You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
531 lines
15 KiB
531 lines
15 KiB
/* Random objects */ |
|
|
|
/* ------------------------------------------------------------------ |
|
The code in this module was based on a download from: |
|
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html |
|
|
|
It was modified in 2002 by Raymond Hettinger as follows: |
|
|
|
* the principal computational lines untouched except for tabbing. |
|
|
|
* renamed genrand_res53() to random_random() and wrapped |
|
in python calling/return code. |
|
|
|
* genrand_int32() and the helper functions, init_genrand() |
|
and init_by_array(), were declared static, wrapped in |
|
Python calling/return code. also, their global data |
|
references were replaced with structure references. |
|
|
|
* unused functions from the original were deleted. |
|
new, original C python code was added to implement the |
|
Random() interface. |
|
|
|
The following are the verbatim comments from the original code: |
|
|
|
A C-program for MT19937, with initialization improved 2002/1/26. |
|
Coded by Takuji Nishimura and Makoto Matsumoto. |
|
|
|
Before using, initialize the state by using init_genrand(seed) |
|
or init_by_array(init_key, key_length). |
|
|
|
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, |
|
All rights reserved. |
|
|
|
Redistribution and use in source and binary forms, with or without |
|
modification, are permitted provided that the following conditions |
|
are met: |
|
|
|
1. Redistributions of source code must retain the above copyright |
|
notice, this list of conditions and the following disclaimer. |
|
|
|
2. Redistributions in binary form must reproduce the above copyright |
|
notice, this list of conditions and the following disclaimer in the |
|
documentation and/or other materials provided with the distribution. |
|
|
|
3. The names of its contributors may not be used to endorse or promote |
|
products derived from this software without specific prior written |
|
permission. |
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
Any feedback is very welcome. |
|
http://www.math.keio.ac.jp/matumoto/emt.html |
|
email: matumoto@math.keio.ac.jp |
|
*/ |
|
|
|
/* ---------------------------------------------------------------*/ |
|
|
|
#include "Python.h" |
|
#include <time.h> /* for seeding to current time */ |
|
|
|
/* Period parameters -- These are all magic. Don't change. */ |
|
#define N 624 |
|
#define M 397 |
|
#define MATRIX_A 0x9908b0dfUL /* constant vector a */ |
|
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */ |
|
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */ |
|
|
|
typedef struct { |
|
PyObject_HEAD |
|
unsigned long state[N]; |
|
int index; |
|
} RandomObject; |
|
|
|
static PyTypeObject Random_Type; |
|
|
|
#define RandomObject_Check(v) ((v)->ob_type == &Random_Type) |
|
|
|
|
|
/* Random methods */ |
|
|
|
|
|
/* generates a random number on [0,0xffffffff]-interval */ |
|
static unsigned long |
|
genrand_int32(RandomObject *self) |
|
{ |
|
unsigned long y; |
|
static unsigned long mag01[2]={0x0UL, MATRIX_A}; |
|
/* mag01[x] = x * MATRIX_A for x=0,1 */ |
|
unsigned long *mt; |
|
|
|
mt = self->state; |
|
if (self->index >= N) { /* generate N words at one time */ |
|
int kk; |
|
|
|
for (kk=0;kk<N-M;kk++) { |
|
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); |
|
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL]; |
|
} |
|
for (;kk<N-1;kk++) { |
|
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); |
|
mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL]; |
|
} |
|
y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); |
|
mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL]; |
|
|
|
self->index = 0; |
|
} |
|
|
|
y = mt[self->index++]; |
|
y ^= (y >> 11); |
|
y ^= (y << 7) & 0x9d2c5680UL; |
|
y ^= (y << 15) & 0xefc60000UL; |
|
y ^= (y >> 18); |
|
return y; |
|
} |
|
|
|
/* random_random is the function named genrand_res53 in the original code; |
|
* generates a random number on [0,1) with 53-bit resolution; note that |
|
* 9007199254740992 == 2**53; I assume they're spelling "/2**53" as |
|
* multiply-by-reciprocal in the (likely vain) hope that the compiler will |
|
* optimize the division away at compile-time. 67108864 is 2**26. In |
|
* effect, a contains 27 random bits shifted left 26, and b fills in the |
|
* lower 26 bits of the 53-bit numerator. |
|
* The orginal code credited Isaku Wada for this algorithm, 2002/01/09. |
|
*/ |
|
static PyObject * |
|
random_random(RandomObject *self) |
|
{ |
|
unsigned long a=genrand_int32(self)>>5, b=genrand_int32(self)>>6; |
|
return PyFloat_FromDouble((a*67108864.0+b)*(1.0/9007199254740992.0)); |
|
} |
|
|
|
/* initializes mt[N] with a seed */ |
|
static void |
|
init_genrand(RandomObject *self, unsigned long s) |
|
{ |
|
int mti; |
|
unsigned long *mt; |
|
|
|
mt = self->state; |
|
mt[0]= s & 0xffffffffUL; |
|
for (mti=1; mti<N; mti++) { |
|
mt[mti] = |
|
(1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); |
|
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ |
|
/* In the previous versions, MSBs of the seed affect */ |
|
/* only MSBs of the array mt[]. */ |
|
/* 2002/01/09 modified by Makoto Matsumoto */ |
|
mt[mti] &= 0xffffffffUL; |
|
/* for >32 bit machines */ |
|
} |
|
self->index = mti; |
|
return; |
|
} |
|
|
|
/* initialize by an array with array-length */ |
|
/* init_key is the array for initializing keys */ |
|
/* key_length is its length */ |
|
static PyObject * |
|
init_by_array(RandomObject *self, unsigned long init_key[], unsigned long key_length) |
|
{ |
|
unsigned int i, j, k; /* was signed in the original code. RDH 12/16/2002 */ |
|
unsigned long *mt; |
|
|
|
mt = self->state; |
|
init_genrand(self, 19650218UL); |
|
i=1; j=0; |
|
k = (N>key_length ? N : key_length); |
|
for (; k; k--) { |
|
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) |
|
+ init_key[j] + j; /* non linear */ |
|
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
|
i++; j++; |
|
if (i>=N) { mt[0] = mt[N-1]; i=1; } |
|
if (j>=key_length) j=0; |
|
} |
|
for (k=N-1; k; k--) { |
|
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) |
|
- i; /* non linear */ |
|
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
|
i++; |
|
if (i>=N) { mt[0] = mt[N-1]; i=1; } |
|
} |
|
|
|
mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ |
|
Py_INCREF(Py_None); |
|
return Py_None; |
|
} |
|
|
|
/* |
|
* The rest is Python-specific code, neither part of, nor derived from, the |
|
* Twister download. |
|
*/ |
|
|
|
static PyObject * |
|
random_seed(RandomObject *self, PyObject *args) |
|
{ |
|
PyObject *result = NULL; /* guilty until proved innocent */ |
|
PyObject *masklower = NULL; |
|
PyObject *thirtytwo = NULL; |
|
PyObject *n = NULL; |
|
unsigned long *key = NULL; |
|
unsigned long keymax; /* # of allocated slots in key */ |
|
unsigned long keyused; /* # of used slots in key */ |
|
int err; |
|
|
|
PyObject *arg = NULL; |
|
|
|
if (!PyArg_UnpackTuple(args, "seed", 0, 1, &arg)) |
|
return NULL; |
|
|
|
if (arg == NULL || arg == Py_None) { |
|
time_t now; |
|
|
|
time(&now); |
|
init_genrand(self, (unsigned long)now); |
|
Py_INCREF(Py_None); |
|
return Py_None; |
|
} |
|
/* If the arg is an int or long, use its absolute value; else use |
|
* the absolute value of its hash code. |
|
*/ |
|
if (PyInt_Check(arg) || PyLong_Check(arg)) |
|
n = PyNumber_Absolute(arg); |
|
else { |
|
long hash = PyObject_Hash(arg); |
|
if (hash == -1) |
|
goto Done; |
|
n = PyLong_FromUnsignedLong((unsigned long)hash); |
|
} |
|
if (n == NULL) |
|
goto Done; |
|
|
|
/* Now split n into 32-bit chunks, from the right. Each piece is |
|
* stored into key, which has a capacity of keymax chunks, of which |
|
* keyused are filled. Alas, the repeated shifting makes this a |
|
* quadratic-time algorithm; we'd really like to use |
|
* _PyLong_AsByteArray here, but then we'd have to break into the |
|
* long representation to figure out how big an array was needed |
|
* in advance. |
|
*/ |
|
keymax = 8; /* arbitrary; grows later if needed */ |
|
keyused = 0; |
|
key = (unsigned long *)PyMem_Malloc(keymax * sizeof(*key)); |
|
if (key == NULL) |
|
goto Done; |
|
|
|
masklower = PyLong_FromUnsignedLong(0xffffffffU); |
|
if (masklower == NULL) |
|
goto Done; |
|
thirtytwo = PyInt_FromLong(32L); |
|
if (thirtytwo == NULL) |
|
goto Done; |
|
while ((err=PyObject_IsTrue(n))) { |
|
PyObject *newn; |
|
PyObject *pychunk; |
|
unsigned long chunk; |
|
|
|
if (err == -1) |
|
goto Done; |
|
pychunk = PyNumber_And(n, masklower); |
|
if (pychunk == NULL) |
|
goto Done; |
|
chunk = PyLong_AsUnsignedLong(pychunk); |
|
Py_DECREF(pychunk); |
|
if (chunk == (unsigned long)-1 && PyErr_Occurred()) |
|
goto Done; |
|
newn = PyNumber_Rshift(n, thirtytwo); |
|
if (newn == NULL) |
|
goto Done; |
|
Py_DECREF(n); |
|
n = newn; |
|
if (keyused >= keymax) { |
|
unsigned long bigger = keymax << 1; |
|
if ((bigger >> 1) != keymax) { |
|
PyErr_NoMemory(); |
|
goto Done; |
|
} |
|
key = (unsigned long *)PyMem_Realloc(key, |
|
bigger * sizeof(*key)); |
|
if (key == NULL) |
|
goto Done; |
|
keymax = bigger; |
|
} |
|
assert(keyused < keymax); |
|
key[keyused++] = chunk; |
|
} |
|
|
|
if (keyused == 0) |
|
key[keyused++] = 0UL; |
|
result = init_by_array(self, key, keyused); |
|
Done: |
|
Py_XDECREF(masklower); |
|
Py_XDECREF(thirtytwo); |
|
Py_XDECREF(n); |
|
PyMem_Free(key); |
|
return result; |
|
} |
|
|
|
static PyObject * |
|
random_getstate(RandomObject *self) |
|
{ |
|
PyObject *state; |
|
PyObject *element; |
|
int i; |
|
|
|
state = PyTuple_New(N+1); |
|
if (state == NULL) |
|
return NULL; |
|
for (i=0; i<N ; i++) { |
|
element = PyInt_FromLong((long)(self->state[i])); |
|
if (element == NULL) |
|
goto Fail; |
|
PyTuple_SET_ITEM(state, i, element); |
|
} |
|
element = PyInt_FromLong((long)(self->index)); |
|
if (element == NULL) |
|
goto Fail; |
|
PyTuple_SET_ITEM(state, i, element); |
|
return state; |
|
|
|
Fail: |
|
Py_DECREF(state); |
|
return NULL; |
|
} |
|
|
|
static PyObject * |
|
random_setstate(RandomObject *self, PyObject *state) |
|
{ |
|
int i; |
|
long element; |
|
|
|
if (!PyTuple_Check(state)) { |
|
PyErr_SetString(PyExc_TypeError, |
|
"state vector must be a tuple"); |
|
return NULL; |
|
} |
|
if (PyTuple_Size(state) != N+1) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"state vector is the wrong size"); |
|
return NULL; |
|
} |
|
|
|
for (i=0; i<N ; i++) { |
|
element = PyInt_AsLong(PyTuple_GET_ITEM(state, i)); |
|
if (element == -1 && PyErr_Occurred()) |
|
return NULL; |
|
self->state[i] = (unsigned long)element; |
|
} |
|
|
|
element = PyInt_AsLong(PyTuple_GET_ITEM(state, i)); |
|
if (element == -1 && PyErr_Occurred()) |
|
return NULL; |
|
self->index = (int)element; |
|
|
|
Py_INCREF(Py_None); |
|
return Py_None; |
|
} |
|
|
|
/* |
|
Jumpahead should be a fast way advance the generator n-steps ahead, but |
|
lacking a formula for that, the next best is to use n and the existing |
|
state to create a new state far away from the original. |
|
|
|
The generator uses constant spaced additive feedback, so shuffling the |
|
state elements ought to produce a state which would not be encountered |
|
(in the near term) by calls to random(). Shuffling is normally |
|
implemented by swapping the ith element with another element ranging |
|
from 0 to i inclusive. That allows the element to have the possibility |
|
of not being moved. Since the goal is to produce a new, different |
|
state, the swap element is ranged from 0 to i-1 inclusive. This assures |
|
that each element gets moved at least once. |
|
|
|
To make sure that consecutive calls to jumpahead(n) produce different |
|
states (even in the rare case of involutory shuffles), i+1 is added to |
|
each element at position i. Successive calls are then guaranteed to |
|
have changing (growing) values as well as shuffled positions. |
|
|
|
Finally, the self->index value is set to N so that the generator itself |
|
kicks in on the next call to random(). This assures that all results |
|
have been through the generator and do not just reflect alterations to |
|
the underlying state. |
|
*/ |
|
|
|
static PyObject * |
|
random_jumpahead(RandomObject *self, PyObject *n) |
|
{ |
|
long i, j; |
|
PyObject *iobj; |
|
PyObject *remobj; |
|
unsigned long *mt, tmp; |
|
|
|
if (!PyInt_Check(n) && !PyLong_Check(n)) { |
|
PyErr_Format(PyExc_TypeError, "jumpahead requires an " |
|
"integer, not '%s'", |
|
n->ob_type->tp_name); |
|
return NULL; |
|
} |
|
|
|
mt = self->state; |
|
for (i = N-1; i > 1; i--) { |
|
iobj = PyInt_FromLong(i); |
|
if (iobj == NULL) |
|
return NULL; |
|
remobj = PyNumber_Remainder(n, iobj); |
|
Py_DECREF(iobj); |
|
if (remobj == NULL) |
|
return NULL; |
|
j = PyInt_AsLong(remobj); |
|
Py_DECREF(remobj); |
|
if (j == -1L && PyErr_Occurred()) |
|
return NULL; |
|
tmp = mt[i]; |
|
mt[i] = mt[j]; |
|
mt[j] = tmp; |
|
} |
|
|
|
for (i = 0; i < N; i++) |
|
mt[i] += i+1; |
|
|
|
self->index = N; |
|
Py_INCREF(Py_None); |
|
return Py_None; |
|
} |
|
|
|
static PyObject * |
|
random_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
|
{ |
|
RandomObject *self; |
|
PyObject *tmp; |
|
|
|
self = (RandomObject *)type->tp_alloc(type, 0); |
|
if (self == NULL) |
|
return NULL; |
|
tmp = random_seed(self, args); |
|
if (tmp == NULL) { |
|
Py_DECREF(self); |
|
return NULL; |
|
} |
|
Py_DECREF(tmp); |
|
return (PyObject *)self; |
|
} |
|
|
|
static PyMethodDef random_methods[] = { |
|
{"random", (PyCFunction)random_random, METH_NOARGS, |
|
PyDoc_STR("random() -> x in the interval [0, 1).")}, |
|
{"seed", (PyCFunction)random_seed, METH_VARARGS, |
|
PyDoc_STR("seed([n]) -> None. Defaults to current time.")}, |
|
{"getstate", (PyCFunction)random_getstate, METH_NOARGS, |
|
PyDoc_STR("getstate() -> tuple containing the current state.")}, |
|
{"setstate", (PyCFunction)random_setstate, METH_O, |
|
PyDoc_STR("setstate(state) -> None. Restores generator state.")}, |
|
{"jumpahead", (PyCFunction)random_jumpahead, METH_O, |
|
PyDoc_STR("jumpahead(int) -> None. Create new state from " |
|
"existing state and integer.")}, |
|
{NULL, NULL} /* sentinel */ |
|
}; |
|
|
|
PyDoc_STRVAR(random_doc, |
|
"Random() -> create a random number generator with its own internal state."); |
|
|
|
static PyTypeObject Random_Type = { |
|
PyObject_HEAD_INIT(NULL) |
|
0, /*ob_size*/ |
|
"_random.Random", /*tp_name*/ |
|
sizeof(RandomObject), /*tp_basicsize*/ |
|
0, /*tp_itemsize*/ |
|
/* methods */ |
|
0, /*tp_dealloc*/ |
|
0, /*tp_print*/ |
|
0, /*tp_getattr*/ |
|
0, /*tp_setattr*/ |
|
0, /*tp_compare*/ |
|
0, /*tp_repr*/ |
|
0, /*tp_as_number*/ |
|
0, /*tp_as_sequence*/ |
|
0, /*tp_as_mapping*/ |
|
0, /*tp_hash*/ |
|
0, /*tp_call*/ |
|
0, /*tp_str*/ |
|
PyObject_GenericGetAttr, /*tp_getattro*/ |
|
0, /*tp_setattro*/ |
|
0, /*tp_as_buffer*/ |
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ |
|
random_doc, /*tp_doc*/ |
|
0, /*tp_traverse*/ |
|
0, /*tp_clear*/ |
|
0, /*tp_richcompare*/ |
|
0, /*tp_weaklistoffset*/ |
|
0, /*tp_iter*/ |
|
0, /*tp_iternext*/ |
|
random_methods, /*tp_methods*/ |
|
0, /*tp_members*/ |
|
0, /*tp_getset*/ |
|
0, /*tp_base*/ |
|
0, /*tp_dict*/ |
|
0, /*tp_descr_get*/ |
|
0, /*tp_descr_set*/ |
|
0, /*tp_dictoffset*/ |
|
0, /*tp_init*/ |
|
0, /*tp_alloc*/ |
|
random_new, /*tp_new*/ |
|
_PyObject_Del, /*tp_free*/ |
|
0, /*tp_is_gc*/ |
|
}; |
|
|
|
PyDoc_STRVAR(module_doc, |
|
"Module implements the Mersenne Twister random number generator."); |
|
|
|
PyMODINIT_FUNC |
|
init_random(void) |
|
{ |
|
PyObject *m; |
|
|
|
if (PyType_Ready(&Random_Type) < 0) |
|
return; |
|
m = Py_InitModule3("_random", NULL, module_doc); |
|
Py_INCREF(&Random_Type); |
|
PyModule_AddObject(m, "Random", (PyObject *)&Random_Type); |
|
}
|
|
|