, /* tp_weaklistoffset */ |
|
0, /* tp_iter */ |
|
0, /* tp_iternext */ |
|
int_methods, /* tp_methods */ |
|
0, /* tp_members */ |
|
0, /* tp_getset */ |
|
0, /* tp_base */ |
|
0, /* tp_dict */ |
|
0, /* tp_descr_get */ |
|
0, /* tp_descr_set */ |
|
0, /* tp_dictoffset */ |
|
0, /* tp_init */ |
|
0, /* tp_alloc */ |
|
int_new, /* tp_new */ |
|
(freefunc)int_free, /* tp_free */ |
|
}; |
|
|
|
int |
|
_PyInt_Init(void) |
|
{ |
|
PyIntObject *v; |
|
int ival; |
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
|
for (ival = -NSMALLNEGINTS; ival < NSMALLPOSINTS; ival++) { |
|
if ((free_list = fill_free_list()) == NULL) |
|
return 0; |
|
/* PyObject_New is inlined */ |
|
v = free_list; |
|
free_list = (PyIntObject *)v->ob_type; |
|
PyObject_INIT(v, &PyInt_Type); |
|
v->ob_ival = ival; |
|
small_ints[ival + NSMALLNEGINTS] = v; |
|
} |
|
#endif |
|
return 1; |
|
} |
|
|
|
void |
|
PyInt_Fini(void) |
|
{ |
|
PyIntObject *p; |
|
PyIntBlock *list, *next; |
|
int i; |
|
int bc, bf; /* block count, number of freed blocks */ |
|
int irem, isum; /* remaining unfreed ints per block, total */ |
|
|
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
|
PyIntObject **q; |
|
|
|
i = NSMALLNEGINTS + NSMALLPOSINTS; |
|
q = small_ints; |
|
while (--i >= 0) { |
|
Py_XDECREF(*q); |
|
*q++ = NULL; |
|
} |
|
#endif |
|
bc = 0; |
|
bf = 0; |
|
isum = 0; |
|
list = block_list; |
|
block_list = NULL; |
|
free_list = NULL; |
|
while (list != NULL) { |
|
bc++; |
|
irem = 0; |
|
for (i = 0, p = &list->objects[0]; |
|
i < N_INTOBJECTS; |
|
i++, p++) { |
|
if (PyInt_CheckExact(p) && p->ob_refcnt != 0) |
|
irem++; |
|
} |
|
next = list->next; |
|
if (irem) { |
|
list->next = block_list; |
|
block_list = list; |
|
for (i = 0, p = &list->objects[0]; |
|
i < N_INTOBJECTS; |
|
i++, p++) { |
|
if (!PyInt_CheckExact(p) || |
|
p->ob_refcnt == 0) { |
|
p->ob_type = (struct _typeobject *) |
|
free_list; |
|
free_list = p; |
|
} |
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
|
else if (-NSMALLNEGINTS <= p->ob_ival && |
|
p->ob_ival < NSMALLPOSINTS && |
|
small_ints[p->ob_ival + |
|
NSMALLNEGINTS] == NULL) { |
|
Py_INCREF(p); |
|
small_ints[p->ob_ival + |
|
NSMALLNEGINTS] = p; |
|
} |
|
#endif |
|
} |
|
} |
|
else { |
|
PyMem_FREE(list); |
|
bf++; |
|
} |
|
isum += irem; |
|
list = next; |
|
} |
|
if (!Py_VerboseFlag) |
|
return; |
|
fprintf(stderr, "# cleanup ints"); |
|
if (!isum) { |
|
fprintf(stderr, "\n"); |
|
} |
|
else { |
|
fprintf(stderr, |
|
": %d unfreed int%s in %d out of %d block%s\n", |
|
isum, isum == 1 ? "" : "s", |
|
bc - bf, bc, bc == 1 ? "" : "s"); |
|
} |
|
if (Py_VerboseFlag > 1) { |
|
list = block_list; |
|
while (list != NULL) { |
|
for (i = 0, p = &list->objects[0]; |
|
i < N_INTOBJECTS; |
|
i++, p++) { |
|
if (PyInt_CheckExact(p) && p->ob_refcnt != 0) |
|
fprintf(stderr, |
|
"# <int at %p, refcnt=%d, val=%ld>\n", |
|
p, p->ob_refcnt, p->ob_ival); |
|
} |
|
list = list->next; |
|
} |
|
} |
|
}
|
|
|