You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2912 lines
68 KiB
2912 lines
68 KiB
|
|
/* Long (arbitrary precision) integer object implementation */ |
|
|
|
/* XXX The functional organization of this file is terrible */ |
|
|
|
#include "Python.h" |
|
#include "longintrepr.h" |
|
|
|
#include <ctype.h> |
|
|
|
/* For long multiplication, use the O(N**2) school algorithm unless |
|
* both operands contain more than KARATSUBA_CUTOFF digits (this |
|
* being an internal Python long digit, in base BASE). |
|
*/ |
|
#define KARATSUBA_CUTOFF 35 |
|
|
|
#define ABS(x) ((x) < 0 ? -(x) : (x)) |
|
|
|
#undef MIN |
|
#undef MAX |
|
#define MAX(x, y) ((x) < (y) ? (y) : (x)) |
|
#define MIN(x, y) ((x) > (y) ? (y) : (x)) |
|
|
|
/* Forward */ |
|
static PyLongObject *long_normalize(PyLongObject *); |
|
static PyLongObject *mul1(PyLongObject *, wdigit); |
|
static PyLongObject *muladd1(PyLongObject *, wdigit, wdigit); |
|
static PyLongObject *divrem1(PyLongObject *, digit, digit *); |
|
static PyObject *long_format(PyObject *aa, int base, int addL); |
|
|
|
#define SIGCHECK(PyTryBlock) \ |
|
if (--_Py_Ticker < 0) { \ |
|
_Py_Ticker = _Py_CheckInterval; \ |
|
if (PyErr_CheckSignals()) { PyTryBlock; } \ |
|
} |
|
|
|
/* Normalize (remove leading zeros from) a long int object. |
|
Doesn't attempt to free the storage--in most cases, due to the nature |
|
of the algorithms used, this could save at most be one word anyway. */ |
|
|
|
static PyLongObject * |
|
long_normalize(register PyLongObject *v) |
|
{ |
|
int j = ABS(v->ob_size); |
|
register int i = j; |
|
|
|
while (i > 0 && v->ob_digit[i-1] == 0) |
|
--i; |
|
if (i != j) |
|
v->ob_size = (v->ob_size < 0) ? -(i) : i; |
|
return v; |
|
} |
|
|
|
/* Allocate a new long int object with size digits. |
|
Return NULL and set exception if we run out of memory. */ |
|
|
|
PyLongObject * |
|
_PyLong_New(int size) |
|
{ |
|
return PyObject_NEW_VAR(PyLongObject, &PyLong_Type, size); |
|
} |
|
|
|
PyObject * |
|
_PyLong_Copy(PyLongObject *src) |
|
{ |
|
PyLongObject *result; |
|
int i; |
|
|
|
assert(src != NULL); |
|
i = src->ob_size; |
|
if (i < 0) |
|
i = -(i); |
|
result = _PyLong_New(i); |
|
if (result != NULL) { |
|
result->ob_size = src->ob_size; |
|
while (--i >= 0) |
|
result->ob_digit[i] = src->ob_digit[i]; |
|
} |
|
return (PyObject *)result; |
|
} |
|
|
|
/* Create a new long int object from a C long int */ |
|
|
|
PyObject * |
|
PyLong_FromLong(long ival) |
|
{ |
|
PyLongObject *v; |
|
unsigned long t; /* unsigned so >> doesn't propagate sign bit */ |
|
int ndigits = 0; |
|
int negative = 0; |
|
|
|
if (ival < 0) { |
|
ival = -ival; |
|
negative = 1; |
|
} |
|
|
|
/* Count the number of Python digits. |
|
We used to pick 5 ("big enough for anything"), but that's a |
|
waste of time and space given that 5*15 = 75 bits are rarely |
|
needed. */ |
|
t = (unsigned long)ival; |
|
while (t) { |
|
++ndigits; |
|
t >>= SHIFT; |
|
} |
|
v = _PyLong_New(ndigits); |
|
if (v != NULL) { |
|
digit *p = v->ob_digit; |
|
v->ob_size = negative ? -ndigits : ndigits; |
|
t = (unsigned long)ival; |
|
while (t) { |
|
*p++ = (digit)(t & MASK); |
|
t >>= SHIFT; |
|
} |
|
} |
|
return (PyObject *)v; |
|
} |
|
|
|
/* Create a new long int object from a C unsigned long int */ |
|
|
|
PyObject * |
|
PyLong_FromUnsignedLong(unsigned long ival) |
|
{ |
|
PyLongObject *v; |
|
unsigned long t; |
|
int ndigits = 0; |
|
|
|
/* Count the number of Python digits. */ |
|
t = (unsigned long)ival; |
|
while (t) { |
|
++ndigits; |
|
t >>= SHIFT; |
|
} |
|
v = _PyLong_New(ndigits); |
|
if (v != NULL) { |
|
digit *p = v->ob_digit; |
|
v->ob_size = ndigits; |
|
while (ival) { |
|
*p++ = (digit)(ival & MASK); |
|
ival >>= SHIFT; |
|
} |
|
} |
|
return (PyObject *)v; |
|
} |
|
|
|
/* Create a new long int object from a C double */ |
|
|
|
PyObject * |
|
PyLong_FromDouble(double dval) |
|
{ |
|
PyLongObject *v; |
|
double frac; |
|
int i, ndig, expo, neg; |
|
neg = 0; |
|
if (Py_IS_INFINITY(dval)) { |
|
PyErr_SetString(PyExc_OverflowError, |
|
"cannot convert float infinity to long"); |
|
return NULL; |
|
} |
|
if (dval < 0.0) { |
|
neg = 1; |
|
dval = -dval; |
|
} |
|
frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */ |
|
if (expo <= 0) |
|
return PyLong_FromLong(0L); |
|
ndig = (expo-1) / SHIFT + 1; /* Number of 'digits' in result */ |
|
v = _PyLong_New(ndig); |
|
if (v == NULL) |
|
return NULL; |
|
frac = ldexp(frac, (expo-1) % SHIFT + 1); |
|
for (i = ndig; --i >= 0; ) { |
|
long bits = (long)frac; |
|
v->ob_digit[i] = (digit) bits; |
|
frac = frac - (double)bits; |
|
frac = ldexp(frac, SHIFT); |
|
} |
|
if (neg) |
|
v->ob_size = -(v->ob_size); |
|
return (PyObject *)v; |
|
} |
|
|
|
/* Get a C long int from a long int object. |
|
Returns -1 and sets an error condition if overflow occurs. */ |
|
|
|
long |
|
PyLong_AsLong(PyObject *vv) |
|
{ |
|
/* This version by Tim Peters */ |
|
register PyLongObject *v; |
|
unsigned long x, prev; |
|
int i, sign; |
|
|
|
if (vv == NULL || !PyLong_Check(vv)) { |
|
if (vv != NULL && PyInt_Check(vv)) |
|
return PyInt_AsLong(vv); |
|
PyErr_BadInternalCall(); |
|
return -1; |
|
} |
|
v = (PyLongObject *)vv; |
|
i = v->ob_size; |
|
sign = 1; |
|
x = 0; |
|
if (i < 0) { |
|
sign = -1; |
|
i = -(i); |
|
} |
|
while (--i >= 0) { |
|
prev = x; |
|
x = (x << SHIFT) + v->ob_digit[i]; |
|
if ((x >> SHIFT) != prev) |
|
goto overflow; |
|
} |
|
/* Haven't lost any bits, but if the sign bit is set we're in |
|
* trouble *unless* this is the min negative number. So, |
|
* trouble iff sign bit set && (positive || some bit set other |
|
* than the sign bit). |
|
*/ |
|
if ((long)x < 0 && (sign > 0 || (x << 1) != 0)) |
|
goto overflow; |
|
return (long)x * sign; |
|
|
|
overflow: |
|
PyErr_SetString(PyExc_OverflowError, |
|
"long int too large to convert to int"); |
|
return -1; |
|
} |
|
|
|
/* Get a C unsigned long int from a long int object. |
|
Returns -1 and sets an error condition if overflow occurs. */ |
|
|
|
unsigned long |
|
PyLong_AsUnsignedLong(PyObject *vv) |
|
{ |
|
register PyLongObject *v; |
|
unsigned long x, prev; |
|
int i; |
|
|
|
if (vv == NULL || !PyLong_Check(vv)) { |
|
PyErr_BadInternalCall(); |
|
return (unsigned long) -1; |
|
} |
|
v = (PyLongObject *)vv; |
|
i = v->ob_size; |
|
x = 0; |
|
if (i < 0) { |
|
PyErr_SetString(PyExc_OverflowError, |
|
"can't convert negative value to unsigned long"); |
|
return (unsigned long) -1; |
|
} |
|
while (--i >= 0) { |
|
prev = x; |
|
x = (x << SHIFT) + v->ob_digit[i]; |
|
if ((x >> SHIFT) != prev) { |
|
PyErr_SetString(PyExc_OverflowError, |
|
"long int too large to convert"); |
|
return (unsigned long) -1; |
|
} |
|
} |
|
return x; |
|
} |
|
|
|
/* Get a C unsigned long int from a long int object, ignoring the high bits. |
|
Returns -1 and sets an error condition if an error occurs. */ |
|
|
|
unsigned long |
|
PyLong_AsUnsignedLongMask(PyObject *vv) |
|
{ |
|
register PyLongObject *v; |
|
unsigned long x; |
|
int i, sign; |
|
|
|
if (vv == NULL || !PyLong_Check(vv)) { |
|
PyErr_BadInternalCall(); |
|
return (unsigned long) -1; |
|
} |
|
v = (PyLongObject *)vv; |
|
i = v->ob_size; |
|
sign = 1; |
|
x = 0; |
|
if (i < 0) { |
|
sign = -1; |
|
i = -i; |
|
} |
|
while (--i >= 0) { |
|
x = (x << SHIFT) + v->ob_digit[i]; |
|
} |
|
return x * sign; |
|
} |
|
|
|
int |
|
_PyLong_Sign(PyObject *vv) |
|
{ |
|
PyLongObject *v = (PyLongObject *)vv; |
|
|
|
assert(v != NULL); |
|
assert(PyLong_Check(v)); |
|
|
|
return v->ob_size == 0 ? 0 : (v->ob_size < 0 ? -1 : 1); |
|
} |
|
|
|
size_t |
|
_PyLong_NumBits(PyObject *vv) |
|
{ |
|
PyLongObject *v = (PyLongObject *)vv; |
|
size_t result = 0; |
|
int ndigits; |
|
|
|
assert(v != NULL); |
|
assert(PyLong_Check(v)); |
|
ndigits = ABS(v->ob_size); |
|
assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); |
|
if (ndigits > 0) { |
|
digit msd = v->ob_digit[ndigits - 1]; |
|
|
|
result = (ndigits - 1) * SHIFT; |
|
if (result / SHIFT != (size_t)ndigits - 1) |
|
goto Overflow; |
|
do { |
|
++result; |
|
if (result == 0) |
|
goto Overflow; |
|
msd >>= 1; |
|
} while (msd); |
|
} |
|
return result; |
|
|
|
Overflow: |
|
PyErr_SetString(PyExc_OverflowError, "long has too many bits " |
|
"to express in a platform size_t"); |
|
return (size_t)-1; |
|
} |
|
|
|
PyObject * |
|
_PyLong_FromByteArray(const unsigned char* bytes, size_t n, |
|
int little_endian, int is_signed) |
|
{ |
|
const unsigned char* pstartbyte;/* LSB of bytes */ |
|
int incr; /* direction to move pstartbyte */ |
|
const unsigned char* pendbyte; /* MSB of bytes */ |
|
size_t numsignificantbytes; /* number of bytes that matter */ |
|
size_t ndigits; /* number of Python long digits */ |
|
PyLongObject* v; /* result */ |
|
int idigit = 0; /* next free index in v->ob_digit */ |
|
|
|
if (n == 0) |
|
return PyLong_FromLong(0L); |
|
|
|
if (little_endian) { |
|
pstartbyte = bytes; |
|
pendbyte = bytes + n - 1; |
|
incr = 1; |
|
} |
|
else { |
|
pstartbyte = bytes + n - 1; |
|
pendbyte = bytes; |
|
incr = -1; |
|
} |
|
|
|
if (is_signed) |
|
is_signed = *pendbyte >= 0x80; |
|
|
|
/* Compute numsignificantbytes. This consists of finding the most |
|
significant byte. Leading 0 bytes are insignficant if the number |
|
is positive, and leading 0xff bytes if negative. */ |
|
{ |
|
size_t i; |
|
const unsigned char* p = pendbyte; |
|
const int pincr = -incr; /* search MSB to LSB */ |
|
const unsigned char insignficant = is_signed ? 0xff : 0x00; |
|
|
|
for (i = 0; i < n; ++i, p += pincr) { |
|
if (*p != insignficant) |
|
break; |
|
} |
|
numsignificantbytes = n - i; |
|
/* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so |
|
actually has 2 significant bytes. OTOH, 0xff0001 == |
|
-0x00ffff, so we wouldn't *need* to bump it there; but we |
|
do for 0xffff = -0x0001. To be safe without bothering to |
|
check every case, bump it regardless. */ |
|
if (is_signed && numsignificantbytes < n) |
|
++numsignificantbytes; |
|
} |
|
|
|
/* How many Python long digits do we need? We have |
|
8*numsignificantbytes bits, and each Python long digit has SHIFT |
|
bits, so it's the ceiling of the quotient. */ |
|
ndigits = (numsignificantbytes * 8 + SHIFT - 1) / SHIFT; |
|
if (ndigits > (size_t)INT_MAX) |
|
return PyErr_NoMemory(); |
|
v = _PyLong_New((int)ndigits); |
|
if (v == NULL) |
|
return NULL; |
|
|
|
/* Copy the bits over. The tricky parts are computing 2's-comp on |
|
the fly for signed numbers, and dealing with the mismatch between |
|
8-bit bytes and (probably) 15-bit Python digits.*/ |
|
{ |
|
size_t i; |
|
twodigits carry = 1; /* for 2's-comp calculation */ |
|
twodigits accum = 0; /* sliding register */ |
|
unsigned int accumbits = 0; /* number of bits in accum */ |
|
const unsigned char* p = pstartbyte; |
|
|
|
for (i = 0; i < numsignificantbytes; ++i, p += incr) { |
|
twodigits thisbyte = *p; |
|
/* Compute correction for 2's comp, if needed. */ |
|
if (is_signed) { |
|
thisbyte = (0xff ^ thisbyte) + carry; |
|
carry = thisbyte >> 8; |
|
thisbyte &= 0xff; |
|
} |
|
/* Because we're going LSB to MSB, thisbyte is |
|
more significant than what's already in accum, |
|
so needs to be prepended to accum. */ |
|
accum |= thisbyte << accumbits; |
|
accumbits += 8; |
|
if (accumbits >= SHIFT) { |
|
/* There's enough to fill a Python digit. */ |
|
assert(idigit < (int)ndigits); |
|
v->ob_digit[idigit] = (digit)(accum & MASK); |
|
++idigit; |
|
accum >>= SHIFT; |
|
accumbits -= SHIFT; |
|
assert(accumbits < SHIFT); |
|
} |
|
} |
|
assert(accumbits < SHIFT); |
|
if (accumbits) { |
|
assert(idigit < (int)ndigits); |
|
v->ob_digit[idigit] = (digit)accum; |
|
++idigit; |
|
} |
|
} |
|
|
|
v->ob_size = is_signed ? -idigit : idigit; |
|
return (PyObject *)long_normalize(v); |
|
} |
|
|
|
int |
|
_PyLong_AsByteArray(PyLongObject* v, |
|
unsigned char* bytes, size_t n, |
|
int little_endian, int is_signed) |
|
{ |
|
int i; /* index into v->ob_digit */ |
|
int ndigits; /* |v->ob_size| */ |
|
twodigits accum; /* sliding register */ |
|
unsigned int accumbits; /* # bits in accum */ |
|
int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */ |
|
twodigits carry; /* for computing 2's-comp */ |
|
size_t j; /* # bytes filled */ |
|
unsigned char* p; /* pointer to next byte in bytes */ |
|
int pincr; /* direction to move p */ |
|
|
|
assert(v != NULL && PyLong_Check(v)); |
|
|
|
if (v->ob_size < 0) { |
|
ndigits = -(v->ob_size); |
|
if (!is_signed) { |
|
PyErr_SetString(PyExc_TypeError, |
|
"can't convert negative long to unsigned"); |
|
return -1; |
|
} |
|
do_twos_comp = 1; |
|
} |
|
else { |
|
ndigits = v->ob_size; |
|
do_twos_comp = 0; |
|
} |
|
|
|
if (little_endian) { |
|
p = bytes; |
|
pincr = 1; |
|
} |
|
else { |
|
p = bytes + n - 1; |
|
pincr = -1; |
|
} |
|
|
|
/* Copy over all the Python digits. |
|
It's crucial that every Python digit except for the MSD contribute |
|
exactly SHIFT bits to the total, so first assert that the long is |
|
normalized. */ |
|
assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); |
|
j = 0; |
|
accum = 0; |
|
accumbits = 0; |
|
carry = do_twos_comp ? 1 : 0; |
|
for (i = 0; i < ndigits; ++i) { |
|
twodigits thisdigit = v->ob_digit[i]; |
|
if (do_twos_comp) { |
|
thisdigit = (thisdigit ^ MASK) + carry; |
|
carry = thisdigit >> SHIFT; |
|
thisdigit &= MASK; |
|
} |
|
/* Because we're going LSB to MSB, thisdigit is more |
|
significant than what's already in accum, so needs to be |
|
prepended to accum. */ |
|
accum |= thisdigit << accumbits; |
|
accumbits += SHIFT; |
|
|
|
/* The most-significant digit may be (probably is) at least |
|
partly empty. */ |
|
if (i == ndigits - 1) { |
|
/* Count # of sign bits -- they needn't be stored, |
|
* although for signed conversion we need later to |
|
* make sure at least one sign bit gets stored. |
|
* First shift conceptual sign bit to real sign bit. |
|
*/ |
|
stwodigits s = (stwodigits)(thisdigit << |
|
(8*sizeof(stwodigits) - SHIFT)); |
|
unsigned int nsignbits = 0; |
|
while ((s < 0) == do_twos_comp && nsignbits < SHIFT) { |
|
++nsignbits; |
|
s <<= 1; |
|
} |
|
accumbits -= nsignbits; |
|
} |
|
|
|
/* Store as many bytes as possible. */ |
|
while (accumbits >= 8) { |
|
if (j >= n) |
|
goto Overflow; |
|
++j; |
|
*p = (unsigned char)(accum & 0xff); |
|
p += pincr; |
|
accumbits -= 8; |
|
accum >>= 8; |
|
} |
|
} |
|
|
|
/* Store the straggler (if any). */ |
|
assert(accumbits < 8); |
|
assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */ |
|
if (accumbits > 0) { |
|
if (j >= n) |
|
goto Overflow; |
|
++j; |
|
if (do_twos_comp) { |
|
/* Fill leading bits of the byte with sign bits |
|
(appropriately pretending that the long had an |
|
infinite supply of sign bits). */ |
|
accum |= (~(twodigits)0) << accumbits; |
|
} |
|
*p = (unsigned char)(accum & 0xff); |
|
p += pincr; |
|
} |
|
else if (j == n && n > 0 && is_signed) { |
|
/* The main loop filled the byte array exactly, so the code |
|
just above didn't get to ensure there's a sign bit, and the |
|
loop below wouldn't add one either. Make sure a sign bit |
|
exists. */ |
|
unsigned char msb = *(p - pincr); |
|
int sign_bit_set = msb >= 0x80; |
|
assert(accumbits == 0); |
|
if (sign_bit_set == do_twos_comp) |
|
return 0; |
|
else |
|
goto Overflow; |
|
} |
|
|
|
/* Fill remaining bytes with copies of the sign bit. */ |
|
{ |
|
unsigned char signbyte = do_twos_comp ? 0xffU : 0U; |
|
for ( ; j < n; ++j, p += pincr) |
|
*p = signbyte; |
|
} |
|
|
|
return 0; |
|
|
|
Overflow: |
|
PyErr_SetString(PyExc_OverflowError, "long too big to convert"); |
|
return -1; |
|
|
|
} |
|
|
|
double |
|
_PyLong_AsScaledDouble(PyObject *vv, int *exponent) |
|
{ |
|
/* NBITS_WANTED should be > the number of bits in a double's precision, |
|
but small enough so that 2**NBITS_WANTED is within the normal double |
|
range. nbitsneeded is set to 1 less than that because the most-significant |
|
Python digit contains at least 1 significant bit, but we don't want to |
|
bother counting them (catering to the worst case cheaply). |
|
|
|
57 is one more than VAX-D double precision; I (Tim) don't know of a double |
|
format with more precision than that; it's 1 larger so that we add in at |
|
least one round bit to stand in for the ignored least-significant bits. |
|
*/ |
|
#define NBITS_WANTED 57 |
|
PyLongObject *v; |
|
double x; |
|
const double multiplier = (double)(1L << SHIFT); |
|
int i, sign; |
|
int nbitsneeded; |
|
|
|
if (vv == NULL || !PyLong_Check(vv)) { |
|
PyErr_BadInternalCall(); |
|
return -1; |
|
} |
|
v = (PyLongObject *)vv; |
|
i = v->ob_size; |
|
sign = 1; |
|
if (i < 0) { |
|
sign = -1; |
|
i = -(i); |
|
} |
|
else if (i == 0) { |
|
*exponent = 0; |
|
return 0.0; |
|
} |
|
--i; |
|
x = (double)v->ob_digit[i]; |
|
nbitsneeded = NBITS_WANTED - 1; |
|
/* Invariant: i Python digits remain unaccounted for. */ |
|
while (i > 0 && nbitsneeded > 0) { |
|
--i; |
|
x = x * multiplier + (double)v->ob_digit[i]; |
|
nbitsneeded -= SHIFT; |
|
} |
|
/* There are i digits we didn't shift in. Pretending they're all |
|
zeroes, the true value is x * 2**(i*SHIFT). */ |
|
*exponent = i; |
|
assert(x > 0.0); |
|
return x * sign; |
|
#undef NBITS_WANTED |
|
} |
|
|
|
/* Get a C double from a long int object. */ |
|
|
|
double |
|
PyLong_AsDouble(PyObject *vv) |
|
{ |
|
int e; |
|
double x; |
|
|
|
if (vv == NULL || !PyLong_Check(vv)) { |
|
PyErr_BadInternalCall(); |
|
return -1; |
|
} |
|
x = _PyLong_AsScaledDouble(vv, &e); |
|
if (x == -1.0 && PyErr_Occurred()) |
|
return -1.0; |
|
if (e > INT_MAX / SHIFT) |
|
goto overflow; |
|
errno = 0; |
|
x = ldexp(x, e * SHIFT); |
|
if (Py_OVERFLOWED(x)) |
|
goto overflow; |
|
return x; |
|
|
|
overflow: |
|
PyErr_SetString(PyExc_OverflowError, |
|
"long int too large to convert to float"); |
|
return -1.0; |
|
} |
|
|
|
/* Create a new long (or int) object from a C pointer */ |
|
|
|
PyObject * |
|
PyLong_FromVoidPtr(void *p) |
|
{ |
|
#if SIZEOF_VOID_P <= SIZEOF_LONG |
|
return PyInt_FromLong((long)p); |
|
#else |
|
|
|
#ifndef HAVE_LONG_LONG |
|
# error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long" |
|
#endif |
|
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P |
|
# error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" |
|
#endif |
|
/* optimize null pointers */ |
|
if (p == NULL) |
|
return PyInt_FromLong(0); |
|
return PyLong_FromLongLong((PY_LONG_LONG)p); |
|
|
|
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ |
|
} |
|
|
|
/* Get a C pointer from a long object (or an int object in some cases) */ |
|
|
|
void * |
|
PyLong_AsVoidPtr(PyObject *vv) |
|
{ |
|
/* This function will allow int or long objects. If vv is neither, |
|
then the PyLong_AsLong*() functions will raise the exception: |
|
PyExc_SystemError, "bad argument to internal function" |
|
*/ |
|
#if SIZEOF_VOID_P <= SIZEOF_LONG |
|
long x; |
|
|
|
if (PyInt_Check(vv)) |
|
x = PyInt_AS_LONG(vv); |
|
else |
|
x = PyLong_AsLong(vv); |
|
#else |
|
|
|
#ifndef HAVE_LONG_LONG |
|
# error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long" |
|
#endif |
|
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P |
|
# error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" |
|
#endif |
|
PY_LONG_LONG x; |
|
|
|
if (PyInt_Check(vv)) |
|
x = PyInt_AS_LONG(vv); |
|
else |
|
x = PyLong_AsLongLong(vv); |
|
|
|
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ |
|
|
|
if (x == -1 && PyErr_Occurred()) |
|
return NULL; |
|
return (void *)x; |
|
} |
|
|
|
#ifdef HAVE_LONG_LONG |
|
|
|
/* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later |
|
* rewritten to use the newer PyLong_{As,From}ByteArray API. |
|
*/ |
|
|
|
#define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one |
|
|
|
/* Create a new long int object from a C PY_LONG_LONG int. */ |
|
|
|
PyObject * |
|
PyLong_FromLongLong(PY_LONG_LONG ival) |
|
{ |
|
PY_LONG_LONG bytes = ival; |
|
int one = 1; |
|
return _PyLong_FromByteArray( |
|
(unsigned char *)&bytes, |
|
SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); |
|
} |
|
|
|
/* Create a new long int object from a C unsigned PY_LONG_LONG int. */ |
|
|
|
PyObject * |
|
PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival) |
|
{ |
|
unsigned PY_LONG_LONG bytes = ival; |
|
int one = 1; |
|
return _PyLong_FromByteArray( |
|
(unsigned char *)&bytes, |
|
SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); |
|
} |
|
|
|
/* Get a C PY_LONG_LONG int from a long int object. |
|
Return -1 and set an error if overflow occurs. */ |
|
|
|
PY_LONG_LONG |
|
PyLong_AsLongLong(PyObject *vv) |
|
{ |
|
PY_LONG_LONG bytes; |
|
int one = 1; |
|
int res; |
|
|
|
if (vv == NULL) { |
|
PyErr_BadInternalCall(); |
|
return -1; |
|
} |
|
if (!PyLong_Check(vv)) { |
|
if (PyInt_Check(vv)) |
|
return (PY_LONG_LONG)PyInt_AsLong(vv); |
|
PyErr_BadInternalCall(); |
|
return -1; |
|
} |
|
|
|
res = _PyLong_AsByteArray( |
|
(PyLongObject *)vv, (unsigned char *)&bytes, |
|
SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); |
|
|
|
/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ |
|
if (res < 0) |
|
return (PY_LONG_LONG)-1; |
|
else |
|
return bytes; |
|
} |
|
|
|
/* Get a C unsigned PY_LONG_LONG int from a long int object. |
|
Return -1 and set an error if overflow occurs. */ |
|
|
|
unsigned PY_LONG_LONG |
|
PyLong_AsUnsignedLongLong(PyObject *vv) |
|
{ |
|
unsigned PY_LONG_LONG bytes; |
|
int one = 1; |
|
int res; |
|
|
|
if (vv == NULL || !PyLong_Check(vv)) { |
|
PyErr_BadInternalCall(); |
|
return -1; |
|
} |
|
|
|
res = _PyLong_AsByteArray( |
|
(PyLongObject *)vv, (unsigned char *)&bytes, |
|
SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); |
|
|
|
/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ |
|
if (res < 0) |
|
return (unsigned PY_LONG_LONG)res; |
|
else |
|
return bytes; |
|
} |
|
|
|
/* Get a C unsigned long int from a long int object, ignoring the high bits. |
|
Returns -1 and sets an error condition if an error occurs. */ |
|
|
|
unsigned PY_LONG_LONG |
|
PyLong_AsUnsignedLongLongMask(PyObject *vv) |
|
{ |
|
register PyLongObject *v; |
|
unsigned PY_LONG_LONG x; |
|
int i, sign; |
|
|
|
if (vv == NULL || !PyLong_Check(vv)) { |
|
PyErr_BadInternalCall(); |
|
return (unsigned long) -1; |
|
} |
|
v = (PyLongObject *)vv; |
|
i = v->ob_size; |
|
sign = 1; |
|
x = 0; |
|
if (i < 0) { |
|
sign = -1; |
|
i = -i; |
|
} |
|
while (--i >= 0) { |
|
x = (x << SHIFT) + v->ob_digit[i]; |
|
} |
|
return x * sign; |
|
} |
|
#undef IS_LITTLE_ENDIAN |
|
|
|
#endif /* HAVE_LONG_LONG */ |
|
|
|
|
|
static int |
|
convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) { |
|
if (PyLong_Check(v)) { |
|
*a = (PyLongObject *) v; |
|
Py_INCREF(v); |
|
} |
|
else if (PyInt_Check(v)) { |
|
*a = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(v)); |
|
} |
|
else { |
|
return 0; |
|
} |
|
if (PyLong_Check(w)) { |
|
*b = (PyLongObject *) w; |
|
Py_INCREF(w); |
|
} |
|
else if (PyInt_Check(w)) { |
|
*b = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(w)); |
|
} |
|
else { |
|
Py_DECREF(*a); |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
#define CONVERT_BINOP(v, w, a, b) \ |
|
if (!convert_binop(v, w, a, b)) { \ |
|
Py_INCREF(Py_NotImplemented); \ |
|
return Py_NotImplemented; \ |
|
} |
|
|
|
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] |
|
* is modified in place, by adding y to it. Carries are propagated as far as |
|
* x[m-1], and the remaining carry (0 or 1) is returned. |
|
*/ |
|
static digit |
|
v_iadd(digit *x, int m, digit *y, int n) |
|
{ |
|
int i; |
|
digit carry = 0; |
|
|
|
assert(m >= n); |
|
for (i = 0; i < n; ++i) { |
|
carry += x[i] + y[i]; |
|
x[i] = carry & MASK; |
|
carry >>= SHIFT; |
|
assert((carry & 1) == carry); |
|
} |
|
for (; carry && i < m; ++i) { |
|
carry += x[i]; |
|
x[i] = carry & MASK; |
|
carry >>= SHIFT; |
|
assert((carry & 1) == carry); |
|
} |
|
return carry; |
|
} |
|
|
|
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] |
|
* is modified in place, by subtracting y from it. Borrows are propagated as |
|
* far as x[m-1], and the remaining borrow (0 or 1) is returned. |
|
*/ |
|
static digit |
|
v_isub(digit *x, int m, digit *y, int n) |
|
{ |
|
int i; |
|
digit borrow = 0; |
|
|
|
assert(m >= n); |
|
for (i = 0; i < n; ++i) { |
|
borrow = x[i] - y[i] - borrow; |
|
x[i] = borrow & MASK; |
|
borrow >>= SHIFT; |
|
borrow &= 1; /* keep only 1 sign bit */ |
|
} |
|
for (; borrow && i < m; ++i) { |
|
borrow = x[i] - borrow; |
|
x[i] = borrow & MASK; |
|
borrow >>= SHIFT; |
|
borrow &= 1; |
|
} |
|
return borrow; |
|
} |
|
|
|
/* Multiply by a single digit, ignoring the sign. */ |
|
|
|
static PyLongObject * |
|
mul1(PyLongObject *a, wdigit n) |
|
{ |
|
return muladd1(a, n, (digit)0); |
|
} |
|
|
|
/* Multiply by a single digit and add a single digit, ignoring the sign. */ |
|
|
|
static PyLongObject * |
|
muladd1(PyLongObject *a, wdigit n, wdigit extra) |
|
{ |
|
int size_a = ABS(a->ob_size); |
|
PyLongObject *z = _PyLong_New(size_a+1); |
|
twodigits carry = extra; |
|
int i; |
|
|
|
if (z == NULL) |
|
return NULL; |
|
for (i = 0; i < size_a; ++i) { |
|
carry += (twodigits)a->ob_digit[i] * n; |
|
z->ob_digit[i] = (digit) (carry & MASK); |
|
carry >>= SHIFT; |
|
} |
|
z->ob_digit[i] = (digit) carry; |
|
return long_normalize(z); |
|
} |
|
|
|
/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient |
|
in pout, and returning the remainder. pin and pout point at the LSD. |
|
It's OK for pin == pout on entry, which saves oodles of mallocs/frees in |
|
long_format, but that should be done with great care since longs are |
|
immutable. */ |
|
|
|
static digit |
|
inplace_divrem1(digit *pout, digit *pin, int size, digit n) |
|
{ |
|
twodigits rem = 0; |
|
|
|
assert(n > 0 && n <= MASK); |
|
pin += size; |
|
pout += size; |
|
while (--size >= 0) { |
|
digit hi; |
|
rem = (rem << SHIFT) + *--pin; |
|
*--pout = hi = (digit)(rem / n); |
|
rem -= hi * n; |
|
} |
|
return (digit)rem; |
|
} |
|
|
|
/* Divide a long integer by a digit, returning both the quotient |
|
(as function result) and the remainder (through *prem). |
|
The sign of a is ignored; n should not be zero. */ |
|
|
|
static PyLongObject * |
|
divrem1(PyLongObject *a, digit n, digit *prem) |
|
{ |
|
const int size = ABS(a->ob_size); |
|
PyLongObject *z; |
|
|
|
assert(n > 0 && n <= MASK); |
|
z = _PyLong_New(size); |
|
if (z == NULL) |
|
return NULL; |
|
*prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n); |
|
return long_normalize(z); |
|
} |
|
|
|
/* Convert a long int object to a string, using a given conversion base. |
|
Return a string object. |
|
If base is 8 or 16, add the proper prefix '0' or '0x'. */ |
|
|
|
static PyObject * |
|
long_format(PyObject *aa, int base, int addL) |
|
{ |
|
register PyLongObject *a = (PyLongObject *)aa; |
|
PyStringObject *str; |
|
int i; |
|
const int size_a = ABS(a->ob_size); |
|
char *p; |
|
int bits; |
|
char sign = '\0'; |
|
|
|
if (a == NULL || !PyLong_Check(a)) { |
|
PyErr_BadInternalCall(); |
|
return NULL; |
|
} |
|
assert(base >= 2 && base <= 36); |
|
|
|
/* Compute a rough upper bound for the length of the string */ |
|
i = base; |
|
bits = 0; |
|
while (i > 1) { |
|
++bits; |
|
i >>= 1; |
|
} |
|
i = 5 + (addL ? 1 : 0) + (size_a*SHIFT + bits-1) / bits; |
|
str = (PyStringObject *) PyString_FromStringAndSize((char *)0, i); |
|
if (str == NULL) |
|
return NULL; |
|
p = PyString_AS_STRING(str) + i; |
|
*p = '\0'; |
|
if (addL) |
|
*--p = 'L'; |
|
if (a->ob_size < 0) |
|
sign = '-'; |
|
|
|
if (a->ob_size == 0) { |
|
*--p = '0'; |
|
} |
|
else if ((base & (base - 1)) == 0) { |
|
/* JRH: special case for power-of-2 bases */ |
|
twodigits accum = 0; |
|
int accumbits = 0; /* # of bits in accum */ |
|
int basebits = 1; /* # of bits in base-1 */ |
|
i = base; |
|
while ((i >>= 1) > 1) |
|
++basebits; |
|
|
|
for (i = 0; i < size_a; ++i) { |
|
accum |= (twodigits)a->ob_digit[i] << accumbits; |
|
accumbits += SHIFT; |
|
assert(accumbits >= basebits); |
|
do { |
|
char cdigit = (char)(accum & (base - 1)); |
|
cdigit += (cdigit < 10) ? '0' : 'A'-10; |
|
assert(p > PyString_AS_STRING(str)); |
|
*--p = cdigit; |
|
accumbits -= basebits; |
|
accum >>= basebits; |
|
} while (i < size_a-1 ? accumbits >= basebits : |
|
accum > 0); |
|
} |
|
} |
|
else { |
|
/* Not 0, and base not a power of 2. Divide repeatedly by |
|
base, but for speed use the highest power of base that |
|
fits in a digit. */ |
|
int size = size_a; |
|
digit *pin = a->ob_digit; |
|
PyLongObject *scratch; |
|
/* powbasw <- largest power of base that fits in a digit. */ |
|
digit powbase = base; /* powbase == base ** power */ |
|
int power = 1; |
|
for (;;) { |
|
unsigned long newpow = powbase * (unsigned long)base; |
|
if (newpow >> SHIFT) /* doesn't fit in a digit */ |
|
break; |
|
powbase = (digit)newpow; |
|
++power; |
|
} |
|
|
|
/* Get a scratch area for repeated division. */ |
|
scratch = _PyLong_New(size); |
|
if (scratch == NULL) { |
|
Py_DECREF(str); |
|
return NULL; |
|
} |
|
|
|
/* Repeatedly divide by powbase. */ |
|
do { |
|
int ntostore = power; |
|
digit rem = inplace_divrem1(scratch->ob_digit, |
|
pin, size, powbase); |
|
pin = scratch->ob_digit; /* no need to use a again */ |
|
if (pin[size - 1] == 0) |
|
--size; |
|
SIGCHECK({ |
|
Py_DECREF(scratch); |
|
Py_DECREF(str); |
|
return NULL; |
|
}) |
|
|
|
/* Break rem into digits. */ |
|
assert(ntostore > 0); |
|
do { |
|
digit nextrem = (digit)(rem / base); |
|
char c = (char)(rem - nextrem * base); |
|
assert(p > PyString_AS_STRING(str)); |
|
c += (c < 10) ? '0' : 'A'-10; |
|
*--p = c; |
|
rem = nextrem; |
|
--ntostore; |
|
/* Termination is a bit delicate: must not |
|
store leading zeroes, so must get out if |
|
remaining quotient and rem are both 0. */ |
|
} while (ntostore && (size || rem)); |
|
} while (size != 0); |
|
Py_DECREF(scratch); |
|
} |
|
|
|
if (base == 8) { |
|
if (size_a != 0) |
|
*--p = '0'; |
|
} |
|
else if (base == 16) { |
|
*--p = 'x'; |
|
*--p = '0'; |
|
} |
|
else if (base != 10) { |
|
*--p = '#'; |
|
*--p = '0' + base%10; |
|
if (base > 10) |
|
*--p = '0' + base/10; |
|
} |
|
if (sign) |
|
*--p = sign; |
|
if (p != PyString_AS_STRING(str)) { |
|
char *q = PyString_AS_STRING(str); |
|
assert(p > q); |
|
do { |
|
} while ((*q++ = *p++) != '\0'); |
|
q--; |
|
_PyString_Resize((PyObject **)&str, |
|
(int) (q - PyString_AS_STRING(str))); |
|
} |
|
return (PyObject *)str; |
|
} |
|
|
|
/* *str points to the first digit in a string of base base digits. base |
|
* is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first |
|
* non-digit (which may be *str!). A normalized long is returned. |
|
* The point to this routine is that it takes time linear in the number of |
|
* string characters. |
|
*/ |
|
static PyLongObject * |
|
long_from_binary_base(char **str, int base) |
|
{ |
|
char *p = *str; |
|
char *start = p; |
|
int bits_per_char; |
|
int n; |
|
PyLongObject *z; |
|
twodigits accum; |
|
int bits_in_accum; |
|
digit *pdigit; |
|
|
|
assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0); |
|
n = base; |
|
for (bits_per_char = -1; n; ++bits_per_char) |
|
n >>= 1; |
|
/* n <- total # of bits needed, while setting p to end-of-string */ |
|
n = 0; |
|
for (;;) { |
|
int k = -1; |
|
char ch = *p; |
|
|
|
if (ch <= '9') |
|
k = ch - '0'; |
|
else if (ch >= 'a') |
|
k = ch - 'a' + 10; |
|
else if (ch >= 'A') |
|
k = ch - 'A' + 10; |
|
if (k < 0 || k >= base) |
|
break; |
|
++p; |
|
} |
|
*str = p; |
|
n = (p - start) * bits_per_char; |
|
if (n / bits_per_char != p - start) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"long string too large to convert"); |
|
return NULL; |
|
} |
|
/* n <- # of Python digits needed, = ceiling(n/SHIFT). */ |
|
n = (n + SHIFT - 1) / SHIFT; |
|
z = _PyLong_New(n); |
|
if (z == NULL) |
|
return NULL; |
|
/* Read string from right, and fill in long from left; i.e., |
|
* from least to most significant in both. |
|
*/ |
|
accum = 0; |
|
bits_in_accum = 0; |
|
pdigit = z->ob_digit; |
|
while (--p >= start) { |
|
int k; |
|
char ch = *p; |
|
|
|
if (ch <= '9') |
|
k = ch - '0'; |
|
else if (ch >= 'a') |
|
k = ch - 'a' + 10; |
|
else { |
|
assert(ch >= 'A'); |
|
k = ch - 'A' + 10; |
|
} |
|
assert(k >= 0 && k < base); |
|
accum |= (twodigits)(k << bits_in_accum); |
|
bits_in_accum += bits_per_char; |
|
if (bits_in_accum >= SHIFT) { |
|
*pdigit++ = (digit)(accum & MASK); |
|
assert(pdigit - z->ob_digit <= n); |
|
accum >>= SHIFT; |
|
bits_in_accum -= SHIFT; |
|
assert(bits_in_accum < SHIFT); |
|
} |
|
} |
|
if (bits_in_accum) { |
|
assert(bits_in_accum <= SHIFT); |
|
*pdigit++ = (digit)accum; |
|
assert(pdigit - z->ob_digit <= n); |
|
} |
|
while (pdigit - z->ob_digit < n) |
|
*pdigit++ = 0; |
|
return long_normalize(z); |
|
} |
|
|
|
PyObject * |
|
PyLong_FromString(char *str, char **pend, int base) |
|
{ |
|
int sign = 1; |
|
char *start, *orig_str = str; |
|
PyLongObject *z; |
|
|
|
if ((base != 0 && base < 2) || base > 36) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"long() arg 2 must be >= 2 and <= 36"); |
|
return NULL; |
|
} |
|
while (*str != '\0' && isspace(Py_CHARMASK(*str))) |
|
str++; |
|
if (*str == '+') |
|
++str; |
|
else if (*str == '-') { |
|
++str; |
|
sign = -1; |
|
} |
|
while (*str != '\0' && isspace(Py_CHARMASK(*str))) |
|
str++; |
|
if (base == 0) { |
|
if (str[0] != '0') |
|
base = 10; |
|
else if (str[1] == 'x' || str[1] == 'X') |
|
base = 16; |
|
else |
|
base = 8; |
|
} |
|
if (base == 16 && str[0] == '0' && (str[1] == 'x' || str[1] == 'X')) |
|
str += 2; |
|
start = str; |
|
if ((base & (base - 1)) == 0) |
|
z = long_from_binary_base(&str, base); |
|
else { |
|
z = _PyLong_New(0); |
|
for ( ; z != NULL; ++str) { |
|
int k = -1; |
|
PyLongObject *temp; |
|
|
|
if (*str <= '9') |
|
k = *str - '0'; |
|
else if (*str >= 'a') |
|
k = *str - 'a' + 10; |
|
else if (*str >= 'A') |
|
k = *str - 'A' + 10; |
|
if (k < 0 || k >= base) |
|
break; |
|
temp = muladd1(z, (digit)base, (digit)k); |
|
Py_DECREF(z); |
|
z = temp; |
|
} |
|
} |
|
if (z == NULL) |
|
return NULL; |
|
if (str == start) |
|
goto onError; |
|
if (sign < 0 && z != NULL && z->ob_size != 0) |
|
z->ob_size = -(z->ob_size); |
|
if (*str == 'L' || *str == 'l') |
|
str++; |
|
while (*str && isspace(Py_CHARMASK(*str))) |
|
str++; |
|
if (*str != '\0') |
|
goto onError; |
|
if (pend) |
|
*pend = str; |
|
return (PyObject *) z; |
|
|
|
onError: |
|
PyErr_Format(PyExc_ValueError, |
|
"invalid literal for long(): %.200s", orig_str); |
|
Py_XDECREF(z); |
|
return NULL; |
|
} |
|
|
|
#ifdef Py_USING_UNICODE |
|
PyObject * |
|
PyLong_FromUnicode(Py_UNICODE *u, int length, int base) |
|
{ |
|
PyObject *result; |
|
char *buffer = PyMem_MALLOC(length+1); |
|
|
|
if (buffer == NULL) |
|
return NULL; |
|
|
|
if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) { |
|
PyMem_FREE(buffer); |
|
return NULL; |
|
} |
|
result = PyLong_FromString(buffer, NULL, base); |
|
PyMem_FREE(buffer); |
|
return result; |
|
} |
|
#endif |
|
|
|
/* forward */ |
|
static PyLongObject *x_divrem |
|
(PyLongObject *, PyLongObject *, PyLongObject **); |
|
static PyObject *long_pos(PyLongObject *); |
|
static int long_divrem(PyLongObject *, PyLongObject *, |
|
PyLongObject **, PyLongObject **); |
|
|
|
/* Long division with remainder, top-level routine */ |
|
|
|
static int |
|
long_divrem(PyLongObject *a, PyLongObject *b, |
|
PyLongObject **pdiv, PyLongObject **prem) |
|
{ |
|
int size_a = ABS(a->ob_size), size_b = ABS(b->ob_size); |
|
PyLongObject *z; |
|
|
|
if (size_b == 0) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, |
|
"long division or modulo by zero"); |
|
return -1; |
|
} |
|
if (size_a < size_b || |
|
(size_a == size_b && |
|
a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) { |
|
/* |a| < |b|. */ |
|
*pdiv = _PyLong_New(0); |
|
Py_INCREF(a); |
|
*prem = (PyLongObject *) a; |
|
return 0; |
|
} |
|
if (size_b == 1) { |
|
digit rem = 0; |
|
z = divrem1(a, b->ob_digit[0], &rem); |
|
if (z == NULL) |
|
return -1; |
|
*prem = (PyLongObject *) PyLong_FromLong((long)rem); |
|
} |
|
else { |
|
z = x_divrem(a, b, prem); |
|
if (z == NULL) |
|
return -1; |
|
} |
|
/* Set the signs. |
|
The quotient z has the sign of a*b; |
|
the remainder r has the sign of a, |
|
so a = b*z + r. */ |
|
if ((a->ob_size < 0) != (b->ob_size < 0)) |
|
z->ob_size = -(z->ob_size); |
|
if (a->ob_size < 0 && (*prem)->ob_size != 0) |
|
(*prem)->ob_size = -((*prem)->ob_size); |
|
*pdiv = z; |
|
return 0; |
|
} |
|
|
|
/* Unsigned long division with remainder -- the algorithm */ |
|
|
|
static PyLongObject * |
|
x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) |
|
{ |
|
int size_v = ABS(v1->ob_size), size_w = ABS(w1->ob_size); |
|
digit d = (digit) ((twodigits)BASE / (w1->ob_digit[size_w-1] + 1)); |
|
PyLongObject *v = mul1(v1, d); |
|
PyLongObject *w = mul1(w1, d); |
|
PyLongObject *a; |
|
int j, k; |
|
|
|
if (v == NULL || w == NULL) { |
|
Py_XDECREF(v); |
|
Py_XDECREF(w); |
|
return NULL; |
|
} |
|
|
|
assert(size_v >= size_w && size_w > 1); /* Assert checks by div() */ |
|
assert(v->ob_refcnt == 1); /* Since v will be used as accumulator! */ |
|
assert(size_w == ABS(w->ob_size)); /* That's how d was calculated */ |
|
|
|
size_v = ABS(v->ob_size); |
|
a = _PyLong_New(size_v - size_w + 1); |
|
|
|
for (j = size_v, k = a->ob_size-1; a != NULL && k >= 0; --j, --k) { |
|
digit vj = (j >= size_v) ? 0 : v->ob_digit[j]; |
|
twodigits q; |
|
stwodigits carry = 0; |
|
int i; |
|
|
|
SIGCHECK({ |
|
Py_DECREF(a); |
|
a = NULL; |
|
break; |
|
}) |
|
if (vj == w->ob_digit[size_w-1]) |
|
q = MASK; |
|
else |
|
q = (((twodigits)vj << SHIFT) + v->ob_digit[j-1]) / |
|
w->ob_digit[size_w-1]; |
|
|
|
while (w->ob_digit[size_w-2]*q > |
|
(( |
|
((twodigits)vj << SHIFT) |
|
+ v->ob_digit[j-1] |
|
- q*w->ob_digit[size_w-1] |
|
) << SHIFT) |
|
+ v->ob_digit[j-2]) |
|
--q; |
|
|
|
for (i = 0; i < size_w && i+k < size_v; ++i) { |
|
twodigits z = w->ob_digit[i] * q; |
|
digit zz = (digit) (z >> SHIFT); |
|
carry += v->ob_digit[i+k] - z |
|
+ ((twodigits)zz << SHIFT); |
|
v->ob_digit[i+k] = (digit)(carry & MASK); |
|
carry = Py_ARITHMETIC_RIGHT_SHIFT(BASE_TWODIGITS_TYPE, |
|
carry, SHIFT); |
|
carry -= zz; |
|
} |
|
|
|
if (i+k < size_v) { |
|
carry += v->ob_digit[i+k]; |
|
v->ob_digit[i+k] = 0; |
|
} |
|
|
|
if (carry == 0) |
|
a->ob_digit[k] = (digit) q; |
|
else { |
|
assert(carry == -1); |
|
a->ob_digit[k] = (digit) q-1; |
|
carry = 0; |
|
for (i = 0; i < size_w && i+k < size_v; ++i) { |
|
carry += v->ob_digit[i+k] + w->ob_digit[i]; |
|
v->ob_digit[i+k] = (digit)(carry & MASK); |
|
carry = Py_ARITHMETIC_RIGHT_SHIFT( |
|
BASE_TWODIGITS_TYPE, |
|
carry, SHIFT); |
|
} |
|
} |
|
} /* for j, k */ |
|
|
|
if (a == NULL) |
|
*prem = NULL; |
|
else { |
|
a = long_normalize(a); |
|
*prem = divrem1(v, d, &d); |
|
/* d receives the (unused) remainder */ |
|
if (*prem == NULL) { |
|
Py_DECREF(a); |
|
a = NULL; |
|
} |
|
} |
|
Py_DECREF(v); |
|
Py_DECREF(w); |
|
return a; |
|
} |
|
|
|
/* Methods */ |
|
|
|
static void |
|
long_dealloc(PyObject *v) |
|
{ |
|
v->ob_type->tp_free(v); |
|
} |
|
|
|
static PyObject * |
|
long_repr(PyObject *v) |
|
{ |
|
return long_format(v, 10, 1); |
|
} |
|
|
|
static PyObject * |
|
long_str(PyObject *v) |
|
{ |
|
return long_format(v, 10, 0); |
|
} |
|
|
|
static int |
|
long_compare(PyLongObject *a, PyLongObject *b) |
|
{ |
|
int sign; |
|
|
|
if (a->ob_size != b->ob_size) { |
|
if (ABS(a->ob_size) == 0 && ABS(b->ob_size) == 0) |
|
sign = 0; |
|
else |
|
sign = a->ob_size - b->ob_size; |
|
} |
|
else { |
|
int i = ABS(a->ob_size); |
|
while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) |
|
; |
|
if (i < 0) |
|
sign = 0; |
|
else { |
|
sign = (int)a->ob_digit[i] - (int)b->ob_digit[i]; |
|
if (a->ob_size < 0) |
|
sign = -sign; |
|
} |
|
} |
|
return sign < 0 ? -1 : sign > 0 ? 1 : 0; |
|
} |
|
|
|
static long |
|
long_hash(PyLongObject *v) |
|
{ |
|
long x; |
|
int i, sign; |
|
|
|
/* This is designed so that Python ints and longs with the |
|
same value hash to the same value, otherwise comparisons |
|
of mapping keys will turn out weird */ |
|
i = v->ob_size; |
|
sign = 1; |
|
x = 0; |
|
if (i < 0) { |
|
sign = -1; |
|
i = -(i); |
|
} |
|
#define LONG_BIT_SHIFT (8*sizeof(long) - SHIFT) |
|
while (--i >= 0) { |
|
/* Force a native long #-bits (32 or 64) circular shift */ |
|
x = ((x << SHIFT) & ~MASK) | ((x >> LONG_BIT_SHIFT) & MASK); |
|
x += v->ob_digit[i]; |
|
} |
|
#undef LONG_BIT_SHIFT |
|
x = x * sign; |
|
if (x == -1) |
|
x = -2; |
|
return x; |
|
} |
|
|
|
|
|
/* Add the absolute values of two long integers. */ |
|
|
|
static PyLongObject * |
|
x_add(PyLongObject *a, PyLongObject *b) |
|
{ |
|
int size_a = ABS(a->ob_size), size_b = ABS(b->ob_size); |
|
PyLongObject *z; |
|
int i; |
|
digit carry = 0; |
|
|
|
/* Ensure a is the larger of the two: */ |
|
if (size_a < size_b) { |
|
{ PyLongObject *temp = a; a = b; b = temp; } |
|
{ int size_temp = size_a; |
|
size_a = size_b; |
|
size_b = size_temp; } |
|
} |
|
z = _PyLong_New(size_a+1); |
|
if (z == NULL) |
|
return NULL; |
|
for (i = 0; i < size_b; ++i) { |
|
carry += a->ob_digit[i] + b->ob_digit[i]; |
|
z->ob_digit[i] = carry & MASK; |
|
carry >>= SHIFT; |
|
} |
|
for (; i < size_a; ++i) { |
|
carry += a->ob_digit[i]; |
|
z->ob_digit[i] = carry & MASK; |
|
carry >>= SHIFT; |
|
} |
|
z->ob_digit[i] = carry; |
|
return long_normalize(z); |
|
} |
|
|
|
/* Subtract the absolute values of two integers. */ |
|
|
|
static PyLongObject * |
|
x_sub(PyLongObject *a, PyLongObject *b) |
|
{ |
|
int size_a = ABS(a->ob_size), size_b = ABS(b->ob_size); |
|
PyLongObject *z; |
|
int i; |
|
int sign = 1; |
|
digit borrow = 0; |
|
|
|
/* Ensure a is the larger of the two: */ |
|
if (size_a < size_b) { |
|
sign = -1; |
|
{ PyLongObject *temp = a; a = b; b = temp; } |
|
{ int size_temp = size_a; |
|
size_a = size_b; |
|
size_b = size_temp; } |
|
} |
|
else if (size_a == size_b) { |
|
/* Find highest digit where a and b differ: */ |
|
i = size_a; |
|
while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) |
|
; |
|
if (i < 0) |
|
return _PyLong_New(0); |
|
if (a->ob_digit[i] < b->ob_digit[i]) { |
|
sign = -1; |
|
{ PyLongObject *temp = a; a = b; b = temp; } |
|
} |
|
size_a = size_b = i+1; |
|
} |
|
z = _PyLong_New(size_a); |
|
if (z == NULL) |
|
return NULL; |
|
for (i = 0; i < size_b; ++i) { |
|
/* The following assumes unsigned arithmetic |
|
works module 2**N for some N>SHIFT. */ |
|
borrow = a->ob_digit[i] - b->ob_digit[i] - borrow; |
|
z->ob_digit[i] = borrow & MASK; |
|
borrow >>= SHIFT; |
|
borrow &= 1; /* Keep only one sign bit */ |
|
} |
|
for (; i < size_a; ++i) { |
|
borrow = a->ob_digit[i] - borrow; |
|
z->ob_digit[i] = borrow & MASK; |
|
borrow >>= SHIFT; |
|
borrow &= 1; /* Keep only one sign bit */ |
|
} |
|
assert(borrow == 0); |
|
if (sign < 0) |
|
z->ob_size = -(z->ob_size); |
|
return long_normalize(z); |
|
} |
|
|
|
static PyObject * |
|
long_add(PyLongObject *v, PyLongObject *w) |
|
{ |
|
PyLongObject *a, *b, *z; |
|
|
|
CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); |
|
|
|
if (a->ob_size < 0) { |
|
if (b->ob_size < 0) { |
|
z = x_add(a, b); |
|
if (z != NULL && z->ob_size != 0) |
|
z->ob_size = -(z->ob_size); |
|
} |
|
else |
|
z = x_sub(b, a); |
|
} |
|
else { |
|
if (b->ob_size < 0) |
|
z = x_sub(a, b); |
|
else |
|
z = x_add(a, b); |
|
} |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return (PyObject *)z; |
|
} |
|
|
|
static PyObject * |
|
long_sub(PyLongObject *v, PyLongObject *w) |
|
{ |
|
PyLongObject *a, *b, *z; |
|
|
|
CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); |
|
|
|
if (a->ob_size < 0) { |
|
if (b->ob_size < 0) |
|
z = x_sub(a, b); |
|
else |
|
z = x_add(a, b); |
|
if (z != NULL && z->ob_size != 0) |
|
z->ob_size = -(z->ob_size); |
|
} |
|
else { |
|
if (b->ob_size < 0) |
|
z = x_add(a, b); |
|
else |
|
z = x_sub(a, b); |
|
} |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return (PyObject *)z; |
|
} |
|
|
|
/* Grade school multiplication, ignoring the signs. |
|
* Returns the absolute value of the product, or NULL if error. |
|
*/ |
|
static PyLongObject * |
|
x_mul(PyLongObject *a, PyLongObject *b) |
|
{ |
|
PyLongObject *z; |
|
int size_a = ABS(a->ob_size); |
|
int size_b = ABS(b->ob_size); |
|
int i; |
|
|
|
z = _PyLong_New(size_a + size_b); |
|
if (z == NULL) |
|
return NULL; |
|
|
|
memset(z->ob_digit, 0, z->ob_size * sizeof(digit)); |
|
for (i = 0; i < size_a; ++i) { |
|
twodigits carry = 0; |
|
twodigits f = a->ob_digit[i]; |
|
int j; |
|
digit *pz = z->ob_digit + i; |
|
|
|
SIGCHECK({ |
|
Py_DECREF(z); |
|
return NULL; |
|
}) |
|
for (j = 0; j < size_b; ++j) { |
|
carry += *pz + b->ob_digit[j] * f; |
|
*pz++ = (digit) (carry & MASK); |
|
carry >>= SHIFT; |
|
} |
|
for (; carry != 0; ++j) { |
|
assert(i+j < z->ob_size); |
|
carry += *pz; |
|
*pz++ = (digit) (carry & MASK); |
|
carry >>= SHIFT; |
|
} |
|
} |
|
return long_normalize(z); |
|
} |
|
|
|
/* A helper for Karatsuba multiplication (k_mul). |
|
Takes a long "n" and an integer "size" representing the place to |
|
split, and sets low and high such that abs(n) == (high << size) + low, |
|
viewing the shift as being by digits. The sign bit is ignored, and |
|
the return values are >= 0. |
|
Returns 0 on success, -1 on failure. |
|
*/ |
|
static int |
|
kmul_split(PyLongObject *n, int size, PyLongObject **high, PyLongObject **low) |
|
{ |
|
PyLongObject *hi, *lo; |
|
int size_lo, size_hi; |
|
const int size_n = ABS(n->ob_size); |
|
|
|
size_lo = MIN(size_n, size); |
|
size_hi = size_n - size_lo; |
|
|
|
if ((hi = _PyLong_New(size_hi)) == NULL) |
|
return -1; |
|
if ((lo = _PyLong_New(size_lo)) == NULL) { |
|
Py_DECREF(hi); |
|
return -1; |
|
} |
|
|
|
memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit)); |
|
memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit)); |
|
|
|
*high = long_normalize(hi); |
|
*low = long_normalize(lo); |
|
return 0; |
|
} |
|
|
|
static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b); |
|
|
|
/* Karatsuba multiplication. Ignores the input signs, and returns the |
|
* absolute value of the product (or NULL if error). |
|
* See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295). |
|
*/ |
|
static PyLongObject * |
|
k_mul(PyLongObject *a, PyLongObject *b) |
|
{ |
|
int asize = ABS(a->ob_size); |
|
int bsize = ABS(b->ob_size); |
|
PyLongObject *ah = NULL; |
|
PyLongObject *al = NULL; |
|
PyLongObject *bh = NULL; |
|
PyLongObject *bl = NULL; |
|
PyLongObject *ret = NULL; |
|
PyLongObject *t1, *t2, *t3; |
|
int shift; /* the number of digits we split off */ |
|
int i; |
|
|
|
/* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl |
|
* Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl |
|
* Then the original product is |
|
* ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl |
|
* By picking X to be a power of 2, "*X" is just shifting, and it's |
|
* been reduced to 3 multiplies on numbers half the size. |
|
*/ |
|
|
|
/* We want to split based on the larger number; fiddle so that b |
|
* is largest. |
|
*/ |
|
if (asize > bsize) { |
|
t1 = a; |
|
a = b; |
|
b = t1; |
|
|
|
i = asize; |
|
asize = bsize; |
|
bsize = i; |
|
} |
|
|
|
/* Use gradeschool math when either number is too small. */ |
|
if (asize <= KARATSUBA_CUTOFF) { |
|
if (asize == 0) |
|
return _PyLong_New(0); |
|
else |
|
return x_mul(a, b); |
|
} |
|
|
|
/* If a is small compared to b, splitting on b gives a degenerate |
|
* case with ah==0, and Karatsuba may be (even much) less efficient |
|
* than "grade school" then. However, we can still win, by viewing |
|
* b as a string of "big digits", each of width a->ob_size. That |
|
* leads to a sequence of balanced calls to k_mul. |
|
*/ |
|
if (2 * asize <= bsize) |
|
return k_lopsided_mul(a, b); |
|
|
|
/* Split a & b into hi & lo pieces. */ |
|
shift = bsize >> 1; |
|
if (kmul_split(a, shift, &ah, &al) < 0) goto fail; |
|
assert(ah->ob_size > 0); /* the split isn't degenerate */ |
|
|
|
if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; |
|
|
|
/* The plan: |
|
* 1. Allocate result space (asize + bsize digits: that's always |
|
* enough). |
|
* 2. Compute ah*bh, and copy into result at 2*shift. |
|
* 3. Compute al*bl, and copy into result at 0. Note that this |
|
* can't overlap with #2. |
|
* 4. Subtract al*bl from the result, starting at shift. This may |
|
* underflow (borrow out of the high digit), but we don't care: |
|
* we're effectively doing unsigned arithmetic mod |
|
* BASE**(sizea + sizeb), and so long as the *final* result fits, |
|
* borrows and carries out of the high digit can be ignored. |
|
* 5. Subtract ah*bh from the result, starting at shift. |
|
* 6. Compute (ah+al)*(bh+bl), and add it into the result starting |
|
* at shift. |
|
*/ |
|
|
|
/* 1. Allocate result space. */ |
|
ret = _PyLong_New(asize + bsize); |
|
if (ret == NULL) goto fail; |
|
#ifdef Py_DEBUG |
|
/* Fill with trash, to catch reference to uninitialized digits. */ |
|
memset(ret->ob_digit, 0xDF, ret->ob_size * sizeof(digit)); |
|
#endif |
|
|
|
/* 2. t1 <- ah*bh, and copy into high digits of result. */ |
|
if ((t1 = k_mul(ah, bh)) == NULL) goto fail; |
|
assert(t1->ob_size >= 0); |
|
assert(2*shift + t1->ob_size <= ret->ob_size); |
|
memcpy(ret->ob_digit + 2*shift, t1->ob_digit, |
|
t1->ob_size * sizeof(digit)); |
|
|
|
/* Zero-out the digits higher than the ah*bh copy. */ |
|
i = ret->ob_size - 2*shift - t1->ob_size; |
|
if (i) |
|
memset(ret->ob_digit + 2*shift + t1->ob_size, 0, |
|
i * sizeof(digit)); |
|
|
|
/* 3. t2 <- al*bl, and copy into the low digits. */ |
|
if ((t2 = k_mul(al, bl)) == NULL) { |
|
Py_DECREF(t1); |
|
goto fail; |
|
} |
|
assert(t2->ob_size >= 0); |
|
assert(t2->ob_size <= 2*shift); /* no overlap with high digits */ |
|
memcpy(ret->ob_digit, t2->ob_digit, t2->ob_size * sizeof(digit)); |
|
|
|
/* Zero out remaining digits. */ |
|
i = 2*shift - t2->ob_size; /* number of uninitialized digits */ |
|
if (i) |
|
memset(ret->ob_digit + t2->ob_size, 0, i * sizeof(digit)); |
|
|
|
/* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first |
|
* because it's fresher in cache. |
|
*/ |
|
i = ret->ob_size - shift; /* # digits after shift */ |
|
(void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, t2->ob_size); |
|
Py_DECREF(t2); |
|
|
|
(void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, t1->ob_size); |
|
Py_DECREF(t1); |
|
|
|
/* 6. t3 <- (ah+al)(bh+bl), and add into result. */ |
|
if ((t1 = x_add(ah, al)) == NULL) goto fail; |
|
Py_DECREF(ah); |
|
Py_DECREF(al); |
|
ah = al = NULL; |
|
|
|
if ((t2 = x_add(bh, bl)) == NULL) { |
|
Py_DECREF(t1); |
|
goto fail; |
|
} |
|
Py_DECREF(bh); |
|
Py_DECREF(bl); |
|
bh = bl = NULL; |
|
|
|
t3 = k_mul(t1, t2); |
|
Py_DECREF(t1); |
|
Py_DECREF(t2); |
|
if (t3 == NULL) goto fail; |
|
assert(t3->ob_size >= 0); |
|
|
|
/* Add t3. It's not obvious why we can't run out of room here. |
|
* See the (*) comment after this function. |
|
*/ |
|
(void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, t3->ob_size); |
|
Py_DECREF(t3); |
|
|
|
return long_normalize(ret); |
|
|
|
fail: |
|
Py_XDECREF(ret); |
|
Py_XDECREF(ah); |
|
Py_XDECREF(al); |
|
Py_XDECREF(bh); |
|
Py_XDECREF(bl); |
|
return NULL; |
|
} |
|
|
|
/* (*) Why adding t3 can't "run out of room" above. |
|
|
|
Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts |
|
to start with: |
|
|
|
1. For any integer i, i = c(i/2) + f(i/2). In particular, |
|
bsize = c(bsize/2) + f(bsize/2). |
|
2. shift = f(bsize/2) |
|
3. asize <= bsize |
|
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this |
|
routine, so asize > bsize/2 >= f(bsize/2) in this routine. |
|
|
|
We allocated asize + bsize result digits, and add t3 into them at an offset |
|
of shift. This leaves asize+bsize-shift allocated digit positions for t3 |
|
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) = |
|
asize + c(bsize/2) available digit positions. |
|
|
|
bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has |
|
at most c(bsize/2) digits + 1 bit. |
|
|
|
If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2) |
|
digits, and al has at most f(bsize/2) digits in any case. So ah+al has at |
|
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit. |
|
|
|
The product (ah+al)*(bh+bl) therefore has at most |
|
|
|
c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits |
|
|
|
and we have asize + c(bsize/2) available digit positions. We need to show |
|
this is always enough. An instance of c(bsize/2) cancels out in both, so |
|
the question reduces to whether asize digits is enough to hold |
|
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize, |
|
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4, |
|
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1 |
|
digit is enough to hold 2 bits. This is so since SHIFT=15 >= 2. If |
|
asize == bsize, then we're asking whether bsize digits is enough to hold |
|
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits |
|
is enough to hold 2 bits. This is so if bsize >= 2, which holds because |
|
bsize >= KARATSUBA_CUTOFF >= 2. |
|
|
|
Note that since there's always enough room for (ah+al)*(bh+bl), and that's |
|
clearly >= each of ah*bh and al*bl, there's always enough room to subtract |
|
ah*bh and al*bl too. |
|
*/ |
|
|
|
/* b has at least twice the digits of a, and a is big enough that Karatsuba |
|
* would pay off *if* the inputs had balanced sizes. View b as a sequence |
|
* of slices, each with a->ob_size digits, and multiply the slices by a, |
|
* one at a time. This gives k_mul balanced inputs to work with, and is |
|
* also cache-friendly (we compute one double-width slice of the result |
|
* at a time, then move on, never bactracking except for the helpful |
|
* single-width slice overlap between successive partial sums). |
|
*/ |
|
static PyLongObject * |
|
k_lopsided_mul(PyLongObject *a, PyLongObject *b) |
|
{ |
|
const int asize = ABS(a->ob_size); |
|
int bsize = ABS(b->ob_size); |
|
int nbdone; /* # of b digits already multiplied */ |
|
PyLongObject *ret; |
|
PyLongObject *bslice = NULL; |
|
|
|
assert(asize > KARATSUBA_CUTOFF); |
|
assert(2 * asize <= bsize); |
|
|
|
/* Allocate result space, and zero it out. */ |
|
ret = _PyLong_New(asize + bsize); |
|
if (ret == NULL) |
|
return NULL; |
|
memset(ret->ob_digit, 0, ret->ob_size * sizeof(digit)); |
|
|
|
/* Successive slices of b are copied into bslice. */ |
|
bslice = _PyLong_New(asize); |
|
if (bslice == NULL) |
|
goto fail; |
|
|
|
nbdone = 0; |
|
while (bsize > 0) { |
|
PyLongObject *product; |
|
const int nbtouse = MIN(bsize, asize); |
|
|
|
/* Multiply the next slice of b by a. */ |
|
memcpy(bslice->ob_digit, b->ob_digit + nbdone, |
|
nbtouse * sizeof(digit)); |
|
bslice->ob_size = nbtouse; |
|
product = k_mul(a, bslice); |
|
if (product == NULL) |
|
goto fail; |
|
|
|
/* Add into result. */ |
|
(void)v_iadd(ret->ob_digit + nbdone, ret->ob_size - nbdone, |
|
product->ob_digit, product->ob_size); |
|
Py_DECREF(product); |
|
|
|
bsize -= nbtouse; |
|
nbdone += nbtouse; |
|
} |
|
|
|
Py_DECREF(bslice); |
|
return long_normalize(ret); |
|
|
|
fail: |
|
Py_DECREF(ret); |
|
Py_XDECREF(bslice); |
|
return NULL; |
|
} |
|
|
|
static PyObject * |
|
long_mul(PyLongObject *v, PyLongObject *w) |
|
{ |
|
PyLongObject *a, *b, *z; |
|
|
|
if (!convert_binop((PyObject *)v, (PyObject *)w, &a, &b)) { |
|
Py_INCREF(Py_NotImplemented); |
|
return Py_NotImplemented; |
|
} |
|
|
|
z = k_mul(a, b); |
|
/* Negate if exactly one of the inputs is negative. */ |
|
if (((a->ob_size ^ b->ob_size) < 0) && z) |
|
z->ob_size = -(z->ob_size); |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return (PyObject *)z; |
|
} |
|
|
|
/* The / and % operators are now defined in terms of divmod(). |
|
The expression a mod b has the value a - b*floor(a/b). |
|
The long_divrem function gives the remainder after division of |
|
|a| by |b|, with the sign of a. This is also expressed |
|
as a - b*trunc(a/b), if trunc truncates towards zero. |
|
Some examples: |
|
a b a rem b a mod b |
|
13 10 3 3 |
|
-13 10 -3 7 |
|
13 -10 3 -7 |
|
-13 -10 -3 -3 |
|
So, to get from rem to mod, we have to add b if a and b |
|
have different signs. We then subtract one from the 'div' |
|
part of the outcome to keep the invariant intact. */ |
|
|
|
static int |
|
l_divmod(PyLongObject *v, PyLongObject *w, |
|
PyLongObject **pdiv, PyLongObject **pmod) |
|
{ |
|
PyLongObject *div, *mod; |
|
|
|
if (long_divrem(v, w, &div, &mod) < 0) |
|
return -1; |
|
if ((mod->ob_size < 0 && w->ob_size > 0) || |
|
(mod->ob_size > 0 && w->ob_size < 0)) { |
|
PyLongObject *temp; |
|
PyLongObject *one; |
|
temp = (PyLongObject *) long_add(mod, w); |
|
Py_DECREF(mod); |
|
mod = temp; |
|
if (mod == NULL) { |
|
Py_DECREF(div); |
|
return -1; |
|
} |
|
one = (PyLongObject *) PyLong_FromLong(1L); |
|
if (one == NULL || |
|
(temp = (PyLongObject *) long_sub(div, one)) == NULL) { |
|
Py_DECREF(mod); |
|
Py_DECREF(div); |
|
Py_XDECREF(one); |
|
return -1; |
|
} |
|
Py_DECREF(one); |
|
Py_DECREF(div); |
|
div = temp; |
|
} |
|
*pdiv = div; |
|
*pmod = mod; |
|
return 0; |
|
} |
|
|
|
static PyObject * |
|
long_div(PyObject *v, PyObject *w) |
|
{ |
|
PyLongObject *a, *b, *div, *mod; |
|
|
|
CONVERT_BINOP(v, w, &a, &b); |
|
|
|
if (l_divmod(a, b, &div, &mod) < 0) { |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return NULL; |
|
} |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
Py_DECREF(mod); |
|
return (PyObject *)div; |
|
} |
|
|
|
static PyObject * |
|
long_classic_div(PyObject *v, PyObject *w) |
|
{ |
|
PyLongObject *a, *b, *div, *mod; |
|
|
|
CONVERT_BINOP(v, w, &a, &b); |
|
|
|
if (Py_DivisionWarningFlag && |
|
PyErr_Warn(PyExc_DeprecationWarning, "classic long division") < 0) |
|
div = NULL; |
|
else if (l_divmod(a, b, &div, &mod) < 0) |
|
div = NULL; |
|
else |
|
Py_DECREF(mod); |
|
|
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return (PyObject *)div; |
|
} |
|
|
|
static PyObject * |
|
long_true_divide(PyObject *v, PyObject *w) |
|
{ |
|
PyLongObject *a, *b; |
|
double ad, bd; |
|
int aexp, bexp, failed; |
|
|
|
CONVERT_BINOP(v, w, &a, &b); |
|
ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp); |
|
bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp); |
|
failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred(); |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
if (failed) |
|
return NULL; |
|
|
|
if (bd == 0.0) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, |
|
"long division or modulo by zero"); |
|
return NULL; |
|
} |
|
|
|
/* True value is very close to ad/bd * 2**(SHIFT*(aexp-bexp)) */ |
|
ad /= bd; /* overflow/underflow impossible here */ |
|
aexp -= bexp; |
|
if (aexp > INT_MAX / SHIFT) |
|
goto overflow; |
|
else if (aexp < -(INT_MAX / SHIFT)) |
|
return PyFloat_FromDouble(0.0); /* underflow to 0 */ |
|
errno = 0; |
|
ad = ldexp(ad, aexp * SHIFT); |
|
if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */ |
|
goto overflow; |
|
return PyFloat_FromDouble(ad); |
|
|
|
overflow: |
|
PyErr_SetString(PyExc_OverflowError, |
|
"long/long too large for a float"); |
|
return NULL; |
|
|
|
} |
|
|
|
static PyObject * |
|
long_mod(PyObject *v, PyObject *w) |
|
{ |
|
PyLongObject *a, *b, *div, *mod; |
|
|
|
CONVERT_BINOP(v, w, &a, &b); |
|
|
|
if (l_divmod(a, b, &div, &mod) < 0) { |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return NULL; |
|
} |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
Py_DECREF(div); |
|
return (PyObject *)mod; |
|
} |
|
|
|
static PyObject * |
|
long_divmod(PyObject *v, PyObject *w) |
|
{ |
|
PyLongObject *a, *b, *div, *mod; |
|
PyObject *z; |
|
|
|
CONVERT_BINOP(v, w, &a, &b); |
|
|
|
if (l_divmod(a, b, &div, &mod) < 0) { |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return NULL; |
|
} |
|
z = PyTuple_New(2); |
|
if (z != NULL) { |
|
PyTuple_SetItem(z, 0, (PyObject *) div); |
|
PyTuple_SetItem(z, 1, (PyObject *) mod); |
|
} |
|
else { |
|
Py_DECREF(div); |
|
Py_DECREF(mod); |
|
} |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return z; |
|
} |
|
|
|
static PyObject * |
|
long_pow(PyObject *v, PyObject *w, PyObject *x) |
|
{ |
|
PyLongObject *a, *b; |
|
PyObject *c; |
|
PyLongObject *z, *div, *mod; |
|
int size_b, i; |
|
|
|
CONVERT_BINOP(v, w, &a, &b); |
|
if (PyLong_Check(x) || Py_None == x) { |
|
c = x; |
|
Py_INCREF(x); |
|
} |
|
else if (PyInt_Check(x)) { |
|
c = PyLong_FromLong(PyInt_AS_LONG(x)); |
|
} |
|
else { |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
Py_INCREF(Py_NotImplemented); |
|
return Py_NotImplemented; |
|
} |
|
|
|
if (c != Py_None && ((PyLongObject *)c)->ob_size == 0) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"pow() 3rd argument cannot be 0"); |
|
z = NULL; |
|
goto error; |
|
} |
|
|
|
size_b = b->ob_size; |
|
if (size_b < 0) { |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
Py_DECREF(c); |
|
if (x != Py_None) { |
|
PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " |
|
"cannot be negative when 3rd argument specified"); |
|
return NULL; |
|
} |
|
/* Return a float. This works because we know that |
|
this calls float_pow() which converts its |
|
arguments to double. */ |
|
return PyFloat_Type.tp_as_number->nb_power(v, w, x); |
|
} |
|
z = (PyLongObject *)PyLong_FromLong(1L); |
|
for (i = 0; i < size_b; ++i) { |
|
digit bi = b->ob_digit[i]; |
|
int j; |
|
|
|
for (j = 0; j < SHIFT; ++j) { |
|
PyLongObject *temp; |
|
|
|
if (bi & 1) { |
|
temp = (PyLongObject *)long_mul(z, a); |
|
Py_DECREF(z); |
|
if (c!=Py_None && temp!=NULL) { |
|
if (l_divmod(temp,(PyLongObject *)c, |
|
&div,&mod) < 0) { |
|
Py_DECREF(temp); |
|
z = NULL; |
|
goto error; |
|
} |
|
Py_XDECREF(div); |
|
Py_DECREF(temp); |
|
temp = mod; |
|
} |
|
z = temp; |
|
if (z == NULL) |
|
break; |
|
} |
|
bi >>= 1; |
|
if (bi == 0 && i+1 == size_b) |
|
break; |
|
temp = (PyLongObject *)long_mul(a, a); |
|
Py_DECREF(a); |
|
if (c!=Py_None && temp!=NULL) { |
|
if (l_divmod(temp, (PyLongObject *)c, &div, |
|
&mod) < 0) { |
|
Py_DECREF(temp); |
|
z = NULL; |
|
goto error; |
|
} |
|
Py_XDECREF(div); |
|
Py_DECREF(temp); |
|
temp = mod; |
|
} |
|
a = temp; |
|
if (a == NULL) { |
|
Py_DECREF(z); |
|
z = NULL; |
|
break; |
|
} |
|
} |
|
if (a == NULL || z == NULL) |
|
break; |
|
} |
|
if (c!=Py_None && z!=NULL) { |
|
if (l_divmod(z, (PyLongObject *)c, &div, &mod) < 0) { |
|
Py_DECREF(z); |
|
z = NULL; |
|
} |
|
else { |
|
Py_XDECREF(div); |
|
Py_DECREF(z); |
|
z = mod; |
|
} |
|
} |
|
error: |
|
Py_XDECREF(a); |
|
Py_DECREF(b); |
|
Py_DECREF(c); |
|
return (PyObject *)z; |
|
} |
|
|
|
static PyObject * |
|
long_invert(PyLongObject *v) |
|
{ |
|
/* Implement ~x as -(x+1) */ |
|
PyLongObject *x; |
|
PyLongObject *w; |
|
w = (PyLongObject *)PyLong_FromLong(1L); |
|
if (w == NULL) |
|
return NULL; |
|
x = (PyLongObject *) long_add(v, w); |
|
Py_DECREF(w); |
|
if (x == NULL) |
|
return NULL; |
|
x->ob_size = -(x->ob_size); |
|
return (PyObject *)x; |
|
} |
|
|
|
static PyObject * |
|
long_pos(PyLongObject *v) |
|
{ |
|
if (PyLong_CheckExact(v)) { |
|
Py_INCREF(v); |
|
return (PyObject *)v; |
|
} |
|
else |
|
return _PyLong_Copy(v); |
|
} |
|
|
|
static PyObject * |
|
long_neg(PyLongObject *v) |
|
{ |
|
PyLongObject *z; |
|
if (v->ob_size == 0 && PyLong_CheckExact(v)) { |
|
/* -0 == 0 */ |
|
Py_INCREF(v); |
|
return (PyObject *) v; |
|
} |
|
z = (PyLongObject *)_PyLong_Copy(v); |
|
if (z != NULL) |
|
z->ob_size = -(v->ob_size); |
|
return (PyObject *)z; |
|
} |
|
|
|
static PyObject * |
|
long_abs(PyLongObject *v) |
|
{ |
|
if (v->ob_size < 0) |
|
return long_neg(v); |
|
else |
|
return long_pos(v); |
|
} |
|
|
|
static int |
|
long_nonzero(PyLongObject *v) |
|
{ |
|
return ABS(v->ob_size) != 0; |
|
} |
|
|
|
static PyObject * |
|
long_rshift(PyLongObject *v, PyLongObject *w) |
|
{ |
|
PyLongObject *a, *b; |
|
PyLongObject *z = NULL; |
|
long shiftby; |
|
int newsize, wordshift, loshift, hishift, i, j; |
|
digit lomask, himask; |
|
|
|
CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); |
|
|
|
if (a->ob_size < 0) { |
|
/* Right shifting negative numbers is harder */ |
|
PyLongObject *a1, *a2; |
|
a1 = (PyLongObject *) long_invert(a); |
|
if (a1 == NULL) |
|
goto rshift_error; |
|
a2 = (PyLongObject *) long_rshift(a1, b); |
|
Py_DECREF(a1); |
|
if (a2 == NULL) |
|
goto rshift_error; |
|
z = (PyLongObject *) long_invert(a2); |
|
Py_DECREF(a2); |
|
} |
|
else { |
|
|
|
shiftby = PyLong_AsLong((PyObject *)b); |
|
if (shiftby == -1L && PyErr_Occurred()) |
|
goto rshift_error; |
|
if (shiftby < 0) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"negative shift count"); |
|
goto rshift_error; |
|
} |
|
wordshift = shiftby / SHIFT; |
|
newsize = ABS(a->ob_size) - wordshift; |
|
if (newsize <= 0) { |
|
z = _PyLong_New(0); |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return (PyObject *)z; |
|
} |
|
loshift = shiftby % SHIFT; |
|
hishift = SHIFT - loshift; |
|
lomask = ((digit)1 << hishift) - 1; |
|
himask = MASK ^ lomask; |
|
z = _PyLong_New(newsize); |
|
if (z == NULL) |
|
goto rshift_error; |
|
if (a->ob_size < 0) |
|
z->ob_size = -(z->ob_size); |
|
for (i = 0, j = wordshift; i < newsize; i++, j++) { |
|
z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask; |
|
if (i+1 < newsize) |
|
z->ob_digit[i] |= |
|
(a->ob_digit[j+1] << hishift) & himask; |
|
} |
|
z = long_normalize(z); |
|
} |
|
rshift_error: |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return (PyObject *) z; |
|
|
|
} |
|
|
|
static PyObject * |
|
long_lshift(PyObject *v, PyObject *w) |
|
{ |
|
/* This version due to Tim Peters */ |
|
PyLongObject *a, *b; |
|
PyLongObject *z = NULL; |
|
long shiftby; |
|
int oldsize, newsize, wordshift, remshift, i, j; |
|
twodigits accum; |
|
|
|
CONVERT_BINOP(v, w, &a, &b); |
|
|
|
shiftby = PyLong_AsLong((PyObject *)b); |
|
if (shiftby == -1L && PyErr_Occurred()) |
|
goto lshift_error; |
|
if (shiftby < 0) { |
|
PyErr_SetString(PyExc_ValueError, "negative shift count"); |
|
goto lshift_error; |
|
} |
|
if ((long)(int)shiftby != shiftby) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"outrageous left shift count"); |
|
goto lshift_error; |
|
} |
|
/* wordshift, remshift = divmod(shiftby, SHIFT) */ |
|
wordshift = (int)shiftby / SHIFT; |
|
remshift = (int)shiftby - wordshift * SHIFT; |
|
|
|
oldsize = ABS(a->ob_size); |
|
newsize = oldsize + wordshift; |
|
if (remshift) |
|
++newsize; |
|
z = _PyLong_New(newsize); |
|
if (z == NULL) |
|
goto lshift_error; |
|
if (a->ob_size < 0) |
|
z->ob_size = -(z->ob_size); |
|
for (i = 0; i < wordshift; i++) |
|
z->ob_digit[i] = 0; |
|
accum = 0; |
|
for (i = wordshift, j = 0; j < oldsize; i++, j++) { |
|
accum |= (twodigits)a->ob_digit[j] << remshift; |
|
z->ob_digit[i] = (digit)(accum & MASK); |
|
accum >>= SHIFT; |
|
} |
|
if (remshift) |
|
z->ob_digit[newsize-1] = (digit)accum; |
|
else |
|
assert(!accum); |
|
z = long_normalize(z); |
|
lshift_error: |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return (PyObject *) z; |
|
} |
|
|
|
|
|
/* Bitwise and/xor/or operations */ |
|
|
|
static PyObject * |
|
long_bitwise(PyLongObject *a, |
|
int op, /* '&', '|', '^' */ |
|
PyLongObject *b) |
|
{ |
|
digit maska, maskb; /* 0 or MASK */ |
|
int negz; |
|
int size_a, size_b, size_z; |
|
PyLongObject *z; |
|
int i; |
|
digit diga, digb; |
|
PyObject *v; |
|
|
|
if (a->ob_size < 0) { |
|
a = (PyLongObject *) long_invert(a); |
|
maska = MASK; |
|
} |
|
else { |
|
Py_INCREF(a); |
|
maska = 0; |
|
} |
|
if (b->ob_size < 0) { |
|
b = (PyLongObject *) long_invert(b); |
|
maskb = MASK; |
|
} |
|
else { |
|
Py_INCREF(b); |
|
maskb = 0; |
|
} |
|
|
|
negz = 0; |
|
switch (op) { |
|
case '^': |
|
if (maska != maskb) { |
|
maska ^= MASK; |
|
negz = -1; |
|
} |
|
break; |
|
case '&': |
|
if (maska && maskb) { |
|
op = '|'; |
|
maska ^= MASK; |
|
maskb ^= MASK; |
|
negz = -1; |
|
} |
|
break; |
|
case '|': |
|
if (maska || maskb) { |
|
op = '&'; |
|
maska ^= MASK; |
|
maskb ^= MASK; |
|
negz = -1; |
|
} |
|
break; |
|
} |
|
|
|
/* JRH: The original logic here was to allocate the result value (z) |
|
as the longer of the two operands. However, there are some cases |
|
where the result is guaranteed to be shorter than that: AND of two |
|
positives, OR of two negatives: use the shorter number. AND with |
|
mixed signs: use the positive number. OR with mixed signs: use the |
|
negative number. After the transformations above, op will be '&' |
|
iff one of these cases applies, and mask will be non-0 for operands |
|
whose length should be ignored. |
|
*/ |
|
|
|
size_a = a->ob_size; |
|
size_b = b->ob_size; |
|
size_z = op == '&' |
|
? (maska |
|
? size_b |
|
: (maskb ? size_a : MIN(size_a, size_b))) |
|
: MAX(size_a, size_b); |
|
z = _PyLong_New(size_z); |
|
if (a == NULL || b == NULL || z == NULL) { |
|
Py_XDECREF(a); |
|
Py_XDECREF(b); |
|
Py_XDECREF(z); |
|
return NULL; |
|
} |
|
|
|
for (i = 0; i < size_z; ++i) { |
|
diga = (i < size_a ? a->ob_digit[i] : 0) ^ maska; |
|
digb = (i < size_b ? b->ob_digit[i] : 0) ^ maskb; |
|
switch (op) { |
|
case '&': z->ob_digit[i] = diga & digb; break; |
|
case '|': z->ob_digit[i] = diga | digb; break; |
|
case '^': z->ob_digit[i] = diga ^ digb; break; |
|
} |
|
} |
|
|
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
z = long_normalize(z); |
|
if (negz == 0) |
|
return (PyObject *) z; |
|
v = long_invert(z); |
|
Py_DECREF(z); |
|
return v; |
|
} |
|
|
|
static PyObject * |
|
long_and(PyObject *v, PyObject *w) |
|
{ |
|
PyLongObject *a, *b; |
|
PyObject *c; |
|
CONVERT_BINOP(v, w, &a, &b); |
|
c = long_bitwise(a, '&', b); |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return c; |
|
} |
|
|
|
static PyObject * |
|
long_xor(PyObject *v, PyObject *w) |
|
{ |
|
PyLongObject *a, *b; |
|
PyObject *c; |
|
CONVERT_BINOP(v, w, &a, &b); |
|
c = long_bitwise(a, '^', b); |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return c; |
|
} |
|
|
|
static PyObject * |
|
long_or(PyObject *v, PyObject *w) |
|
{ |
|
PyLongObject *a, *b; |
|
PyObject *c; |
|
CONVERT_BINOP(v, w, &a, &b); |
|
c = long_bitwise(a, '|', b); |
|
Py_DECREF(a); |
|
Py_DECREF(b); |
|
return c; |
|
} |
|
|
|
static int |
|
long_coerce(PyObject **pv, PyObject **pw) |
|
{ |
|
if (PyInt_Check(*pw)) { |
|
*pw = PyLong_FromLong(PyInt_AS_LONG(*pw)); |
|
Py_INCREF(*pv); |
|
return 0; |
|
} |
|
else if (PyLong_Check(*pw)) { |
|
Py_INCREF(*pv); |
|
Py_INCREF(*pw); |
|
return 0; |
|
} |
|
return 1; /* Can't do it */ |
|
} |
|
|
|
static PyObject * |
|
long_long(PyObject *v) |
|
{ |
|
Py_INCREF(v); |
|
return v; |
|
} |
|
|
|
static PyObject * |
|
long_int(PyObject *v) |
|
{ |
|
long x; |
|
x = PyLong_AsLong(v); |
|
if (PyErr_Occurred()) { |
|
if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
|
PyErr_Clear(); |
|
if (PyLong_CheckExact(v)) { |
|
Py_INCREF(v); |
|
return v; |
|
} |
|
else |
|
return _PyLong_Copy((PyLongObject *)v); |
|
} |
|
else |
|
return NULL; |
|
} |
|
return PyInt_FromLong(x); |
|
} |
|
|
|
static PyObject * |
|
long_float(PyObject *v) |
|
{ |
|
double result; |
|
result = PyLong_AsDouble(v); |
|
if (result == -1.0 && PyErr_Occurred()) |
|
return NULL; |
|
return PyFloat_FromDouble(result); |
|
} |
|
|
|
static PyObject * |
|
long_oct(PyObject *v) |
|
{ |
|
return long_format(v, 8, 1); |
|
} |
|
|
|
static PyObject * |
|
long_hex(PyObject *v) |
|
{ |
|
return long_format(v, 16, 1); |
|
} |
|
|
|
static PyObject * |
|
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); |
|
|
|
static PyObject * |
|
long_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
|
{ |
|
PyObject *x = NULL; |
|
int base = -909; /* unlikely! */ |
|
static char *kwlist[] = {"x", "base", 0}; |
|
|
|
if (type != &PyLong_Type) |
|
return long_subtype_new(type, args, kwds); /* Wimp out */ |
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:long", kwlist, |
|
&x, &base)) |
|
return NULL; |
|
if (x == NULL) |
|
return PyLong_FromLong(0L); |
|
if (base == -909) |
|
return PyNumber_Long(x); |
|
else if (PyString_Check(x)) |
|
return PyLong_FromString(PyString_AS_STRING(x), NULL, base); |
|
#ifdef Py_USING_UNICODE |
|
else if (PyUnicode_Check(x)) |
|
return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x), |
|
PyUnicode_GET_SIZE(x), |
|
base); |
|
#endif |
|
else { |
|
PyErr_SetString(PyExc_TypeError, |
|
"long() can't convert non-string with explicit base"); |
|
return NULL; |
|
} |
|
} |
|
|
|
/* Wimpy, slow approach to tp_new calls for subtypes of long: |
|
first create a regular long from whatever arguments we got, |
|
then allocate a subtype instance and initialize it from |
|
the regular long. The regular long is then thrown away. |
|
*/ |
|
static PyObject * |
|
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
|
{ |
|
PyLongObject *tmp, *new; |
|
int i, n; |
|
|
|
assert(PyType_IsSubtype(type, &PyLong_Type)); |
|
tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds); |
|
if (tmp == NULL) |
|
return NULL; |
|
assert(PyLong_CheckExact(tmp)); |
|
n = tmp->ob_size; |
|
if (n < 0) |
|
n = -n; |
|
new = (PyLongObject *)type->tp_alloc(type, n); |
|
if (new == NULL) { |
|
Py_DECREF(tmp); |
|
return NULL; |
|
} |
|
assert(PyLong_Check(new)); |
|
new->ob_size = tmp->ob_size; |
|
for (i = 0; i < n; i++) |
|
new->ob_digit[i] = tmp->ob_digit[i]; |
|
Py_DECREF(tmp); |
|
return (PyObject *)new; |
|
} |
|
|
|
static PyObject * |
|
long_getnewargs(PyLongObject *v) |
|
{ |
|
return Py_BuildValue("(N)", _PyLong_Copy(v)); |
|
} |
|
|
|
static PyMethodDef long_methods[] = { |
|
{"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS}, |
|
{NULL, NULL} /* sentinel */ |
|
}; |
|
|
|
PyDoc_STRVAR(long_doc, |
|
"long(x[, base]) -> integer\n\ |
|
\n\ |
|
Convert a string or number to a long integer, if possible. A floating\n\ |
|
point argument will be truncated towards zero (this does not include a\n\ |
|
string representation of a floating point number!) When converting a\n\ |
|
string, use the optional base. It is an error to supply a base when\n\ |
|
converting a non-string."); |
|
|
|
static PyNumberMethods long_as_number = { |
|
(binaryfunc) long_add, /*nb_add*/ |
|
(binaryfunc) long_sub, /*nb_subtract*/ |
|
(binaryfunc) long_mul, /*nb_multiply*/ |
|
(binaryfunc) long_classic_div, /*nb_divide*/ |
|
(binaryfunc) long_mod, /*nb_remainder*/ |
|
(binaryfunc) long_divmod, /*nb_divmod*/ |
|
(ternaryfunc) long_pow, /*nb_power*/ |
|
(unaryfunc) long_neg, /*nb_negative*/ |
|
(unaryfunc) long_pos, /*tp_positive*/ |
|
(unaryfunc) long_abs, /*tp_absolute*/ |
|
(inquiry) long_nonzero, /*tp_nonzero*/ |
|
(unaryfunc) long_invert, /*nb_invert*/ |
|
(binaryfunc) long_lshift, /*nb_lshift*/ |
|
(binaryfunc) long_rshift, /*nb_rshift*/ |
|
(binaryfunc) long_and, /*nb_and*/ |
|
(binaryfunc) long_xor, /*nb_xor*/ |
|
(binaryfunc) long_or, /*nb_or*/ |
|
(coercion) long_coerce, /*nb_coerce*/ |
|
(unaryfunc) long_int, /*nb_int*/ |
|
(unaryfunc) long_long, /*nb_long*/ |
|
(unaryfunc) long_float, /*nb_float*/ |
|
(unaryfunc) long_oct, /*nb_oct*/ |
|
(unaryfunc) long_hex, /*nb_hex*/ |
|
0, /* nb_inplace_add */ |
|
0, /* nb_inplace_subtract */ |
|
0, /* nb_inplace_multiply */ |
|
0, /* nb_inplace_divide */ |
|
0, /* nb_inplace_remainder */ |
|
0, /* nb_inplace_power */ |
|
0, /* nb_inplace_lshift */ |
|
0, /* nb_inplace_rshift */ |
|
0, /* nb_inplace_and */ |
|
0, /* nb_inplace_xor */ |
|
0, /* nb_inplace_or */ |
|
(binaryfunc)long_div, /* nb_floor_divide */ |
|
long_true_divide, /* nb_true_divide */ |
|
0, /* nb_inplace_floor_divide */ |
|
0, /* nb_inplace_true_divide */ |
|
}; |
|
|
|
PyTypeObject PyLong_Type = { |
|
PyObject_HEAD_INIT(&PyType_Type) |
|
0, /* ob_size */ |
|
"long", /* tp_name */ |
|
sizeof(PyLongObject) - sizeof(digit), /* tp_basicsize */ |
|
sizeof(digit), /* tp_itemsize */ |
|
(destructor)long_dealloc, /* tp_dealloc */ |
|
0, /* tp_print */ |
|
0, /* tp_getattr */ |
|
0, /* tp_setattr */ |
|
(cmpfunc)long_compare, /* tp_compare */ |
|
(reprfunc)long_repr, /* tp_repr */ |
|
&long_as_number, /* tp_as_number */ |
|
0, /* tp_as_sequence */ |
|
0, /* tp_as_mapping */ |
|
(hashfunc)long_hash, /* tp_hash */ |
|
0, /* tp_call */ |
|
(reprfunc)long_str, /* tp_str */ |
|
PyObject_GenericGetAttr, /* tp_getattro */ |
|
0, /* tp_setattro */ |
|
0, /* tp_as_buffer */ |
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | |
|
Py_TPFLAGS_BASETYPE, /* tp_flags */ |
|
long_doc, /* tp_doc */ |
|
0, /* tp_traverse */ |
|
0, /* tp_clear */ |
|
0, /* tp_richcompare */ |
|
0, /* tp_weaklistoffset */ |
|
0, /* tp_iter */ |
|
0, /* tp_iternext */ |
|
long_methods, /* tp_methods */ |
|
0, /* tp_members */ |
|
0, /* tp_getset */ |
|
0, /* tp_base */ |
|
0, /* tp_dict */ |
|
0, /* tp_descr_get */ |
|
0, /* tp_descr_set */ |
|
0, /* tp_dictoffset */ |
|
0, /* tp_init */ |
|
0, /* tp_alloc */ |
|
long_new, /* tp_new */ |
|
PyObject_Del, /* tp_free */ |
|
};
|
|
|