You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

464 lines
13 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Additional permissions under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "hsTypes.h"
#include "hsBounds.h"
#include "hsFastMath.h"
#include "plVisLOSMgr.h"
#include "plSpaceTree.h"
#include "plDrawableSpans.h"
#include "plAccessGeometry.h"
#include "plAccessSpan.h"
#include "plSurface/hsGMaterial.h"
#include "plSurface/plLayerInterface.h"
#include "plScene/plSceneNode.h"
#include "plScene/plPageTreeMgr.h"
#include "plPipeline.h"
#include "pnSceneObject/plSceneObject.h"
// Stuff for cursor los
#include "plInputCore/plInputDevice.h"
#include "plPipeline.h"
#include "plTweak.h"
#include <algorithm>
#include <functional>
plVisLOSMgr* plVisLOSMgr::Instance()
{
static plVisLOSMgr inst;
return &inst;
}
hsBool plVisLOSMgr::ICheckSpaceTreeRecur(plSpaceTree* space, int which, hsTArray<plSpaceHit>& hits)
{
const plSpaceTreeNode& node = space->GetNode(which);
if( node.fFlags & plSpaceTreeNode::kDisabled )
return false;
hsScalar closest;
// If it's a hit
if( ICheckBound(node.fWorldBounds, closest) )
{
// If it's a leaf,
if( node.IsLeaf() )
{
// add it to the list with the closest intersection point,
plSpaceHit* hit = hits.Push();
hit->fIdx = which;
hit->fClosest = closest;
return true;
}
// else recurse on its children
else
{
hsBool retVal = false;
if( ICheckSpaceTreeRecur(space, node.GetChild(0), hits) )
retVal = true;
if( ICheckSpaceTreeRecur(space, node.GetChild(1), hits) )
retVal = true;
return retVal;
}
}
return false;
}
struct plCompSpaceHit : public std::binary_function<plSpaceHit, plSpaceHit, bool>
{
bool operator()( const plSpaceHit& lhs, const plSpaceHit& rhs) const
{
return lhs.fClosest < rhs.fClosest;
}
};
hsBool plVisLOSMgr::ICheckSpaceTree(plSpaceTree* space, hsTArray<plSpaceHit>& hits)
{
hits.SetCount(0);
if( space->IsEmpty() )
return false;
// Hierarchical search down the tree for bounds intersecting the current ray.
hsBool retVal = ICheckSpaceTreeRecur(space, space->GetRoot(), hits);
// Now sort them front to back.
plSpaceHit* begin = hits.AcquireArray();
plSpaceHit* end = begin + hits.GetCount();
std::sort(begin, end, plCompSpaceHit());
return retVal;
}
hsBool plVisLOSMgr::ISetup(const hsPoint3& pStart, const hsPoint3& pEnd)
{
fCurrFrom = pStart;
fCurrTarg = pEnd;
fMaxDist = hsVector3(&fCurrTarg, &fCurrFrom).Magnitude();
const hsScalar kMinMaxDist(0);
return fMaxDist > kMinMaxDist;
}
hsBool plVisLOSMgr::Check(const hsPoint3& pStart, const hsPoint3& pEnd, plVisHit& hit)
{
if( !fPageMgr )
return false;
// Setup any internals, like fMaxDist
if( !ISetup(pStart, pEnd) )
return false;
// Go through the nodes in the PageMgr and find the closest
// point of intersection for each scene node. If none are before
// pEnd, return false.
// Node come out sorted by closest point, front to back
static hsTArray<plSpaceHit> hits;
if( !ICheckSpaceTree(fPageMgr->GetSpaceTree(), hits) )
return false;
// In front to back order, check inside each node.
// Our max distance can be changing as we do this, because a
// face hit will limit how far we need to look. When we hit the
// first node with a closest distance < fMaxDist, we're done.
hsBool retVal = false;
int i;
for( i = 0; i < hits.GetCount(); i++ )
{
if( hits[i].fClosest > fMaxDist )
break;
if( ICheckSceneNode(fPageMgr->GetNodes()[hits[i].fIdx], hit) )
retVal = true;
}
return retVal;
}
hsBool plVisLOSMgr::ICheckSceneNode(plSceneNode* node, plVisHit& hit)
{
static hsTArray<plSpaceHit> hits;
if( !ICheckSpaceTree(node->GetSpaceTree(), hits) )
return false;
hsBool retVal = false;
int i;
for( i = 0; i < hits.GetCount(); i++ )
{
if( hits[i].fClosest > fMaxDist )
break;
if( (node->GetDrawPool()[hits[i].fIdx]->GetRenderLevel().Level() > 0)
&& !node->GetDrawPool()[hits[i].fIdx]->GetNativeProperty(plDrawable::kPropHasVisLOS) )
continue;
if( ICheckDrawable(node->GetDrawPool()[hits[i].fIdx], hit) )
retVal = true;
}
return retVal;
}
hsBool plVisLOSMgr::ICheckDrawable(plDrawable* d, plVisHit& hit)
{
plDrawableSpans* ds = plDrawableSpans::ConvertNoRef(d);
if( !ds )
return false;
static hsTArray<plSpaceHit> hits;
if( !ICheckSpaceTree(ds->GetSpaceTree(), hits) )
return false;
const hsBool isOpaque = !ds->GetRenderLevel().Level();
const hsTArray<plSpan *> spans = ds->GetSpanArray();
hsBool retVal = false;
int i;
for( i = 0; i < hits.GetCount(); i++ )
{
if( hits[i].fClosest > fMaxDist )
break;
if( isOpaque || (spans[hits[i].fIdx]->fProps & plSpan::kVisLOS) )
{
if( ICheckSpan(ds, hits[i].fIdx, hit) )
retVal = true;
}
}
return retVal;
}
hsBool plVisLOSMgr::ICheckSpan(plDrawableSpans* dr, UInt32 spanIdx, plVisHit& hit)
{
if( !(dr->GetSpan(spanIdx)->fTypeMask & plSpan::kIcicleSpan) )
return false;
plAccessSpan src;
plAccessGeometry::Instance()->OpenRO(dr, spanIdx, src);
const hsBool twoSided = !!(src.GetMaterial()->GetLayer(0)->GetMiscFlags() & hsGMatState::kMiscTwoSided);
hsBool retVal = false;
// We move into local space, look for hits, and convert the closest we find
// (if any) back into world space at the end.
hsPoint3 currFrom = src.GetWorldToLocal() * fCurrFrom;
hsPoint3 currTarg = src.GetWorldToLocal() * fCurrTarg;
hsVector3 currDir(&currTarg, &currFrom);
hsScalar maxDist = currDir.Magnitude();
currDir /= maxDist;
plAccTriIterator tri(&src.AccessTri());
for( tri.Begin(); tri.More(); tri.Advance() )
{
// Project the current ray onto the tri plane
hsVector3 norm = hsVector3(&tri.Position(1), &tri.Position(0)) % hsVector3(&tri.Position(2), &tri.Position(0));
hsScalar dotNorm = norm.InnerProduct(currDir);
const hsScalar kMinDotNorm = 1.e-3f;
if( dotNorm >= -kMinDotNorm )
{
if( !twoSided )
continue;
if( dotNorm <= kMinDotNorm )
continue;
}
hsScalar dist = hsVector3(&tri.Position(0), &currFrom).InnerProduct(norm);
if( dist > 0 )
continue;
dist /= dotNorm;
hsPoint3 projPt = currFrom;
projPt += currDir * dist;
// If the distance from source point to projected point is too long, skip
if( dist > maxDist )
continue;
// Find the 3 cross products (v[i+1]-v[i]) X (proj - v[i]) dotted with current ray
hsVector3 cross0 = hsVector3(&tri.Position(1), &tri.Position(0)) % hsVector3(&projPt, &tri.Position(0));
hsScalar dot0 = cross0.InnerProduct(currDir);
hsVector3 cross1 = hsVector3(&tri.Position(2), &tri.Position(1)) % hsVector3(&projPt, &tri.Position(1));
hsScalar dot1 = cross1.InnerProduct(currDir);
hsVector3 cross2 = hsVector3(&tri.Position(0), &tri.Position(2)) % hsVector3(&projPt, &tri.Position(2));
hsScalar dot2 = cross2.InnerProduct(currDir);
// If all 3 are negative, projPt is a hit
// If all 3 are positive and we're two sided, projPt is a hit
// We've already checked for back facing (when we checked for edge on in projection),
// so we'll accept either case here.
if( ((dot0 <= 0) && (dot1 <= 0) && (dot2 <= 0))
||((dot0 >= 0) && (dot1 >= 0) && (dot2 >= 0)) )
{
if( dist < maxDist )
{
maxDist = dist;
hit.fPos = projPt;
retVal = true;
}
}
}
plAccessGeometry::Instance()->Close(src);
if( retVal )
{
hit.fPos = src.GetLocalToWorld() * hit.fPos;
fCurrTarg = hit.fPos;
fMaxDist = hsVector3(&fCurrTarg, &fCurrFrom).Magnitude();
}
return retVal;
}
hsBool plVisLOSMgr::ICheckBound(const hsBounds3Ext& bnd, hsScalar& closest)
{
if( bnd.GetType() != kBoundsNormal )
return false;
if( bnd.IsInside(&fCurrFrom) || bnd.IsInside(&fCurrTarg) )
{
closest = 0;
return true;
}
const int face[6][4] =
{
{0,1,3,2},
{1,5,7,3},
{2,3,7,6},
{5,4,6,7},
{0,4,5,1},
{0,2,6,4}
};
hsPoint3 corn[8];
bnd.GetCorners(corn);
hsBool retVal = false;
const hsPoint3& currFrom = fCurrFrom;
const hsPoint3& currTarg = fCurrTarg;
hsVector3 currDir(&currTarg, &currFrom);
const hsScalar maxDistSq = currDir.MagnitudeSquared();
currDir *= hsFastMath::InvSqrt(maxDistSq);
int i;
for( i = 0; i < 6; i++ )
{
const hsPoint3& p0 = corn[face[i][0]];
const hsPoint3& p1 = corn[face[i][1]];
const hsPoint3& p2 = corn[face[i][2]];
const hsPoint3& p3 = corn[face[i][3]];
// Project the current ray onto the tri plane
hsVector3 norm = hsVector3(&p1, &p0) % hsVector3(&p2, &p0);
hsScalar dotNorm = norm.InnerProduct(currDir);
const hsScalar kMinDotNorm = 1.e-3f;
if( dotNorm >= -kMinDotNorm )
{
continue;
}
hsScalar dist = hsVector3(&p0, &currFrom).InnerProduct(norm);
if( dist >= 0 )
continue;
dist /= dotNorm;
// If the distance from source point to projected point is too long, skip
if( dist > fMaxDist )
continue;
hsPoint3 projPt = currFrom;
projPt += currDir * dist;
// Find the 3 cross products (v[i+1]-v[i]) X (proj - v[i]) dotted with current ray
hsVector3 cross0 = hsVector3(&p1, &p0) % hsVector3(&projPt, &p0);
hsScalar dot0 = cross0.InnerProduct(currDir);
hsVector3 cross1 = hsVector3(&p2, &p1) % hsVector3(&projPt, &p1);
hsScalar dot1 = cross1.InnerProduct(currDir);
hsVector3 cross2 = hsVector3(&p3, &p2) % hsVector3(&projPt, &p2);
hsScalar dot2 = cross2.InnerProduct(currDir);
hsVector3 cross3 = hsVector3(&p0, &p3) % hsVector3(&projPt, &p3);
hsScalar dot3 = cross3.InnerProduct(currDir);
// If all 4 are negative, projPt is a hit
if( (dot0 <= 0) && (dot1 <= 0) && (dot2 <= 0) && (dot3 <= 0) )
{
closest = dist;
return true;
}
}
return false;
}
hsBool plVisLOSMgr::CursorCheck(plVisHit& hit)
{
Int32 sx= Int32(plMouseDevice::Instance()->GetCursorX() * fPipe->Width());
Int32 sy= Int32(plMouseDevice::Instance()->GetCursorY() * fPipe->Height());
hsPoint3 from = fPipe->GetViewPositionWorld();
plConst(hsScalar) dist(1.e5f);
hsPoint3 targ;
fPipe->ScreenToWorldPoint(1, 0, &sx, &sy, dist, 0, &targ);
return Check(from, targ, hit);
}
/////////////////////////////////////////////////////////////////
static plSceneObject* marker = nil;
static plPipeline* fPipe = nil;
void VisLOSHackBegin(plPipeline* p, plSceneObject* m)
{
marker = m;
fPipe = p;
}
void VisLOSHackPulse()
{
if( !fPipe )
return;
plVisHit hit;
if( plVisLOSMgr::Instance()->CursorCheck(hit) )
{
if( marker )
{
hsMatrix44 l2w = marker->GetLocalToWorld();
l2w.fMap[0][3] = hit.fPos.fX;
l2w.fMap[1][3] = hit.fPos.fY;
l2w.fMap[2][3] = hit.fPos.fZ;
l2w.NotIdentity();
hsMatrix44 w2l;
l2w.GetInverse(&w2l);
marker->SetTransform(l2w, w2l);
}
}
}