You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1253 lines
30 KiB
1253 lines
30 KiB
|
|
/* Float object implementation */ |
|
|
|
/* XXX There should be overflow checks here, but it's hard to check |
|
for any kind of float exception without losing portability. */ |
|
|
|
#include "Python.h" |
|
|
|
#include <ctype.h> |
|
|
|
#if !defined(__STDC__) && !defined(macintosh) |
|
extern double fmod(double, double); |
|
extern double pow(double, double); |
|
#endif |
|
|
|
#if defined(sun) && !defined(__SVR4) |
|
/* On SunOS4.1 only libm.a exists. Make sure that references to all |
|
needed math functions exist in the executable, so that dynamic |
|
loading of mathmodule does not fail. */ |
|
double (*_Py_math_funcs_hack[])() = { |
|
acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, |
|
fmod, log, log10, pow, sin, sinh, sqrt, tan, tanh |
|
}; |
|
#endif |
|
|
|
/* Special free list -- see comments for same code in intobject.c. */ |
|
#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */ |
|
#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */ |
|
#define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject)) |
|
|
|
struct _floatblock { |
|
struct _floatblock *next; |
|
PyFloatObject objects[N_FLOATOBJECTS]; |
|
}; |
|
|
|
typedef struct _floatblock PyFloatBlock; |
|
|
|
static PyFloatBlock *block_list = NULL; |
|
static PyFloatObject *free_list = NULL; |
|
|
|
static PyFloatObject * |
|
fill_free_list(void) |
|
{ |
|
PyFloatObject *p, *q; |
|
/* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */ |
|
p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock)); |
|
if (p == NULL) |
|
return (PyFloatObject *) PyErr_NoMemory(); |
|
((PyFloatBlock *)p)->next = block_list; |
|
block_list = (PyFloatBlock *)p; |
|
p = &((PyFloatBlock *)p)->objects[0]; |
|
q = p + N_FLOATOBJECTS; |
|
while (--q > p) |
|
q->ob_type = (struct _typeobject *)(q-1); |
|
q->ob_type = NULL; |
|
return p + N_FLOATOBJECTS - 1; |
|
} |
|
|
|
PyObject * |
|
PyFloat_FromDouble(double fval) |
|
{ |
|
register PyFloatObject *op; |
|
if (free_list == NULL) { |
|
if ((free_list = fill_free_list()) == NULL) |
|
return NULL; |
|
} |
|
/* Inline PyObject_New */ |
|
op = free_list; |
|
free_list = (PyFloatObject *)op->ob_type; |
|
PyObject_INIT(op, &PyFloat_Type); |
|
op->ob_fval = fval; |
|
return (PyObject *) op; |
|
} |
|
|
|
/************************************************************************** |
|
RED_FLAG 22-Sep-2000 tim |
|
PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG, |
|
|
|
1. If v was a regular string, *pend was set to point to its terminating |
|
null byte. That's useless (the caller can find that without any |
|
help from this function!). |
|
|
|
2. If v was a Unicode string, or an object convertible to a character |
|
buffer, *pend was set to point into stack trash (the auto temp |
|
vector holding the character buffer). That was downright dangerous. |
|
|
|
Since we can't change the interface of a public API function, pend is |
|
still supported but now *officially* useless: if pend is not NULL, |
|
*pend is set to NULL. |
|
**************************************************************************/ |
|
PyObject * |
|
PyFloat_FromString(PyObject *v, char **pend) |
|
{ |
|
const char *s, *last, *end; |
|
double x; |
|
char buffer[256]; /* for errors */ |
|
#ifdef Py_USING_UNICODE |
|
char s_buffer[256]; /* for objects convertible to a char buffer */ |
|
#endif |
|
int len; |
|
|
|
if (pend) |
|
*pend = NULL; |
|
if (PyString_Check(v)) { |
|
s = PyString_AS_STRING(v); |
|
len = PyString_GET_SIZE(v); |
|
} |
|
#ifdef Py_USING_UNICODE |
|
else if (PyUnicode_Check(v)) { |
|
if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"Unicode float() literal too long to convert"); |
|
return NULL; |
|
} |
|
if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), |
|
PyUnicode_GET_SIZE(v), |
|
s_buffer, |
|
NULL)) |
|
return NULL; |
|
s = s_buffer; |
|
len = (int)strlen(s); |
|
} |
|
#endif |
|
else if (PyObject_AsCharBuffer(v, &s, &len)) { |
|
PyErr_SetString(PyExc_TypeError, |
|
"float() argument must be a string or a number"); |
|
return NULL; |
|
} |
|
|
|
last = s + len; |
|
while (*s && isspace(Py_CHARMASK(*s))) |
|
s++; |
|
if (*s == '\0') { |
|
PyErr_SetString(PyExc_ValueError, "empty string for float()"); |
|
return NULL; |
|
} |
|
/* We don't care about overflow or underflow. If the platform supports |
|
* them, infinities and signed zeroes (on underflow) are fine. |
|
* However, strtod can return 0 for denormalized numbers, where atof |
|
* does not. So (alas!) we special-case a zero result. Note that |
|
* whether strtod sets errno on underflow is not defined, so we can't |
|
* key off errno. |
|
*/ |
|
PyFPE_START_PROTECT("strtod", return NULL) |
|
x = strtod(s, (char **)&end); |
|
PyFPE_END_PROTECT(x) |
|
errno = 0; |
|
/* Believe it or not, Solaris 2.6 can move end *beyond* the null |
|
byte at the end of the string, when the input is inf(inity). */ |
|
if (end > last) |
|
end = last; |
|
if (end == s) { |
|
PyOS_snprintf(buffer, sizeof(buffer), |
|
"invalid literal for float(): %.200s", s); |
|
PyErr_SetString(PyExc_ValueError, buffer); |
|
return NULL; |
|
} |
|
/* Since end != s, the platform made *some* kind of sense out |
|
of the input. Trust it. */ |
|
while (*end && isspace(Py_CHARMASK(*end))) |
|
end++; |
|
if (*end != '\0') { |
|
PyOS_snprintf(buffer, sizeof(buffer), |
|
"invalid literal for float(): %.200s", s); |
|
PyErr_SetString(PyExc_ValueError, buffer); |
|
return NULL; |
|
} |
|
else if (end != last) { |
|
PyErr_SetString(PyExc_ValueError, |
|
"null byte in argument for float()"); |
|
return NULL; |
|
} |
|
if (x == 0.0) { |
|
/* See above -- may have been strtod being anal |
|
about denorms. */ |
|
PyFPE_START_PROTECT("atof", return NULL) |
|
x = atof(s); |
|
PyFPE_END_PROTECT(x) |
|
errno = 0; /* whether atof ever set errno is undefined */ |
|
} |
|
return PyFloat_FromDouble(x); |
|
} |
|
|
|
static void |
|
float_dealloc(PyFloatObject *op) |
|
{ |
|
if (PyFloat_CheckExact(op)) { |
|
op->ob_type = (struct _typeobject *)free_list; |
|
free_list = op; |
|
} |
|
else |
|
op->ob_type->tp_free((PyObject *)op); |
|
} |
|
|
|
double |
|
PyFloat_AsDouble(PyObject *op) |
|
{ |
|
PyNumberMethods *nb; |
|
PyFloatObject *fo; |
|
double val; |
|
|
|
if (op && PyFloat_Check(op)) |
|
return PyFloat_AS_DOUBLE((PyFloatObject*) op); |
|
|
|
if (op == NULL) { |
|
PyErr_BadArgument(); |
|
return -1; |
|
} |
|
|
|
if ((nb = op->ob_type->tp_as_number) == NULL || nb->nb_float == NULL) { |
|
PyErr_SetString(PyExc_TypeError, "a float is required"); |
|
return -1; |
|
} |
|
|
|
fo = (PyFloatObject*) (*nb->nb_float) (op); |
|
if (fo == NULL) |
|
return -1; |
|
if (!PyFloat_Check(fo)) { |
|
PyErr_SetString(PyExc_TypeError, |
|
"nb_float should return float object"); |
|
return -1; |
|
} |
|
|
|
val = PyFloat_AS_DOUBLE(fo); |
|
Py_DECREF(fo); |
|
|
|
return val; |
|
} |
|
|
|
/* Methods */ |
|
|
|
static void |
|
format_float(char *buf, size_t buflen, PyFloatObject *v, int precision) |
|
{ |
|
register char *cp; |
|
/* Subroutine for float_repr and float_print. |
|
We want float numbers to be recognizable as such, |
|
i.e., they should contain a decimal point or an exponent. |
|
However, %g may print the number as an integer; |
|
in such cases, we append ".0" to the string. */ |
|
|
|
assert(PyFloat_Check(v)); |
|
PyOS_snprintf(buf, buflen, "%.*g", precision, v->ob_fval); |
|
cp = buf; |
|
if (*cp == '-') |
|
cp++; |
|
for (; *cp != '\0'; cp++) { |
|
/* Any non-digit means it's not an integer; |
|
this takes care of NAN and INF as well. */ |
|
if (!isdigit(Py_CHARMASK(*cp))) |
|
break; |
|
} |
|
if (*cp == '\0') { |
|
*cp++ = '.'; |
|
*cp++ = '0'; |
|
*cp++ = '\0'; |
|
} |
|
} |
|
|
|
/* XXX PyFloat_AsStringEx should not be a public API function (for one |
|
XXX thing, its signature passes a buffer without a length; for another, |
|
XXX it isn't useful outside this file). |
|
*/ |
|
void |
|
PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision) |
|
{ |
|
format_float(buf, 100, v, precision); |
|
} |
|
|
|
/* Macro and helper that convert PyObject obj to a C double and store |
|
the value in dbl; this replaces the functionality of the coercion |
|
slot function. If conversion to double raises an exception, obj is |
|
set to NULL, and the function invoking this macro returns NULL. If |
|
obj is not of float, int or long type, Py_NotImplemented is incref'ed, |
|
stored in obj, and returned from the function invoking this macro. |
|
*/ |
|
#define CONVERT_TO_DOUBLE(obj, dbl) \ |
|
if (PyFloat_Check(obj)) \ |
|
dbl = PyFloat_AS_DOUBLE(obj); \ |
|
else if (convert_to_double(&(obj), &(dbl)) < 0) \ |
|
return obj; |
|
|
|
static int |
|
convert_to_double(PyObject **v, double *dbl) |
|
{ |
|
register PyObject *obj = *v; |
|
|
|
if (PyInt_Check(obj)) { |
|
*dbl = (double)PyInt_AS_LONG(obj); |
|
} |
|
else if (PyLong_Check(obj)) { |
|
*dbl = PyLong_AsDouble(obj); |
|
if (*dbl == -1.0 && PyErr_Occurred()) { |
|
*v = NULL; |
|
return -1; |
|
} |
|
} |
|
else { |
|
Py_INCREF(Py_NotImplemented); |
|
*v = Py_NotImplemented; |
|
return -1; |
|
} |
|
return 0; |
|
} |
|
|
|
/* Precisions used by repr() and str(), respectively. |
|
|
|
The repr() precision (17 significant decimal digits) is the minimal number |
|
that is guaranteed to have enough precision so that if the number is read |
|
back in the exact same binary value is recreated. This is true for IEEE |
|
floating point by design, and also happens to work for all other modern |
|
hardware. |
|
|
|
The str() precision is chosen so that in most cases, the rounding noise |
|
created by various operations is suppressed, while giving plenty of |
|
precision for practical use. |
|
|
|
*/ |
|
|
|
#define PREC_REPR 17 |
|
#define PREC_STR 12 |
|
|
|
/* XXX PyFloat_AsString and PyFloat_AsReprString should be deprecated: |
|
XXX they pass a char buffer without passing a length. |
|
*/ |
|
void |
|
PyFloat_AsString(char *buf, PyFloatObject *v) |
|
{ |
|
format_float(buf, 100, v, PREC_STR); |
|
} |
|
|
|
void |
|
PyFloat_AsReprString(char *buf, PyFloatObject *v) |
|
{ |
|
format_float(buf, 100, v, PREC_REPR); |
|
} |
|
|
|
/* ARGSUSED */ |
|
static int |
|
float_print(PyFloatObject *v, FILE *fp, int flags) |
|
{ |
|
char buf[100]; |
|
format_float(buf, sizeof(buf), v, |
|
(flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR); |
|
fputs(buf, fp); |
|
return 0; |
|
} |
|
|
|
static PyObject * |
|
float_repr(PyFloatObject *v) |
|
{ |
|
char buf[100]; |
|
format_float(buf, sizeof(buf), v, PREC_REPR); |
|
return PyString_FromString(buf); |
|
} |
|
|
|
static PyObject * |
|
float_str(PyFloatObject *v) |
|
{ |
|
char buf[100]; |
|
format_float(buf, sizeof(buf), v, PREC_STR); |
|
return PyString_FromString(buf); |
|
} |
|
|
|
static int |
|
float_compare(PyFloatObject *v, PyFloatObject *w) |
|
{ |
|
double i = v->ob_fval; |
|
double j = w->ob_fval; |
|
return (i < j) ? -1 : (i > j) ? 1 : 0; |
|
} |
|
|
|
static long |
|
float_hash(PyFloatObject *v) |
|
{ |
|
return _Py_HashDouble(v->ob_fval); |
|
} |
|
|
|
static PyObject * |
|
float_add(PyObject *v, PyObject *w) |
|
{ |
|
double a,b; |
|
CONVERT_TO_DOUBLE(v, a); |
|
CONVERT_TO_DOUBLE(w, b); |
|
PyFPE_START_PROTECT("add", return 0) |
|
a = a + b; |
|
PyFPE_END_PROTECT(a) |
|
return PyFloat_FromDouble(a); |
|
} |
|
|
|
static PyObject * |
|
float_sub(PyObject *v, PyObject *w) |
|
{ |
|
double a,b; |
|
CONVERT_TO_DOUBLE(v, a); |
|
CONVERT_TO_DOUBLE(w, b); |
|
PyFPE_START_PROTECT("subtract", return 0) |
|
a = a - b; |
|
PyFPE_END_PROTECT(a) |
|
return PyFloat_FromDouble(a); |
|
} |
|
|
|
static PyObject * |
|
float_mul(PyObject *v, PyObject *w) |
|
{ |
|
double a,b; |
|
CONVERT_TO_DOUBLE(v, a); |
|
CONVERT_TO_DOUBLE(w, b); |
|
PyFPE_START_PROTECT("multiply", return 0) |
|
a = a * b; |
|
PyFPE_END_PROTECT(a) |
|
return PyFloat_FromDouble(a); |
|
} |
|
|
|
static PyObject * |
|
float_div(PyObject *v, PyObject *w) |
|
{ |
|
double a,b; |
|
CONVERT_TO_DOUBLE(v, a); |
|
CONVERT_TO_DOUBLE(w, b); |
|
if (b == 0.0) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, "float division"); |
|
return NULL; |
|
} |
|
PyFPE_START_PROTECT("divide", return 0) |
|
a = a / b; |
|
PyFPE_END_PROTECT(a) |
|
return PyFloat_FromDouble(a); |
|
} |
|
|
|
static PyObject * |
|
float_classic_div(PyObject *v, PyObject *w) |
|
{ |
|
double a,b; |
|
CONVERT_TO_DOUBLE(v, a); |
|
CONVERT_TO_DOUBLE(w, b); |
|
if (Py_DivisionWarningFlag >= 2 && |
|
PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0) |
|
return NULL; |
|
if (b == 0.0) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, "float division"); |
|
return NULL; |
|
} |
|
PyFPE_START_PROTECT("divide", return 0) |
|
a = a / b; |
|
PyFPE_END_PROTECT(a) |
|
return PyFloat_FromDouble(a); |
|
} |
|
|
|
static PyObject * |
|
float_rem(PyObject *v, PyObject *w) |
|
{ |
|
double vx, wx; |
|
double mod; |
|
CONVERT_TO_DOUBLE(v, vx); |
|
CONVERT_TO_DOUBLE(w, wx); |
|
if (wx == 0.0) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, "float modulo"); |
|
return NULL; |
|
} |
|
PyFPE_START_PROTECT("modulo", return 0) |
|
mod = fmod(vx, wx); |
|
/* note: checking mod*wx < 0 is incorrect -- underflows to |
|
0 if wx < sqrt(smallest nonzero double) */ |
|
if (mod && ((wx < 0) != (mod < 0))) { |
|
mod += wx; |
|
} |
|
PyFPE_END_PROTECT(mod) |
|
return PyFloat_FromDouble(mod); |
|
} |
|
|
|
static PyObject * |
|
float_divmod(PyObject *v, PyObject *w) |
|
{ |
|
double vx, wx; |
|
double div, mod, floordiv; |
|
CONVERT_TO_DOUBLE(v, vx); |
|
CONVERT_TO_DOUBLE(w, wx); |
|
if (wx == 0.0) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()"); |
|
return NULL; |
|
} |
|
PyFPE_START_PROTECT("divmod", return 0) |
|
mod = fmod(vx, wx); |
|
/* fmod is typically exact, so vx-mod is *mathematically* an |
|
exact multiple of wx. But this is fp arithmetic, and fp |
|
vx - mod is an approximation; the result is that div may |
|
not be an exact integral value after the division, although |
|
it will always be very close to one. |
|
*/ |
|
div = (vx - mod) / wx; |
|
if (mod) { |
|
/* ensure the remainder has the same sign as the denominator */ |
|
if ((wx < 0) != (mod < 0)) { |
|
mod += wx; |
|
div -= 1.0; |
|
} |
|
} |
|
else { |
|
/* the remainder is zero, and in the presence of signed zeroes |
|
fmod returns different results across platforms; ensure |
|
it has the same sign as the denominator; we'd like to do |
|
"mod = wx * 0.0", but that may get optimized away */ |
|
mod *= mod; /* hide "mod = +0" from optimizer */ |
|
if (wx < 0.0) |
|
mod = -mod; |
|
} |
|
/* snap quotient to nearest integral value */ |
|
if (div) { |
|
floordiv = floor(div); |
|
if (div - floordiv > 0.5) |
|
floordiv += 1.0; |
|
} |
|
else { |
|
/* div is zero - get the same sign as the true quotient */ |
|
div *= div; /* hide "div = +0" from optimizers */ |
|
floordiv = div * vx / wx; /* zero w/ sign of vx/wx */ |
|
} |
|
PyFPE_END_PROTECT(floordiv) |
|
return Py_BuildValue("(dd)", floordiv, mod); |
|
} |
|
|
|
static PyObject * |
|
float_floor_div(PyObject *v, PyObject *w) |
|
{ |
|
PyObject *t, *r; |
|
|
|
t = float_divmod(v, w); |
|
if (t == NULL || t == Py_NotImplemented) |
|
return t; |
|
assert(PyTuple_CheckExact(t)); |
|
r = PyTuple_GET_ITEM(t, 0); |
|
Py_INCREF(r); |
|
Py_DECREF(t); |
|
return r; |
|
} |
|
|
|
static PyObject * |
|
float_pow(PyObject *v, PyObject *w, PyObject *z) |
|
{ |
|
double iv, iw, ix; |
|
|
|
if ((PyObject *)z != Py_None) { |
|
PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not " |
|
"allowed unless all arguments are integers"); |
|
return NULL; |
|
} |
|
|
|
CONVERT_TO_DOUBLE(v, iv); |
|
CONVERT_TO_DOUBLE(w, iw); |
|
|
|
/* Sort out special cases here instead of relying on pow() */ |
|
if (iw == 0) { /* v**0 is 1, even 0**0 */ |
|
PyFPE_START_PROTECT("pow", return NULL) |
|
if ((PyObject *)z != Py_None) { |
|
double iz; |
|
CONVERT_TO_DOUBLE(z, iz); |
|
ix = fmod(1.0, iz); |
|
if (ix != 0 && iz < 0) |
|
ix += iz; |
|
} |
|
else |
|
ix = 1.0; |
|
PyFPE_END_PROTECT(ix) |
|
return PyFloat_FromDouble(ix); |
|
} |
|
if (iv == 0.0) { /* 0**w is error if w<0, else 1 */ |
|
if (iw < 0.0) { |
|
PyErr_SetString(PyExc_ZeroDivisionError, |
|
"0.0 cannot be raised to a negative power"); |
|
return NULL; |
|
} |
|
return PyFloat_FromDouble(0.0); |
|
} |
|
if (iv < 0.0) { |
|
/* Whether this is an error is a mess, and bumps into libm |
|
* bugs so we have to figure it out ourselves. |
|
*/ |
|
if (iw != floor(iw)) { |
|
PyErr_SetString(PyExc_ValueError, "negative number " |
|
"cannot be raised to a fractional power"); |
|
return NULL; |
|
} |
|
/* iw is an exact integer, albeit perhaps a very large one. |
|
* -1 raised to an exact integer should never be exceptional. |
|
* Alas, some libms (chiefly glibc as of early 2003) return |
|
* NaN and set EDOM on pow(-1, large_int) if the int doesn't |
|
* happen to be representable in a *C* integer. That's a |
|
* bug; we let that slide in math.pow() (which currently |
|
* reflects all platform accidents), but not for Python's **. |
|
*/ |
|
if (iv == -1.0 && !Py_IS_INFINITY(iw) && iw == iw) { |
|
/* XXX the "iw == iw" was to weed out NaNs. This |
|
* XXX doesn't actually work on all platforms. |
|
*/ |
|
/* Return 1 if iw is even, -1 if iw is odd; there's |
|
* no guarantee that any C integral type is big |
|
* enough to hold iw, so we have to check this |
|
* indirectly. |
|
*/ |
|
ix = floor(iw * 0.5) * 2.0; |
|
return PyFloat_FromDouble(ix == iw ? 1.0 : -1.0); |
|
} |
|
/* Else iv != -1.0, and overflow or underflow are possible. |
|
* Unless we're to write pow() ourselves, we have to trust |
|
* the platform to do this correctly. |
|
*/ |
|
} |
|
errno = 0; |
|
PyFPE_START_PROTECT("pow", return NULL) |
|
ix = pow(iv, iw); |
|
PyFPE_END_PROTECT(ix) |
|
Py_ADJUST_ERANGE1(ix); |
|
if (errno != 0) { |
|
/* We don't expect any errno value other than ERANGE, but |
|
* the range of libm bugs appears unbounded. |
|
*/ |
|
PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : |
|
PyExc_ValueError); |
|
return NULL; |
|
} |
|
return PyFloat_FromDouble(ix); |
|
} |
|
|
|
static PyObject * |
|
float_neg(PyFloatObject *v) |
|
{ |
|
return PyFloat_FromDouble(-v->ob_fval); |
|
} |
|
|
|
static PyObject * |
|
float_pos(PyFloatObject *v) |
|
{ |
|
if (PyFloat_CheckExact(v)) { |
|
Py_INCREF(v); |
|
return (PyObject *)v; |
|
} |
|
else |
|
return PyFloat_FromDouble(v->ob_fval); |
|
} |
|
|
|
static PyObject * |
|
float_abs(PyFloatObject *v) |
|
{ |
|
return PyFloat_FromDouble(fabs(v->ob_fval)); |
|
} |
|
|
|
static int |
|
float_nonzero(PyFloatObject *v) |
|
{ |
|
return v->ob_fval != 0.0; |
|
} |
|
|
|
static int |
|
float_coerce(PyObject **pv, PyObject **pw) |
|
{ |
|
if (PyInt_Check(*pw)) { |
|
long x = PyInt_AsLong(*pw); |
|
*pw = PyFloat_FromDouble((double)x); |
|
Py_INCREF(*pv); |
|
return 0; |
|
} |
|
else if (PyLong_Check(*pw)) { |
|
double x = PyLong_AsDouble(*pw); |
|
if (x == -1.0 && PyErr_Occurred()) |
|
return -1; |
|
*pw = PyFloat_FromDouble(x); |
|
Py_INCREF(*pv); |
|
return 0; |
|
} |
|
else if (PyFloat_Check(*pw)) { |
|
Py_INCREF(*pv); |
|
Py_INCREF(*pw); |
|
return 0; |
|
} |
|
return 1; /* Can't do it */ |
|
} |
|
|
|
static PyObject * |
|
float_long(PyObject *v) |
|
{ |
|
double x = PyFloat_AsDouble(v); |
|
return PyLong_FromDouble(x); |
|
} |
|
|
|
static PyObject * |
|
float_int(PyObject *v) |
|
{ |
|
double x = PyFloat_AsDouble(v); |
|
double wholepart; /* integral portion of x, rounded toward 0 */ |
|
|
|
(void)modf(x, &wholepart); |
|
/* Try to get out cheap if this fits in a Python int. The attempt |
|
* to cast to long must be protected, as C doesn't define what |
|
* happens if the double is too big to fit in a long. Some rare |
|
* systems raise an exception then (RISCOS was mentioned as one, |
|
* and someone using a non-default option on Sun also bumped into |
|
* that). Note that checking for >= and <= LONG_{MIN,MAX} would |
|
* still be vulnerable: if a long has more bits of precision than |
|
* a double, casting MIN/MAX to double may yield an approximation, |
|
* and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would |
|
* yield true from the C expression wholepart<=LONG_MAX, despite |
|
* that wholepart is actually greater than LONG_MAX. |
|
*/ |
|
if (LONG_MIN < wholepart && wholepart < LONG_MAX) { |
|
const long aslong = (long)wholepart; |
|
return PyInt_FromLong(aslong); |
|
} |
|
return PyLong_FromDouble(wholepart); |
|
} |
|
|
|
static PyObject * |
|
float_float(PyObject *v) |
|
{ |
|
Py_INCREF(v); |
|
return v; |
|
} |
|
|
|
|
|
static PyObject * |
|
float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); |
|
|
|
static PyObject * |
|
float_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
|
{ |
|
PyObject *x = Py_False; /* Integer zero */ |
|
static char *kwlist[] = {"x", 0}; |
|
|
|
if (type != &PyFloat_Type) |
|
return float_subtype_new(type, args, kwds); /* Wimp out */ |
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x)) |
|
return NULL; |
|
if (PyString_Check(x)) |
|
return PyFloat_FromString(x, NULL); |
|
return PyNumber_Float(x); |
|
} |
|
|
|
/* Wimpy, slow approach to tp_new calls for subtypes of float: |
|
first create a regular float from whatever arguments we got, |
|
then allocate a subtype instance and initialize its ob_fval |
|
from the regular float. The regular float is then thrown away. |
|
*/ |
|
static PyObject * |
|
float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
|
{ |
|
PyObject *tmp, *new; |
|
|
|
assert(PyType_IsSubtype(type, &PyFloat_Type)); |
|
tmp = float_new(&PyFloat_Type, args, kwds); |
|
if (tmp == NULL) |
|
return NULL; |
|
assert(PyFloat_CheckExact(tmp)); |
|
new = type->tp_alloc(type, 0); |
|
if (new == NULL) { |
|
Py_DECREF(tmp); |
|
return NULL; |
|
} |
|
((PyFloatObject *)new)->ob_fval = ((PyFloatObject *)tmp)->ob_fval; |
|
Py_DECREF(tmp); |
|
return new; |
|
} |
|
|
|
static PyObject * |
|
float_getnewargs(PyFloatObject *v) |
|
{ |
|
return Py_BuildValue("(d)", v->ob_fval); |
|
} |
|
|
|
static PyMethodDef float_methods[] = { |
|
{"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS}, |
|
{NULL, NULL} /* sentinel */ |
|
}; |
|
|
|
PyDoc_STRVAR(float_doc, |
|
"float(x) -> floating point number\n\ |
|
\n\ |
|
Convert a string or number to a floating point number, if possible."); |
|
|
|
|
|
static PyNumberMethods float_as_number = { |
|
(binaryfunc)float_add, /*nb_add*/ |
|
(binaryfunc)float_sub, /*nb_subtract*/ |
|
(binaryfunc)float_mul, /*nb_multiply*/ |
|
(binaryfunc)float_classic_div, /*nb_divide*/ |
|
(binaryfunc)float_rem, /*nb_remainder*/ |
|
(binaryfunc)float_divmod, /*nb_divmod*/ |
|
(ternaryfunc)float_pow, /*nb_power*/ |
|
(unaryfunc)float_neg, /*nb_negative*/ |
|
(unaryfunc)float_pos, /*nb_positive*/ |
|
(unaryfunc)float_abs, /*nb_absolute*/ |
|
(inquiry)float_nonzero, /*nb_nonzero*/ |
|
0, /*nb_invert*/ |
|
0, /*nb_lshift*/ |
|
0, /*nb_rshift*/ |
|
0, /*nb_and*/ |
|
0, /*nb_xor*/ |
|
0, /*nb_or*/ |
|
(coercion)float_coerce, /*nb_coerce*/ |
|
(unaryfunc)float_int, /*nb_int*/ |
|
(unaryfunc)float_long, /*nb_long*/ |
|
(unaryfunc)float_float, /*nb_float*/ |
|
0, /* nb_oct */ |
|
0, /* nb_hex */ |
|
0, /* nb_inplace_add */ |
|
0, /* nb_inplace_subtract */ |
|
0, /* nb_inplace_multiply */ |
|
0, /* nb_inplace_divide */ |
|
0, /* nb_inplace_remainder */ |
|
0, /* nb_inplace_power */ |
|
0, /* nb_inplace_lshift */ |
|
0, /* nb_inplace_rshift */ |
|
0, /* nb_inplace_and */ |
|
0, /* nb_inplace_xor */ |
|
0, /* nb_inplace_or */ |
|
float_floor_div, /* nb_floor_divide */ |
|
float_div, /* nb_true_divide */ |
|
0, /* nb_inplace_floor_divide */ |
|
0, /* nb_inplace_true_divide */ |
|
}; |
|
|
|
PyTypeObject PyFloat_Type = { |
|
PyObject_HEAD_INIT(&PyType_Type) |
|
0, |
|
"float", |
|
sizeof(PyFloatObject), |
|
0, |
|
(destructor)float_dealloc, /* tp_dealloc */ |
|
(printfunc)float_print, /* tp_print */ |
|
0, /* tp_getattr */ |
|
0, /* tp_setattr */ |
|
(cmpfunc)float_compare, /* tp_compare */ |
|
(reprfunc)float_repr, /* tp_repr */ |
|
&float_as_number, /* tp_as_number */ |
|
0, /* tp_as_sequence */ |
|
0, /* tp_as_mapping */ |
|
(hashfunc)float_hash, /* tp_hash */ |
|
0, /* tp_call */ |
|
(reprfunc)float_str, /* tp_str */ |
|
PyObject_GenericGetAttr, /* tp_getattro */ |
|
0, /* tp_setattro */ |
|
0, /* tp_as_buffer */ |
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | |
|
Py_TPFLAGS_BASETYPE, /* tp_flags */ |
|
float_doc, /* tp_doc */ |
|
0, /* tp_traverse */ |
|
0, /* tp_clear */ |
|
0, /* tp_richcompare */ |
|
0, /* tp_weaklistoffset */ |
|
0, /* tp_iter */ |
|
0, /* tp_iternext */ |
|
float_methods, /* tp_methods */ |
|
0, /* tp_members */ |
|
0, /* tp_getset */ |
|
0, /* tp_base */ |
|
0, /* tp_dict */ |
|
0, /* tp_descr_get */ |
|
0, /* tp_descr_set */ |
|
0, /* tp_dictoffset */ |
|
0, /* tp_init */ |
|
0, /* tp_alloc */ |
|
float_new, /* tp_new */ |
|
}; |
|
|
|
void |
|
PyFloat_Fini(void) |
|
{ |
|
PyFloatObject *p; |
|
PyFloatBlock *list, *next; |
|
int i; |
|
int bc, bf; /* block count, number of freed blocks */ |
|
int frem, fsum; /* remaining unfreed floats per block, total */ |
|
|
|
bc = 0; |
|
bf = 0; |
|
fsum = 0; |
|
list = block_list; |
|
block_list = NULL; |
|
free_list = NULL; |
|
while (list != NULL) { |
|
bc++; |
|
frem = 0; |
|
for (i = 0, p = &list->objects[0]; |
|
i < N_FLOATOBJECTS; |
|
i++, p++) { |
|
if (PyFloat_CheckExact(p) && p->ob_refcnt != 0) |
|
frem++; |
|
} |
|
next = list->next; |
|
if (frem) { |
|
list->next = block_list; |
|
block_list = list; |
|
for (i = 0, p = &list->objects[0]; |
|
i < N_FLOATOBJECTS; |
|
i++, p++) { |
|
if (!PyFloat_CheckExact(p) || |
|
p->ob_refcnt == 0) { |
|
p->ob_type = (struct _typeobject *) |
|
free_list; |
|
free_list = p; |
|
} |
|
} |
|
} |
|
else { |
|
PyMem_FREE(list); /* XXX PyObject_FREE ??? */ |
|
bf++; |
|
} |
|
fsum += frem; |
|
list = next; |
|
} |
|
if (!Py_VerboseFlag) |
|
return; |
|
fprintf(stderr, "# cleanup floats"); |
|
if (!fsum) { |
|
fprintf(stderr, "\n"); |
|
} |
|
else { |
|
fprintf(stderr, |
|
": %d unfreed float%s in %d out of %d block%s\n", |
|
fsum, fsum == 1 ? "" : "s", |
|
bc - bf, bc, bc == 1 ? "" : "s"); |
|
} |
|
if (Py_VerboseFlag > 1) { |
|
list = block_list; |
|
while (list != NULL) { |
|
for (i = 0, p = &list->objects[0]; |
|
i < N_FLOATOBJECTS; |
|
i++, p++) { |
|
if (PyFloat_CheckExact(p) && |
|
p->ob_refcnt != 0) { |
|
char buf[100]; |
|
PyFloat_AsString(buf, p); |
|
fprintf(stderr, |
|
"# <float at %p, refcnt=%d, val=%s>\n", |
|
p, p->ob_refcnt, buf); |
|
} |
|
} |
|
list = list->next; |
|
} |
|
} |
|
} |
|
|
|
/*---------------------------------------------------------------------------- |
|
* _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h. |
|
* |
|
* TODO: On platforms that use the standard IEEE-754 single and double |
|
* formats natively, these routines could simply copy the bytes. |
|
*/ |
|
int |
|
_PyFloat_Pack4(double x, unsigned char *p, int le) |
|
{ |
|
unsigned char sign; |
|
int e; |
|
double f; |
|
unsigned int fbits; |
|
int incr = 1; |
|
|
|
if (le) { |
|
p += 3; |
|
incr = -1; |
|
} |
|
|
|
if (x < 0) { |
|
sign = 1; |
|
x = -x; |
|
} |
|
else |
|
sign = 0; |
|
|
|
f = frexp(x, &e); |
|
|
|
/* Normalize f to be in the range [1.0, 2.0) */ |
|
if (0.5 <= f && f < 1.0) { |
|
f *= 2.0; |
|
e--; |
|
} |
|
else if (f == 0.0) |
|
e = 0; |
|
else { |
|
PyErr_SetString(PyExc_SystemError, |
|
"frexp() result out of range"); |
|
return -1; |
|
} |
|
|
|
if (e >= 128) |
|
goto Overflow; |
|
else if (e < -126) { |
|
/* Gradual underflow */ |
|
f = ldexp(f, 126 + e); |
|
e = 0; |
|
} |
|
else if (!(e == 0 && f == 0.0)) { |
|
e += 127; |
|
f -= 1.0; /* Get rid of leading 1 */ |
|
} |
|
|
|
f *= 8388608.0; /* 2**23 */ |
|
fbits = (unsigned int)(f + 0.5); /* Round */ |
|
assert(fbits <= 8388608); |
|
if (fbits >> 23) { |
|
/* The carry propagated out of a string of 23 1 bits. */ |
|
fbits = 0; |
|
++e; |
|
if (e >= 255) |
|
goto Overflow; |
|
} |
|
|
|
/* First byte */ |
|
*p = (sign << 7) | (e >> 1); |
|
p += incr; |
|
|
|
/* Second byte */ |
|
*p = (char) (((e & 1) << 7) | (fbits >> 16)); |
|
p += incr; |
|
|
|
/* Third byte */ |
|
*p = (fbits >> 8) & 0xFF; |
|
p += incr; |
|
|
|
/* Fourth byte */ |
|
*p = fbits & 0xFF; |
|
|
|
/* Done */ |
|
return 0; |
|
|
|
Overflow: |
|
PyErr_SetString(PyExc_OverflowError, |
|
"float too large to pack with f format"); |
|
return -1; |
|
} |
|
|
|
int |
|
_PyFloat_Pack8(double x, unsigned char *p, int le) |
|
{ |
|
unsigned char sign; |
|
int e; |
|
double f; |
|
unsigned int fhi, flo; |
|
int incr = 1; |
|
|
|
if (le) { |
|
p += 7; |
|
incr = -1; |
|
} |
|
|
|
if (x < 0) { |
|
sign = 1; |
|
x = -x; |
|
} |
|
else |
|
sign = 0; |
|
|
|
f = frexp(x, &e); |
|
|
|
/* Normalize f to be in the range [1.0, 2.0) */ |
|
if (0.5 <= f && f < 1.0) { |
|
f *= 2.0; |
|
e--; |
|
} |
|
else if (f == 0.0) |
|
e = 0; |
|
else { |
|
PyErr_SetString(PyExc_SystemError, |
|
"frexp() result out of range"); |
|
return -1; |
|
} |
|
|
|
if (e >= 1024) |
|
goto Overflow; |
|
else if (e < -1022) { |
|
/* Gradual underflow */ |
|
f = ldexp(f, 1022 + e); |
|
e = 0; |
|
} |
|
else if (!(e == 0 && f == 0.0)) { |
|
e += 1023; |
|
f -= 1.0; /* Get rid of leading 1 */ |
|
} |
|
|
|
/* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */ |
|
f *= 268435456.0; /* 2**28 */ |
|
fhi = (unsigned int)f; /* Truncate */ |
|
assert(fhi < 268435456); |
|
|
|
f -= (double)fhi; |
|
f *= 16777216.0; /* 2**24 */ |
|
flo = (unsigned int)(f + 0.5); /* Round */ |
|
assert(flo <= 16777216); |
|
if (flo >> 24) { |
|
/* The carry propagated out of a string of 24 1 bits. */ |
|
flo = 0; |
|
++fhi; |
|
if (fhi >> 28) { |
|
/* And it also progagated out of the next 28 bits. */ |
|
fhi = 0; |
|
++e; |
|
if (e >= 2047) |
|
goto Overflow; |
|
} |
|
} |
|
|
|
/* First byte */ |
|
*p = (sign << 7) | (e >> 4); |
|
p += incr; |
|
|
|
/* Second byte */ |
|
*p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24)); |
|
p += incr; |
|
|
|
/* Third byte */ |
|
*p = (fhi >> 16) & 0xFF; |
|
p += incr; |
|
|
|
/* Fourth byte */ |
|
*p = (fhi >> 8) & 0xFF; |
|
p += incr; |
|
|
|
/* Fifth byte */ |
|
*p = fhi & 0xFF; |
|
p += incr; |
|
|
|
/* Sixth byte */ |
|
*p = (flo >> 16) & 0xFF; |
|
p += incr; |
|
|
|
/* Seventh byte */ |
|
*p = (flo >> 8) & 0xFF; |
|
p += incr; |
|
|
|
/* Eighth byte */ |
|
*p = flo & 0xFF; |
|
p += incr; |
|
|
|
/* Done */ |
|
return 0; |
|
|
|
Overflow: |
|
PyErr_SetString(PyExc_OverflowError, |
|
"float too large to pack with d format"); |
|
return -1; |
|
} |
|
|
|
double |
|
_PyFloat_Unpack4(const unsigned char *p, int le) |
|
{ |
|
unsigned char sign; |
|
int e; |
|
unsigned int f; |
|
double x; |
|
int incr = 1; |
|
|
|
if (le) { |
|
p += 3; |
|
incr = -1; |
|
} |
|
|
|
/* First byte */ |
|
sign = (*p >> 7) & 1; |
|
e = (*p & 0x7F) << 1; |
|
p += incr; |
|
|
|
/* Second byte */ |
|
e |= (*p >> 7) & 1; |
|
f = (*p & 0x7F) << 16; |
|
p += incr; |
|
|
|
/* Third byte */ |
|
f |= *p << 8; |
|
p += incr; |
|
|
|
/* Fourth byte */ |
|
f |= *p; |
|
|
|
x = (double)f / 8388608.0; |
|
|
|
/* XXX This sadly ignores Inf/NaN issues */ |
|
if (e == 0) |
|
e = -126; |
|
else { |
|
x += 1.0; |
|
e -= 127; |
|
} |
|
x = ldexp(x, e); |
|
|
|
if (sign) |
|
x = -x; |
|
|
|
return x; |
|
} |
|
|
|
double |
|
_PyFloat_Unpack8(const unsigned char *p, int le) |
|
{ |
|
unsigned char sign; |
|
int e; |
|
unsigned int fhi, flo; |
|
double x; |
|
int incr = 1; |
|
|
|
if (le) { |
|
p += 7; |
|
incr = -1; |
|
} |
|
|
|
/* First byte */ |
|
sign = (*p >> 7) & 1; |
|
e = (*p & 0x7F) << 4; |
|
p += incr; |
|
|
|
/* Second byte */ |
|
e |= (*p >> 4) & 0xF; |
|
fhi = (*p & 0xF) << 24; |
|
p += incr; |
|
|
|
/* Third byte */ |
|
fhi |= *p << 16; |
|
p += incr; |
|
|
|
/* Fourth byte */ |
|
fhi |= *p << 8; |
|
p += incr; |
|
|
|
/* Fifth byte */ |
|
fhi |= *p; |
|
p += incr; |
|
|
|
/* Sixth byte */ |
|
flo = *p << 16; |
|
p += incr; |
|
|
|
/* Seventh byte */ |
|
flo |= *p << 8; |
|
p += incr; |
|
|
|
/* Eighth byte */ |
|
flo |= *p; |
|
|
|
x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */ |
|
x /= 268435456.0; /* 2**28 */ |
|
|
|
/* XXX This sadly ignores Inf/NaN */ |
|
if (e == 0) |
|
e = -1022; |
|
else { |
|
x += 1.0; |
|
e -= 1023; |
|
} |
|
x = ldexp(x, e); |
|
|
|
if (sign) |
|
x = -x; |
|
|
|
return x; |
|
}
|
|
|