You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

447 lines
12 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "hsTypes.h"
#include "hsBounds.h"
#include "hsFastMath.h"
#include "plVisLOSMgr.h"
#include "plSpaceTree.h"
#include "plDrawableSpans.h"
#include "plAccessGeometry.h"
#include "plAccessSpan.h"
#include "../plSurface/hsGMaterial.h"
#include "../plSurface/plLayerInterface.h"
#include "../plScene/plSceneNode.h"
#include "../plScene/plPageTreeMgr.h"
// Stuff for cursor los
#include "../plInputCore/plInputDevice.h"
#include "plPipeline.h"
#include "plTweak.h"
#include <algorithm>
#include <functional>
plVisLOSMgr* plVisLOSMgr::Instance()
{
static plVisLOSMgr inst;
return &inst;
}
hsBool plVisLOSMgr::ICheckSpaceTreeRecur(plSpaceTree* space, int which, hsTArray<plSpaceHit>& hits)
{
const plSpaceTreeNode& node = space->GetNode(which);
if( node.fFlags & plSpaceTreeNode::kDisabled )
return false;
hsScalar closest;
// If it's a hit
if( ICheckBound(node.fWorldBounds, closest) )
{
// If it's a leaf,
if( node.IsLeaf() )
{
// add it to the list with the closest intersection point,
plSpaceHit* hit = hits.Push();
hit->fIdx = which;
hit->fClosest = closest;
return true;
}
// else recurse on its children
else
{
hsBool retVal = false;
if( ICheckSpaceTreeRecur(space, node.GetChild(0), hits) )
retVal = true;
if( ICheckSpaceTreeRecur(space, node.GetChild(1), hits) )
retVal = true;
return retVal;
}
}
return false;
}
struct plCompSpaceHit : public std::binary_function<plSpaceHit, plSpaceHit, bool>
{
bool operator()( const plSpaceHit& lhs, const plSpaceHit& rhs) const
{
return lhs.fClosest < rhs.fClosest;
}
};
hsBool plVisLOSMgr::ICheckSpaceTree(plSpaceTree* space, hsTArray<plSpaceHit>& hits)
{
hits.SetCount(0);
if( space->IsEmpty() )
return false;
// Hierarchical search down the tree for bounds intersecting the current ray.
hsBool retVal = ICheckSpaceTreeRecur(space, space->GetRoot(), hits);
// Now sort them front to back.
plSpaceHit* begin = hits.AcquireArray();
plSpaceHit* end = begin + hits.GetCount();
std::sort(begin, end, plCompSpaceHit());
return retVal;
}
hsBool plVisLOSMgr::ISetup(const hsPoint3& pStart, const hsPoint3& pEnd)
{
fCurrFrom = pStart;
fCurrTarg = pEnd;
fMaxDist = hsVector3(&fCurrTarg, &fCurrFrom).Magnitude();
const hsScalar kMinMaxDist(0);
return fMaxDist > kMinMaxDist;
}
hsBool plVisLOSMgr::Check(const hsPoint3& pStart, const hsPoint3& pEnd, plVisHit& hit)
{
if( !fPageMgr )
return false;
// Setup any internals, like fMaxDist
if( !ISetup(pStart, pEnd) )
return false;
// Go through the nodes in the PageMgr and find the closest
// point of intersection for each scene node. If none are before
// pEnd, return false.
// Node come out sorted by closest point, front to back
static hsTArray<plSpaceHit> hits;
if( !ICheckSpaceTree(fPageMgr->GetSpaceTree(), hits) )
return false;
// In front to back order, check inside each node.
// Our max distance can be changing as we do this, because a
// face hit will limit how far we need to look. When we hit the
// first node with a closest distance < fMaxDist, we're done.
hsBool retVal = false;
int i;
for( i = 0; i < hits.GetCount(); i++ )
{
if( hits[i].fClosest > fMaxDist )
break;
if( ICheckSceneNode(fPageMgr->GetNodes()[hits[i].fIdx], hit) )
retVal = true;
}
return retVal;
}
hsBool plVisLOSMgr::ICheckSceneNode(plSceneNode* node, plVisHit& hit)
{
static hsTArray<plSpaceHit> hits;
if( !ICheckSpaceTree(node->GetSpaceTree(), hits) )
return false;
hsBool retVal = false;
int i;
for( i = 0; i < hits.GetCount(); i++ )
{
if( hits[i].fClosest > fMaxDist )
break;
if( (node->GetDrawPool()[hits[i].fIdx]->GetRenderLevel().Level() > 0)
&& !node->GetDrawPool()[hits[i].fIdx]->GetNativeProperty(plDrawable::kPropHasVisLOS) )
continue;
if( ICheckDrawable(node->GetDrawPool()[hits[i].fIdx], hit) )
retVal = true;
}
return retVal;
}
hsBool plVisLOSMgr::ICheckDrawable(plDrawable* d, plVisHit& hit)
{
plDrawableSpans* ds = plDrawableSpans::ConvertNoRef(d);
if( !ds )
return false;
static hsTArray<plSpaceHit> hits;
if( !ICheckSpaceTree(ds->GetSpaceTree(), hits) )
return false;
const hsBool isOpaque = !ds->GetRenderLevel().Level();
const hsTArray<plSpan *> spans = ds->GetSpanArray();
hsBool retVal = false;
int i;
for( i = 0; i < hits.GetCount(); i++ )
{
if( hits[i].fClosest > fMaxDist )
break;
if( isOpaque || (spans[hits[i].fIdx]->fProps & plSpan::kVisLOS) )
{
if( ICheckSpan(ds, hits[i].fIdx, hit) )
retVal = true;
}
}
return retVal;
}
hsBool plVisLOSMgr::ICheckSpan(plDrawableSpans* dr, UInt32 spanIdx, plVisHit& hit)
{
if( !(dr->GetSpan(spanIdx)->fTypeMask & plSpan::kIcicleSpan) )
return false;
plAccessSpan src;
plAccessGeometry::Instance()->OpenRO(dr, spanIdx, src);
const hsBool twoSided = !!(src.GetMaterial()->GetLayer(0)->GetMiscFlags() & hsGMatState::kMiscTwoSided);
hsBool retVal = false;
// We move into local space, look for hits, and convert the closest we find
// (if any) back into world space at the end.
hsPoint3 currFrom = src.GetWorldToLocal() * fCurrFrom;
hsPoint3 currTarg = src.GetWorldToLocal() * fCurrTarg;
hsVector3 currDir(&currTarg, &currFrom);
hsScalar maxDist = currDir.Magnitude();
currDir /= maxDist;
plAccTriIterator tri(&src.AccessTri());
for( tri.Begin(); tri.More(); tri.Advance() )
{
// Project the current ray onto the tri plane
hsVector3 norm = hsVector3(&tri.Position(1), &tri.Position(0)) % hsVector3(&tri.Position(2), &tri.Position(0));
hsScalar dotNorm = norm.InnerProduct(currDir);
const hsScalar kMinDotNorm = 1.e-3f;
if( dotNorm >= -kMinDotNorm )
{
if( !twoSided )
continue;
if( dotNorm <= kMinDotNorm )
continue;
}
hsScalar dist = hsVector3(&tri.Position(0), &currFrom).InnerProduct(norm);
if( dist > 0 )
continue;
dist /= dotNorm;
hsPoint3 projPt = currFrom;
projPt += currDir * dist;
// If the distance from source point to projected point is too long, skip
if( dist > maxDist )
continue;
// Find the 3 cross products (v[i+1]-v[i]) X (proj - v[i]) dotted with current ray
hsVector3 cross0 = hsVector3(&tri.Position(1), &tri.Position(0)) % hsVector3(&projPt, &tri.Position(0));
hsScalar dot0 = cross0.InnerProduct(currDir);
hsVector3 cross1 = hsVector3(&tri.Position(2), &tri.Position(1)) % hsVector3(&projPt, &tri.Position(1));
hsScalar dot1 = cross1.InnerProduct(currDir);
hsVector3 cross2 = hsVector3(&tri.Position(0), &tri.Position(2)) % hsVector3(&projPt, &tri.Position(2));
hsScalar dot2 = cross2.InnerProduct(currDir);
// If all 3 are negative, projPt is a hit
// If all 3 are positive and we're two sided, projPt is a hit
// We've already checked for back facing (when we checked for edge on in projection),
// so we'll accept either case here.
if( ((dot0 <= 0) && (dot1 <= 0) && (dot2 <= 0))
||((dot0 >= 0) && (dot1 >= 0) && (dot2 >= 0)) )
{
if( dist < maxDist )
{
maxDist = dist;
hit.fPos = projPt;
retVal = true;
}
}
}
plAccessGeometry::Instance()->Close(src);
if( retVal )
{
hit.fPos = src.GetLocalToWorld() * hit.fPos;
fCurrTarg = hit.fPos;
fMaxDist = hsVector3(&fCurrTarg, &fCurrFrom).Magnitude();
}
return retVal;
}
hsBool plVisLOSMgr::ICheckBound(const hsBounds3Ext& bnd, hsScalar& closest)
{
if( bnd.GetType() != kBoundsNormal )
return false;
if( bnd.IsInside(&fCurrFrom) || bnd.IsInside(&fCurrTarg) )
{
closest = 0;
return true;
}
const int face[6][4] =
{
{0,1,3,2},
{1,5,7,3},
{2,3,7,6},
{5,4,6,7},
{0,4,5,1},
{0,2,6,4}
};
hsPoint3 corn[8];
bnd.GetCorners(corn);
hsBool retVal = false;
const hsPoint3& currFrom = fCurrFrom;
const hsPoint3& currTarg = fCurrTarg;
hsVector3 currDir(&currTarg, &currFrom);
const hsScalar maxDistSq = currDir.MagnitudeSquared();
currDir *= hsFastMath::InvSqrt(maxDistSq);
int i;
for( i = 0; i < 6; i++ )
{
const hsPoint3& p0 = corn[face[i][0]];
const hsPoint3& p1 = corn[face[i][1]];
const hsPoint3& p2 = corn[face[i][2]];
const hsPoint3& p3 = corn[face[i][3]];
// Project the current ray onto the tri plane
hsVector3 norm = hsVector3(&p1, &p0) % hsVector3(&p2, &p0);
hsScalar dotNorm = norm.InnerProduct(currDir);
const hsScalar kMinDotNorm = 1.e-3f;
if( dotNorm >= -kMinDotNorm )
{
continue;
}
hsScalar dist = hsVector3(&p0, &currFrom).InnerProduct(norm);
if( dist >= 0 )
continue;
dist /= dotNorm;
// If the distance from source point to projected point is too long, skip
if( dist > fMaxDist )
continue;
hsPoint3 projPt = currFrom;
projPt += currDir * dist;
// Find the 3 cross products (v[i+1]-v[i]) X (proj - v[i]) dotted with current ray
hsVector3 cross0 = hsVector3(&p1, &p0) % hsVector3(&projPt, &p0);
hsScalar dot0 = cross0.InnerProduct(currDir);
hsVector3 cross1 = hsVector3(&p2, &p1) % hsVector3(&projPt, &p1);
hsScalar dot1 = cross1.InnerProduct(currDir);
hsVector3 cross2 = hsVector3(&p3, &p2) % hsVector3(&projPt, &p2);
hsScalar dot2 = cross2.InnerProduct(currDir);
hsVector3 cross3 = hsVector3(&p0, &p3) % hsVector3(&projPt, &p3);
hsScalar dot3 = cross3.InnerProduct(currDir);
// If all 4 are negative, projPt is a hit
if( (dot0 <= 0) && (dot1 <= 0) && (dot2 <= 0) && (dot3 <= 0) )
{
closest = dist;
return true;
}
}
return false;
}
hsBool plVisLOSMgr::CursorCheck(plVisHit& hit)
{
Int32 sx= Int32(plMouseDevice::Instance()->GetCursorX() * fPipe->Width());
Int32 sy= Int32(plMouseDevice::Instance()->GetCursorY() * fPipe->Height());
hsPoint3 from = fPipe->GetViewPositionWorld();
plConst(hsScalar) dist(1.e5f);
hsPoint3 targ;
fPipe->ScreenToWorldPoint(1, 0, &sx, &sy, dist, 0, &targ);
return Check(from, targ, hit);
}
/////////////////////////////////////////////////////////////////
#include "plPipeline.h"
#include "../pnSceneObject/plSceneObject.h"
static plSceneObject* marker = nil;
static plPipeline* pipe = nil;
void VisLOSHackBegin(plPipeline* p, plSceneObject* m)
{
marker = m;
pipe = p;
}
void VisLOSHackPulse()
{
if( !pipe )
return;
plVisHit hit;
if( plVisLOSMgr::Instance()->CursorCheck(hit) )
{
if( marker )
{
hsMatrix44 l2w = marker->GetLocalToWorld();
l2w.fMap[0][3] = hit.fPos.fX;
l2w.fMap[1][3] = hit.fPos.fY;
l2w.fMap[2][3] = hit.fPos.fZ;
l2w.NotIdentity();
hsMatrix44 w2l;
l2w.GetInverse(&w2l);
marker->SetTransform(l2w, w2l);
}
}
}