You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
575 lines
20 KiB
575 lines
20 KiB
/*==LICENSE==* |
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools |
|
Copyright (C) 2011 Cyan Worlds, Inc. |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
|
Additional permissions under GNU GPL version 3 section 7 |
|
|
|
If you modify this Program, or any covered work, by linking or |
|
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, |
|
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent |
|
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK |
|
(or a modified version of those libraries), |
|
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, |
|
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG |
|
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the |
|
licensors of this Program grant you additional |
|
permission to convey the resulting work. Corresponding Source for a |
|
non-source form of such a combination shall include the source code for |
|
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered |
|
work. |
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com |
|
or by snail mail at: |
|
Cyan Worlds, Inc. |
|
14617 N Newport Hwy |
|
Mead, WA 99021 |
|
|
|
*==LICENSE==*/ |
|
#include "plAvCallbackAction.h" |
|
#include "plMessage/plLOSHitMsg.h" |
|
|
|
#include "plArmatureMod.h" // for LOS enum type |
|
#include "plMatrixChannel.h" |
|
#include "hsTimer.h" |
|
#include "plPhysicalControllerCore.h" |
|
|
|
// Generic geom utils. |
|
hsBool LinearVelocity(hsVector3 &outputV, float elapsed, hsMatrix44 &prevMat, hsMatrix44 &curMat); |
|
void AngularVelocity(float &outputV, float elapsed, hsMatrix44 &prevMat, hsMatrix44 &curMat); |
|
float AngleRad2d (float x1, float y1, float x3, float y3); |
|
inline hsVector3 GetYAxis(hsMatrix44 &mat) |
|
{ |
|
return hsVector3(mat.fMap[1][0], mat.fMap[1][1], mat.fMap[1][2]); |
|
} |
|
|
|
plAnimatedController::plAnimatedController(plSceneObject* rootObject, plAGApplicator* rootApp, plPhysicalControllerCore* controller) |
|
: fRootObject(rootObject) |
|
, fRootApp(rootApp) |
|
, fController(controller) |
|
, fTurnStr(0.f) |
|
, fAnimAngVel(0.f) |
|
, fAnimPosVel(0.f, 0.f, 0.f) |
|
{ |
|
} |
|
|
|
void plAnimatedController::RecalcVelocity(double timeNow, double timePrev, hsBool useAnim /* = true */) |
|
{ |
|
if (useAnim) |
|
{ |
|
// while you may think it would be correct to cache this, |
|
// what we're actually asking is "what would the animation's |
|
// position be at the previous time given its *current* |
|
// parameters (particularly blends)" |
|
hsMatrix44 prevMat = ((plMatrixChannel *)fRootApp->GetChannel())->Value(timePrev, true); |
|
hsMatrix44 curMat = ((plMatrixChannel *)fRootApp->GetChannel())->Value(timeNow, true); |
|
|
|
// If we get a valid linear velocity (ie, we didn't wrap around in the anim), |
|
// use it. Otherwise just reuse the previous frames velocity. |
|
hsVector3 linearVel; |
|
if (LinearVelocity(linearVel, (float)(timeNow - timePrev), prevMat, curMat)) |
|
fAnimPosVel = linearVel; |
|
|
|
// Automatically sets fAnimAngVel |
|
AngularVelocity(fAnimAngVel, (float)(timeNow - timePrev), prevMat, curMat); |
|
} |
|
else |
|
{ |
|
fAnimPosVel.Set(0.f, 0.f, 0.f); |
|
fAnimAngVel = 0.f; |
|
} |
|
|
|
if (fController) |
|
fController->SetVelocities(fAnimPosVel, fAnimAngVel + fTurnStr); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////// |
|
|
|
const float plWalkingController::kControlledFlightThreshold = 1.f; // seconds |
|
|
|
plWalkingController::plWalkingController(plSceneObject* rootObject, plAGApplicator* rootApp, plPhysicalControllerCore* controller) |
|
: plAnimatedController(rootObject, rootApp, controller) |
|
, fHitGroundInThisAge(false) |
|
, fWaitingForGround(false) |
|
, fControlledFlightTime(0) |
|
, fControlledFlight(0) |
|
, fImpactTime(0.f) |
|
, fImpactVelocity(0.f, 0.f, 0.f) |
|
, fClearImpact(false) |
|
, fGroundLastFrame(false) |
|
{ |
|
if (fController) |
|
{ |
|
fWalkingStrategy= TRACKED_NEW plWalkingStrategy(fController); |
|
fController->SetMovementSimulationInterface(fWalkingStrategy); |
|
} |
|
else |
|
fWalkingStrategy = nil; |
|
} |
|
|
|
void plWalkingController::RecalcVelocity(double timeNow, double timePrev, hsBool useAnim) |
|
{ |
|
if (!fHitGroundInThisAge && fController && fController->IsEnabled() && fWalkingStrategy->IsOnGround()) |
|
fHitGroundInThisAge = true; // if we're not pinned and we're not in an age yet, we are now. |
|
|
|
if (fClearImpact) |
|
{ |
|
fImpactTime = 0.f; |
|
fImpactVelocity.Set(0.f, 0.f, 0.f); |
|
} |
|
|
|
if (fController && !fWalkingStrategy->IsOnGround()) |
|
{ |
|
fImpactTime = fWalkingStrategy->GetAirTime(); |
|
fImpactVelocity = fController->GetLinearVelocity(); |
|
fClearImpact = false; |
|
} |
|
else |
|
fClearImpact = true; |
|
|
|
if (IsControlledFlight()) |
|
{ |
|
if (fWalkingStrategy && fWalkingStrategy->IsOnGround()) |
|
fControlledFlightTime = fWalkingStrategy->GetAirTime(); |
|
if(fGroundLastFrame&&(fWalkingStrategy && !fWalkingStrategy->IsOnGround())) |
|
{ |
|
//we have started to leave the ground tell the movement strategy in case it cares |
|
fWalkingStrategy->StartJump(); |
|
} |
|
if (fControlledFlightTime > kControlledFlightThreshold) |
|
EnableControlledFlight(false); |
|
} |
|
if (fWalkingStrategy) |
|
fGroundLastFrame = fWalkingStrategy->IsOnGround(); |
|
else |
|
fGroundLastFrame=false; |
|
plAnimatedController::RecalcVelocity(timeNow, timePrev, useAnim); |
|
} |
|
|
|
void plWalkingController::Reset(bool newAge) |
|
{ |
|
|
|
ActivateController(); |
|
if (newAge) |
|
{ |
|
if (fWalkingStrategy) |
|
fWalkingStrategy->ResetAirTime(); |
|
fHitGroundInThisAge = false; |
|
} |
|
} |
|
void plWalkingController::ActivateController() |
|
{ |
|
if (fWalkingStrategy) |
|
{ |
|
fWalkingStrategy->RefreshConnectionToControllerCore(); |
|
} |
|
else |
|
{ |
|
fWalkingStrategy= TRACKED_NEW plWalkingStrategy(fController); |
|
fWalkingStrategy->RefreshConnectionToControllerCore(); |
|
|
|
} |
|
} |
|
|
|
bool plWalkingController::EnableControlledFlight(bool status) |
|
{ |
|
if (status) |
|
{ |
|
if (fControlledFlight == 0) |
|
fControlledFlightTime = 0.f; |
|
|
|
++fControlledFlight; |
|
fWaitingForGround = true; |
|
} |
|
else |
|
fControlledFlight = __max(--fControlledFlight, 0); |
|
|
|
return status; |
|
} |
|
plWalkingController::~plWalkingController() |
|
{ |
|
delete fWalkingStrategy; |
|
if (fController) |
|
fController->SetMovementSimulationInterface(nil); |
|
} |
|
#if 0 |
|
void plWalkingController::Update() |
|
{ |
|
// double elapsed = time.asDouble() - getRefresh().asDouble(); |
|
// setRefresh(time); |
|
// |
|
// hsBool isPhysical = !fPhysical->GetProperty(plSimulationInterface::kPinned); |
|
// const Havok::Vector3 straightUp(0.0f, 0.0f, 1.0f); |
|
// hsBool alreadyInAge = fHitGroundInThisAge; |
|
// |
|
// int numContacts = fPhysical->GetNumContacts(); |
|
// bool ground = false; |
|
// fPushingPhysical = nil; |
|
// int i, j; |
|
|
|
/* for(i = 0; i < numContacts; i++) |
|
{ |
|
plHKPhysical *contactPhys = fPhysical->GetContactPhysical(i); |
|
if (!contactPhys) |
|
continue; // Physical no longer exists. Skip it. |
|
|
|
const Havok::ContactPoint *contact = fPhysical->GetContactPoint(i); |
|
float dotUp = straightUp.dot(contact->m_normal); |
|
if (dotUp > .5) |
|
ground = true; |
|
else if (contactPhys->GetProperty(plSimulationInterface::kAvAnimPushable)) |
|
{ |
|
hsPoint3 position; |
|
hsQuat rotation; |
|
fPhysical->GetPositionAndRotationSim(&position, &rotation); |
|
|
|
hsQuat inverseRotation = rotation.Inverse(); |
|
hsVector3 normal(contact->m_normal.x, contact->m_normal.y, contact->m_normal.z); |
|
fFacingPushingPhysical = (inverseRotation.Rotate(&kAvatarForward).InnerProduct(normal) < 0 ? true : false); |
|
|
|
fPushingPhysical = contactPhys; |
|
} |
|
} |
|
|
|
// We need to check for the case where the avatar hasn't collided with "ground", but is colliding |
|
// with a few other objects so that he's not actually falling (wedged in between some slopes). |
|
// We do this by answering the following question (in 2d top-down space): "If you sort the contact |
|
// normals by angle, is there a large enough gap between normals?" |
|
// |
|
// If you think in terms of geometry, this means a collection of surfaces are all pushing on you. |
|
// If they're pushing from all sides, you have nowhere to go, and you won't fall. There needs to be |
|
// a gap, so that you're pushed out and have somewhere to fall. This is the same as finding a gap |
|
// larger than 180 degrees between sorted normals. |
|
// |
|
// The problem is that on top of that, the avatar needs enough force to shove him out that gap (he |
|
// has to overcome friction). I deal with that by making the threshold (360 - (180 - 60) = 240). I've |
|
// seen up to 220 reached in actual gameplay in a situation where we'd want this to take effect. |
|
// This is the same running into 2 walls where the angle between them is 60. |
|
const float threshold = hsDegreesToRadians(240); |
|
if (!ground && numContacts >= 2) |
|
{ |
|
// Can probably do a special case for exactly 2 contacts. Not sure if it's worth it... |
|
|
|
fCollisionAngles.SetCount(numContacts); |
|
for (i = 0; i < numContacts; i++) |
|
{ |
|
const Havok::ContactPoint *contact = fPhysical->GetContactPoint(i); |
|
fCollisionAngles[i] = atan2(contact->m_normal.y, contact->m_normal.x); |
|
} |
|
|
|
// numContacts is rarely larger than 6, so let's do a simple bubble sort. |
|
for (i = 0; i < numContacts; i++) |
|
{ |
|
for (j = i + 1; j < numContacts; j++) |
|
{ |
|
if (fCollisionAngles[i] > fCollisionAngles[j]) |
|
{ |
|
float tempAngle = fCollisionAngles[i]; |
|
fCollisionAngles[i] = fCollisionAngles[j]; |
|
fCollisionAngles[j] = tempAngle; |
|
} |
|
} |
|
} |
|
|
|
// sorted, now we check. |
|
for (i = 1; i < numContacts; i++) |
|
{ |
|
if (fCollisionAngles[i] - fCollisionAngles[i - 1] >= threshold) |
|
break; |
|
} |
|
|
|
if (i == numContacts) |
|
{ |
|
// We got to the end. Check the last with the first and make your decision. |
|
if (!(fCollisionAngles[0] - fCollisionAngles[numContacts - 1] >= (threshold - 2 * M_PI))) |
|
ground = true; |
|
} |
|
} |
|
*/ |
|
|
|
bool ground = fController ? fController->GotGroundHit() : true; |
|
bool isPhysical = true; |
|
|
|
if (!fHitGroundInThisAge && isPhysical) |
|
fHitGroundInThisAge = true; // if we're not pinned and we're not in an age yet, we are now. |
|
|
|
if (IsControlledFlight()) |
|
fControlledFlightTime += (float)elapsed; |
|
if (fControlledFlightTime > kControlledFlightThreshold && numContacts > 0) |
|
EnableControlledFlight(false); |
|
|
|
if (ground || !isPhysical) |
|
{ |
|
if (!IsControlledFlight() && !IsOnGround()) |
|
{ |
|
// The first ground contact in an age doesn't count. |
|
// if (alreadyInAge) |
|
// { |
|
// hsVector3 vel; |
|
// fPhysical->GetLinearVelocitySim(vel); |
|
// fImpactVel = vel.fZ; |
|
// fTimeInAirPeak = (float)(fTimeInAir + elapsed); |
|
// } |
|
|
|
fWaitingForGround = false; |
|
} |
|
fTimeInAir = 0; |
|
} |
|
else if (elapsed < plSimulationMgr::GetInstance()->GetMaxDelta()) |
|
{ |
|
// If the simultation skipped a huge chunk of time, we didn't process the |
|
// collisions, which could trick us into thinking we've just gone a long |
|
// time without hitting ground. So we only count the time if this wasn't |
|
// the case. |
|
fTimeInAir += (float)elapsed; |
|
} |
|
|
|
|
|
// Tweakage so that we still fall under the right conditions. |
|
// If we're in controlled flight, or standing still with ground solidly under us (probe hit). We only use anim velocity. |
|
// if (!IsControlledFlight() && !(ground && fProbeHitGround && fAnimPosVel.fX == 0 && fAnimPosVel.fY == 0)) |
|
// { |
|
// hsVector3 curV; |
|
// fPhysical->GetLinearVelocitySim(curV); |
|
// fAnimPosVel.fZ = curV.fZ; |
|
// |
|
// // Prevents us from going airborn from running up bumps/inclines. |
|
// if (IsOnGround() && fAnimPosVel.fZ > 0.f) |
|
// fAnimPosVel.fZ = 0.f; |
|
// |
|
// // Unless we're on the ground and moving, or standing still with a probe hit, we use the sim's other axes too. |
|
// if (!(IsOnGround() && (fProbeHitGround || fAnimPosVel.fX != 0 || fAnimPosVel.fY != 0))) |
|
// { |
|
// fAnimPosVel.fX = curV.fX; |
|
// fAnimPosVel.fY = curV.fY; |
|
// } |
|
// } |
|
// |
|
// fPhysical->SetLinearVelocitySim(fAnimPosVel); |
|
// fPhysical->SetSpin(fAnimAngVel + fTurnStr, hsVector3(0.0f, 0.0f, 1.0f)); |
|
} |
|
#endif |
|
|
|
|
|
#if 0 |
|
|
|
///////////////////////////////////////////////////////////////////////// |
|
|
|
plSimDefs::ActionType plHorizontalFreezeAction::GetType() |
|
{ |
|
return plSimDefs::kHorizontalFreeze; |
|
} |
|
|
|
void plHorizontalFreezeAction::apply(Havok::Subspace &s, Havok::hkTime time) |
|
{ |
|
double elapsed = time.asDouble() - getRefresh().asDouble(); |
|
setRefresh(time); |
|
|
|
int numContacts = fPhysical->GetNumContacts(); |
|
bool ground = false; |
|
const Havok::Vector3 straightUp(0.0f, 0.0f, 1.0f); |
|
int i; |
|
for(i = 0; i < numContacts; i++) |
|
{ |
|
const Havok::ContactPoint *contact = fPhysical->GetContactPoint(i); |
|
float dotUp = straightUp.dot(contact->m_normal); |
|
if (dotUp > .5) |
|
ground = true; |
|
} |
|
|
|
hsVector3 vel; |
|
fPhysical->GetLinearVelocitySim(vel); |
|
vel.fX = 0.0; |
|
vel.fY = 0.0; |
|
if (ground) |
|
vel.fZ = 0; |
|
fPhysical->SetLinearVelocitySim(vel); |
|
fPhysical->ClearContacts(); |
|
} |
|
#endif |
|
plSwimmingController::plSwimmingController(plSceneObject* rootObject, plAGApplicator* rootApp, plPhysicalControllerCore* controller) |
|
:plAnimatedController(rootObject,rootApp,controller) |
|
{ |
|
if (controller) |
|
fSwimmingStrategy= TRACKED_NEW plSwimStrategy(controller); |
|
else |
|
fSwimmingStrategy = nil; |
|
} |
|
plSwimmingController::~plSwimmingController() |
|
{ |
|
delete fSwimmingStrategy; |
|
} |
|
|
|
plRidingAnimatedPhysicalController::plRidingAnimatedPhysicalController(plSceneObject* rootObject, plAGApplicator* rootApp, plPhysicalControllerCore* controller) |
|
: plWalkingController(rootObject, rootApp, controller) |
|
{ |
|
if(controller) |
|
fWalkingStrategy = TRACKED_NEW plRidingAnimatedPhysicalStrategy(controller); |
|
else |
|
fWalkingStrategy = nil; |
|
} |
|
plRidingAnimatedPhysicalController::~plRidingAnimatedPhysicalController() |
|
{ |
|
delete fWalkingStrategy; |
|
fWalkingStrategy=nil; |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////// |
|
|
|
|
|
/* |
|
Purpose: |
|
|
|
ANGLE_RAD_2D returns the angle in radians swept out between two rays in 2D. |
|
|
|
Discussion: |
|
|
|
Except for the zero angle case, it should be true that |
|
|
|
ANGLE_RAD_2D(X1,Y1,X2,Y2,X3,Y3) |
|
+ ANGLE_RAD_2D(X3,Y3,X2,Y2,X1,Y1) = 2 * PI |
|
|
|
Modified: |
|
|
|
19 April 1999 |
|
|
|
Author: |
|
|
|
John Burkardt |
|
|
|
Parameters: |
|
|
|
Input, float X1, Y1, X2, Y2, X3, Y3, define the rays |
|
( X1-X2, Y1-Y2 ) and ( X3-X2, Y3-Y2 ) which in turn define the |
|
angle, counterclockwise from ( X1-X2, Y1-Y2 ). |
|
|
|
Output, float ANGLE_RAD_2D, the angle swept out by the rays, measured |
|
in radians. 0 <= ANGLE_DEG_2D < 2 PI. If either ray has zero length, |
|
then ANGLE_RAD_2D is set to 0. |
|
*/ |
|
|
|
static float AngleRad2d ( float x1, float y1, float x3, float y3 ) |
|
{ |
|
float value; |
|
float x; |
|
float y; |
|
|
|
x = ( x1 ) * ( x3 ) + ( y1 ) * ( y3 ); |
|
y = ( x1 ) * ( y3 ) - ( y1 ) * ( x3 ); |
|
|
|
if ( x == 0.0 && y == 0.0 ) { |
|
value = 0.0; |
|
} |
|
else |
|
{ |
|
value = atan2 ( y, x ); |
|
|
|
if ( value < 0.0 ) |
|
{ |
|
value = (float)(value + TWO_PI); |
|
} |
|
} |
|
return value; |
|
} |
|
|
|
static hsBool LinearVelocity(hsVector3 &outputV, float elapsed, hsMatrix44 &prevMat, hsMatrix44 &curMat) |
|
{ |
|
bool result = false; |
|
|
|
hsPoint3 startPos(0.0f, 0.0f, 0.0f); // default position (at start of anim) |
|
hsPoint3 prevPos = prevMat.GetTranslate(); // position previous frame |
|
hsPoint3 nowPos = curMat.GetTranslate(); // position current frame |
|
|
|
hsVector3 prev2Now = (hsVector3)(nowPos - prevPos); // frame-to-frame delta |
|
|
|
if (fabs(prev2Now.fX) < 0.0001f && fabs(prev2Now.fY) < 0.0001f && fabs(prev2Now.fZ) < 0.0001f) |
|
{ |
|
outputV.Set(0.f, 0.f, 0.f); |
|
result = true; |
|
} |
|
else |
|
{ |
|
hsVector3 start2Now = (hsVector3)(nowPos - startPos); // start-to-frame delta |
|
|
|
float prev2NowMagSqr = prev2Now.MagnitudeSquared(); |
|
float start2NowMagSqr = start2Now.MagnitudeSquared(); |
|
|
|
float dot = prev2Now.InnerProduct(start2Now); |
|
|
|
// HANDLING ANIMATION WRAPPING: |
|
// the vector from the animation origin to the current frame should point in roughly |
|
// the same direction as the vector from the previous animation position to the |
|
// current animation position. |
|
// |
|
// If they don't agree (dot < 0,) then we probably mpst wrapped around. |
|
// The right answer would be to compare the current frame to the start of |
|
// the anim loop, but it's cheaper to cheat and return false, |
|
// telling the caller to use the previous frame's velocity. |
|
if (dot > 0.0f) |
|
{ |
|
prev2Now /= elapsed; |
|
|
|
float xfabs = fabs(prev2Now.fX); |
|
float yfabs = fabs(prev2Now.fY); |
|
float zfabs = fabs(prev2Now.fZ); |
|
static const float maxVel = 20.0f; |
|
hsBool valid = xfabs < maxVel && yfabs < maxVel && zfabs < maxVel; |
|
|
|
if (valid) |
|
{ |
|
outputV = prev2Now; |
|
result = true; |
|
} |
|
} |
|
} |
|
|
|
return result; |
|
} |
|
|
|
static void AngularVelocity(float &outputV, float elapsed, hsMatrix44 &prevMat, hsMatrix44 &curMat) |
|
{ |
|
outputV = 0.f; |
|
float appliedVelocity = 0.0f; |
|
hsVector3 prevForward = GetYAxis(prevMat); |
|
hsVector3 curForward = GetYAxis(curMat); |
|
|
|
float angleSincePrev = AngleRad2d(curForward.fX, curForward.fY, prevForward.fX, prevForward.fY); |
|
hsBool sincePrevSign = angleSincePrev > 0.0f; |
|
if (angleSincePrev > M_PI) |
|
angleSincePrev = angleSincePrev - TWO_PI; |
|
|
|
const hsVector3 startForward = hsVector3(0, -1.0, 0); // the Y orientation of a "resting" armature.... |
|
float angleSinceStart = AngleRad2d(curForward.fX, curForward.fY, startForward.fX, startForward.fY); |
|
hsBool sinceStartSign = angleSinceStart > 0.0f; |
|
if (angleSinceStart > M_PI) |
|
angleSinceStart = angleSinceStart - TWO_PI; |
|
|
|
// HANDLING ANIMATION WRAPPING: |
|
// under normal conditions, the angle from rest to the current frame will have the same |
|
// sign as the angle from the previous frame to the current frame. |
|
// if it does not, we have (most likely) wrapped the motivating animation from frame n back |
|
// to frame zero, creating a large angle from the previous frame to the current one |
|
if (sincePrevSign == sinceStartSign) |
|
{ |
|
// signs are the same; didn't wrap; use the frame-to-frame angle difference |
|
appliedVelocity = angleSincePrev / elapsed; // rotation / time |
|
if (fabs(appliedVelocity) < 3) |
|
{ |
|
outputV = appliedVelocity; |
|
} |
|
} |
|
}
|
|
|