You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
593 lines
15 KiB
593 lines
15 KiB
/*==LICENSE==* |
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools |
|
Copyright (C) 2011 Cyan Worlds, Inc. |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
|
Additional permissions under GNU GPL version 3 section 7 |
|
|
|
If you modify this Program, or any covered work, by linking or |
|
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, |
|
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent |
|
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK |
|
(or a modified version of those libraries), |
|
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, |
|
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG |
|
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the |
|
licensors of this Program grant you additional |
|
permission to convey the resulting work. Corresponding Source for a |
|
non-source form of such a combination shall include the source code for |
|
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered |
|
work. |
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com |
|
or by snail mail at: |
|
Cyan Worlds, Inc. |
|
14617 N Newport Hwy |
|
Mead, WA 99021 |
|
|
|
*==LICENSE==*/ |
|
#include "plEncryptedStream.h" |
|
|
|
#include "plFileUtils.h" |
|
#include "hsSTLStream.h" |
|
|
|
#include <time.h> |
|
|
|
static const uint32_t kDefaultKey[4] = { 0x6c0a5452, 0x3827d0f, 0x3a170b92, 0x16db7fc2 }; |
|
static const int kEncryptChunkSize = 8; |
|
|
|
static const char* kOldMagicString = "BriceIsSmart"; |
|
static const char* kMagicString = "whatdoyousee"; |
|
static const int kMagicStringLen = 12; |
|
|
|
static const int kFileStartOffset = kMagicStringLen + sizeof(uint32_t); |
|
|
|
static const int kMaxBufferedFileSize = 10*1024; |
|
|
|
plEncryptedStream::plEncryptedStream(uint32_t* key) : |
|
fRef(nil), |
|
fActualFileSize(0), |
|
fBufferedStream(false), |
|
fRAMStream(nil), |
|
fWriteFileName(nil), |
|
fOpenMode(kOpenFail) |
|
{ |
|
if (key) |
|
memcpy(&fKey, key, sizeof(kDefaultKey)); |
|
else |
|
memcpy(&fKey, &kDefaultKey, sizeof(kDefaultKey)); |
|
} |
|
|
|
plEncryptedStream::~plEncryptedStream() |
|
{ |
|
} |
|
|
|
// |
|
// Tiny Encryption Algorithm |
|
// http://vader.brad.ac.uk/tea/tea.shtml |
|
// |
|
// A potential weakness in this implementation is the fact that a known value |
|
// (length of the original file) is written at the start of the encrypted file. -Colin |
|
// |
|
// Oh, and also there's some kind of potential weakness in TEA that they fixed with XTEA, |
|
// but frankly, who cares. No one is going to break the encryption, they'll just get the |
|
// key out of the exe or memory. |
|
// |
|
void plEncryptedStream::IEncipher(uint32_t* const v) |
|
{ |
|
register uint32_t y=v[0], z=v[1], sum=0, delta=0x9E3779B9, n=32; |
|
|
|
while (n-- > 0) |
|
{ |
|
y += (z << 4 ^ z >> 5) + z ^ sum + fKey[sum&3]; |
|
sum += delta; |
|
z += (y << 4 ^ y >> 5) + y ^ sum + fKey[sum>>11 & 3]; |
|
} |
|
|
|
v[0]=y; v[1]=z; |
|
} |
|
|
|
void plEncryptedStream::IDecipher(uint32_t* const v) |
|
{ |
|
register uint32_t y=v[0], z=v[1], sum=0xC6EF3720, delta=0x9E3779B9, n=32; |
|
|
|
// sum = delta<<5, in general sum = delta * n |
|
|
|
while (n-- > 0) |
|
{ |
|
z -= (y << 4 ^ y >> 5) + y ^ sum + fKey[sum>>11 & 3]; |
|
sum -= delta; |
|
y -= (z << 4 ^ z >> 5) + z ^ sum + fKey[sum&3]; |
|
} |
|
|
|
v[0]=y; v[1]=z; |
|
} |
|
|
|
hsBool plEncryptedStream::Open(const char* name, const char* mode) |
|
{ |
|
wchar_t* wName = hsStringToWString(name); |
|
wchar_t* wMode = hsStringToWString(mode); |
|
hsBool ret = Open(wName, wMode); |
|
delete [] wName; |
|
delete [] wMode; |
|
return ret; |
|
} |
|
|
|
hsBool plEncryptedStream::Open(const wchar_t* name, const wchar_t* mode) |
|
{ |
|
if (wcscmp(mode, L"rb") == 0) |
|
{ |
|
fRef = hsWFopen(name, mode); |
|
fPosition = 0; |
|
|
|
if (!fRef) |
|
return false; |
|
|
|
// Make sure our special magic string is there |
|
if (!ICheckMagicString(fRef)) |
|
{ |
|
fclose(fRef); |
|
return false; |
|
} |
|
|
|
fread(&fActualFileSize, sizeof(uint32_t), 1, fRef); |
|
|
|
// The encrypted stream is inefficient if you do reads smaller than |
|
// 8 bytes. Since we do a lot of those, any file under a size threshold |
|
// is buffered in memory |
|
if (fActualFileSize <= kMaxBufferedFileSize) |
|
IBufferFile(); |
|
|
|
fOpenMode = kOpenRead; |
|
|
|
return true; |
|
} |
|
else if (wcscmp(mode, L"wb") == 0) |
|
{ |
|
fRAMStream = TRACKED_NEW hsVectorStream; |
|
fWriteFileName = TRACKED_NEW wchar_t[wcslen(name) + 1]; |
|
wcscpy(fWriteFileName, name); |
|
fPosition = 0; |
|
|
|
fOpenMode = kOpenWrite; |
|
fBufferedStream = true; |
|
|
|
return true; |
|
} |
|
else |
|
{ |
|
hsAssert(0, "Unsupported open mode"); |
|
fOpenMode = kOpenFail; |
|
return false; |
|
} |
|
} |
|
|
|
hsBool plEncryptedStream::Close() |
|
{ |
|
int rtn = false; |
|
|
|
if (fOpenMode == kOpenWrite) |
|
{ |
|
fRAMStream->Rewind(); |
|
rtn = IWriteEncypted(fRAMStream, fWriteFileName); |
|
} |
|
if (fRef) |
|
{ |
|
rtn = (fclose(fRef) == 0); |
|
fRef = nil; |
|
} |
|
|
|
if (fRAMStream) |
|
{ |
|
delete fRAMStream; |
|
fRAMStream = nil; |
|
} |
|
|
|
if (fWriteFileName) |
|
{ |
|
delete [] fWriteFileName; |
|
fWriteFileName = nil; |
|
} |
|
|
|
fActualFileSize = 0; |
|
fBufferedStream = false; |
|
fOpenMode = kOpenFail; |
|
|
|
return rtn; |
|
} |
|
|
|
uint32_t plEncryptedStream::IRead(uint32_t bytes, void* buffer) |
|
{ |
|
if (!fRef) |
|
return 0; |
|
int numItems = (int)(::fread(buffer, 1 /*size*/, bytes /*count*/, fRef)); |
|
fBytesRead += numItems; |
|
fPosition += numItems; |
|
if ((unsigned)numItems < bytes) { |
|
if (feof(fRef)) { |
|
// EOF ocurred |
|
char str[128]; |
|
sprintf(str, "Hit EOF on UNIX Read, only read %d out of requested %d bytes\n", numItems, bytes); |
|
hsDebugMessage(str, 0); |
|
} |
|
else { |
|
hsDebugMessage("Error on UNIX Read", ferror(fRef)); |
|
} |
|
} |
|
return numItems; |
|
} |
|
|
|
void plEncryptedStream::IBufferFile() |
|
{ |
|
fRAMStream = TRACKED_NEW hsVectorStream; |
|
char buf[1024]; |
|
while (!AtEnd()) |
|
{ |
|
uint32_t numRead = Read(1024, buf); |
|
fRAMStream->Write(numRead, buf); |
|
} |
|
fRAMStream->Rewind(); |
|
|
|
fBufferedStream = true; |
|
fclose(fRef); |
|
fRef = nil; |
|
fPosition = 0; |
|
} |
|
|
|
hsBool plEncryptedStream::AtEnd() |
|
{ |
|
if (fBufferedStream) |
|
return fRAMStream->AtEnd(); |
|
else |
|
return (GetPosition() == fActualFileSize); |
|
} |
|
|
|
void plEncryptedStream::Skip(uint32_t delta) |
|
{ |
|
if (fBufferedStream) |
|
{ |
|
fRAMStream->Skip(delta); |
|
fPosition = fRAMStream->GetPosition(); |
|
} |
|
else if (fRef) |
|
{ |
|
fBytesRead += delta; |
|
fPosition += delta; |
|
fseek(fRef, delta, SEEK_CUR); |
|
} |
|
} |
|
|
|
void plEncryptedStream::Rewind() |
|
{ |
|
if (fBufferedStream) |
|
{ |
|
fRAMStream->Rewind(); |
|
fPosition = fRAMStream->GetPosition(); |
|
} |
|
else if (fRef) |
|
{ |
|
fBytesRead = 0; |
|
fPosition = 0; |
|
fseek(fRef, kFileStartOffset, SEEK_SET); |
|
} |
|
} |
|
|
|
void plEncryptedStream::FastFwd() |
|
{ |
|
if (fBufferedStream) |
|
{ |
|
fRAMStream->FastFwd(); |
|
fPosition = fRAMStream->GetPosition(); |
|
} |
|
else if (fRef) |
|
{ |
|
fseek(fRef, kFileStartOffset+fActualFileSize, SEEK_SET); |
|
fBytesRead = fPosition = ftell(fRef); |
|
} |
|
} |
|
|
|
uint32_t plEncryptedStream::GetEOF() |
|
{ |
|
return fActualFileSize; |
|
} |
|
|
|
uint32_t plEncryptedStream::Read(uint32_t bytes, void* buffer) |
|
{ |
|
if (fBufferedStream) |
|
{ |
|
uint32_t numRead = fRAMStream->Read(bytes, buffer); |
|
fPosition = fRAMStream->GetPosition(); |
|
return numRead; |
|
} |
|
|
|
uint32_t startPos = fPosition; |
|
|
|
// Offset into the first buffer (0 if we are aligned on a chunk, which means no extra block read) |
|
uint32_t startChunkPos = startPos % kEncryptChunkSize; |
|
// Amount of data in the partial first chunk (0 if we're aligned) |
|
uint32_t startAmt = (startChunkPos != 0) ? hsMinimum(kEncryptChunkSize - startChunkPos, bytes) : 0; |
|
|
|
uint32_t totalNumRead = IRead(bytes, buffer); |
|
|
|
uint32_t numMidChunks = (totalNumRead - startAmt) / kEncryptChunkSize; |
|
uint32_t endAmt = (totalNumRead - startAmt) % kEncryptChunkSize; |
|
|
|
// If the start position is in the middle of a chunk we need to rewind and |
|
// read that whole chunk in and decrypt it. |
|
if (startChunkPos != 0) |
|
{ |
|
// Move to the start of this chunk |
|
SetPosition(startPos-startChunkPos); |
|
|
|
// Read in the chunk and decrypt it |
|
char buf[kEncryptChunkSize]; |
|
uint32_t numRead = IRead(kEncryptChunkSize, &buf); |
|
IDecipher((uint32_t*)&buf); |
|
|
|
// Copy the relevant portion to the output buffer |
|
memcpy(buffer, &buf[startChunkPos], startAmt); |
|
|
|
SetPosition(startPos+totalNumRead); |
|
} |
|
|
|
if (numMidChunks != 0) |
|
{ |
|
uint32_t* bufferPos = (uint32_t*)(((char*)buffer)+startAmt); |
|
for (int i = 0; i < numMidChunks; i++) |
|
{ |
|
// Decrypt chunk |
|
IDecipher(bufferPos); |
|
bufferPos += (kEncryptChunkSize / sizeof(uint32_t)); |
|
} |
|
} |
|
|
|
if (endAmt != 0) |
|
{ |
|
// Read in the final chunk and decrypt it |
|
char buf[kEncryptChunkSize]; |
|
SetPosition(startPos + startAmt + numMidChunks*kEncryptChunkSize); |
|
uint32_t numRead = IRead(kEncryptChunkSize, &buf); |
|
IDecipher((uint32_t*)&buf); |
|
|
|
memcpy(((char*)buffer)+totalNumRead-endAmt, &buf, endAmt); |
|
|
|
SetPosition(startPos+totalNumRead); |
|
} |
|
|
|
// If we read into the padding at the end, update the total read to not include that |
|
if (totalNumRead > 0 && startPos + totalNumRead > fActualFileSize) |
|
{ |
|
totalNumRead -= (startPos + totalNumRead) - fActualFileSize; |
|
SetPosition(fActualFileSize); |
|
} |
|
|
|
return totalNumRead; |
|
} |
|
|
|
uint32_t plEncryptedStream::Write(uint32_t bytes, const void* buffer) |
|
{ |
|
if (fOpenMode != kOpenWrite) |
|
{ |
|
hsAssert(0, "Trying to write to a read stream"); |
|
return 0; |
|
} |
|
|
|
return fRAMStream->Write(bytes, buffer); |
|
} |
|
|
|
bool plEncryptedStream::IWriteEncypted(hsStream* sourceStream, const wchar_t* outputFile) |
|
{ |
|
hsUNIXStream outputStream; |
|
|
|
if (!outputStream.Open(outputFile, L"wb")) |
|
return false; |
|
|
|
outputStream.Write(kMagicStringLen, kMagicString); |
|
|
|
// Save some space to write the file size at the end |
|
outputStream.WriteLE32(0); |
|
|
|
// Write out all the full size encrypted blocks we can |
|
char buf[kEncryptChunkSize]; |
|
uint32_t amtRead; |
|
while ((amtRead = sourceStream->Read(kEncryptChunkSize, &buf)) == kEncryptChunkSize) |
|
{ |
|
IEncipher((uint32_t*)&buf); |
|
outputStream.Write(kEncryptChunkSize, &buf); |
|
} |
|
|
|
// Pad with random data and write out the final partial block, if there is one |
|
if (amtRead > 0) |
|
{ |
|
static bool seededRand = false; |
|
if (!seededRand) |
|
{ |
|
seededRand = true; |
|
srand((unsigned int)time(nil)); |
|
} |
|
|
|
for (int i = amtRead; i < kEncryptChunkSize; i++) |
|
buf[i] = rand(); |
|
|
|
IEncipher((uint32_t*)&buf); |
|
|
|
outputStream.Write(kEncryptChunkSize, &buf); |
|
} |
|
|
|
// Write the original file size at the start |
|
uint32_t actualSize = sourceStream->GetPosition(); |
|
outputStream.Rewind(); |
|
outputStream.Skip(kMagicStringLen); |
|
outputStream.WriteLE32(actualSize); |
|
|
|
outputStream.Close(); |
|
|
|
return true; |
|
} |
|
|
|
bool plEncryptedStream::FileEncrypt(const char* fileName) |
|
{ |
|
wchar_t* wFilename = hsStringToWString(fileName); |
|
bool ret = FileEncrypt(wFilename); |
|
delete [] wFilename; |
|
return ret; |
|
} |
|
|
|
bool plEncryptedStream::FileEncrypt(const wchar_t* fileName) |
|
{ |
|
hsUNIXStream sIn; |
|
if (!sIn.Open(fileName)) |
|
return false; |
|
|
|
// Don't double encrypt any files |
|
if (ICheckMagicString(sIn.GetFILE())) |
|
{ |
|
sIn.Close(); |
|
return true; |
|
} |
|
sIn.Rewind(); |
|
|
|
plEncryptedStream sOut; |
|
bool wroteEncrypted = sOut.IWriteEncypted(&sIn, L"crypt.dat"); |
|
|
|
sIn.Close(); |
|
sOut.Close(); |
|
|
|
if (wroteEncrypted) |
|
{ |
|
plFileUtils::RemoveFile(fileName); |
|
plFileUtils::FileMove(L"crypt.dat", fileName); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool plEncryptedStream::FileDecrypt(const char* fileName) |
|
{ |
|
wchar_t* wFilename = hsStringToWString(fileName); |
|
bool ret = FileDecrypt(wFilename); |
|
delete [] wFilename; |
|
return ret; |
|
} |
|
|
|
bool plEncryptedStream::FileDecrypt(const wchar_t* fileName) |
|
{ |
|
plEncryptedStream sIn; |
|
if (!sIn.Open(fileName)) |
|
return false; |
|
|
|
hsUNIXStream sOut; |
|
if (!sOut.Open(L"crypt.dat", L"wb")) |
|
{ |
|
sIn.Close(); |
|
return false; |
|
} |
|
|
|
char buf[1024]; |
|
|
|
while (!sIn.AtEnd()) |
|
{ |
|
uint32_t numRead = sIn.Read(sizeof(buf), buf); |
|
sOut.Write(numRead, buf); |
|
} |
|
|
|
sIn.Close(); |
|
sOut.Close(); |
|
|
|
plFileUtils::RemoveFile(fileName); |
|
plFileUtils::FileMove(L"crypt.dat", fileName); |
|
|
|
return true; |
|
} |
|
|
|
bool plEncryptedStream::ICheckMagicString(FILE* fp) |
|
{ |
|
char magicString[kMagicStringLen+1]; |
|
fread(&magicString, kMagicStringLen, 1, fp); |
|
magicString[kMagicStringLen] = '\0'; |
|
return (hsStrEQ(magicString, kMagicString) || hsStrEQ(magicString, kOldMagicString)); |
|
} |
|
|
|
bool plEncryptedStream::IsEncryptedFile(const char* fileName) |
|
{ |
|
wchar_t* wFilename = hsStringToWString(fileName); |
|
bool ret = IsEncryptedFile(wFilename); |
|
delete [] wFilename; |
|
return ret; |
|
} |
|
|
|
bool plEncryptedStream::IsEncryptedFile(const wchar_t* fileName) |
|
{ |
|
FILE* fp = hsWFopen(fileName, L"rb"); |
|
if (!fp) |
|
return false; |
|
|
|
bool isEncrypted = ICheckMagicString(fp); |
|
|
|
fclose(fp); |
|
|
|
return isEncrypted; |
|
} |
|
|
|
hsStream* plEncryptedStream::OpenEncryptedFile(const char* fileName, bool requireEncrypted, uint32_t* cryptKey) |
|
{ |
|
wchar_t* wFilename = hsStringToWString(fileName); |
|
hsStream* ret = OpenEncryptedFile(wFilename, requireEncrypted, cryptKey); |
|
delete [] wFilename; |
|
return ret; |
|
} |
|
|
|
hsStream* plEncryptedStream::OpenEncryptedFile(const wchar_t* fileName, bool requireEncrypted, uint32_t* cryptKey) |
|
{ |
|
#ifndef PLASMA_EXTERNAL_RELEASE |
|
requireEncrypted = false; |
|
#endif |
|
|
|
bool isEncrypted = IsEncryptedFile(fileName); |
|
|
|
hsStream* s = nil; |
|
if (isEncrypted) |
|
s = TRACKED_NEW plEncryptedStream(cryptKey); |
|
// If this isn't an external release, let them use unencrypted data |
|
else |
|
if (!requireEncrypted) |
|
s = TRACKED_NEW hsUNIXStream; |
|
|
|
if (s) |
|
s->Open(fileName, L"rb"); |
|
return s; |
|
} |
|
|
|
hsStream* plEncryptedStream::OpenEncryptedFileWrite(const char* fileName, uint32_t* cryptKey) |
|
{ |
|
wchar_t* wFilename = hsStringToWString(fileName); |
|
hsStream* ret = OpenEncryptedFileWrite(wFilename, cryptKey); |
|
delete [] wFilename; |
|
return ret; |
|
} |
|
|
|
hsStream* plEncryptedStream::OpenEncryptedFileWrite(const wchar_t* fileName, uint32_t* cryptKey) |
|
{ |
|
hsStream* s = nil; |
|
#ifdef PLASMA_EXTERNAL_RELEASE |
|
s = TRACKED_NEW plEncryptedStream(cryptKey); |
|
#else |
|
s = TRACKED_NEW hsUNIXStream; |
|
#endif |
|
|
|
s->Open(fileName, L"wb"); |
|
return s; |
|
}
|
|
|