You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
286 lines
9.2 KiB
286 lines
9.2 KiB
/*==LICENSE==* |
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools |
|
Copyright (C) 2011 Cyan Worlds, Inc. |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
|
Additional permissions under GNU GPL version 3 section 7 |
|
|
|
If you modify this Program, or any covered work, by linking or |
|
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, |
|
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent |
|
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK |
|
(or a modified version of those libraries), |
|
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, |
|
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG |
|
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the |
|
licensors of this Program grant you additional |
|
permission to convey the resulting work. Corresponding Source for a |
|
non-source form of such a combination shall include the source code for |
|
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered |
|
work. |
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com |
|
or by snail mail at: |
|
Cyan Worlds, Inc. |
|
14617 N Newport Hwy |
|
Mead, WA 99021 |
|
|
|
*==LICENSE==*/ |
|
|
|
#include "HeadSpin.h" |
|
#include "plAvMeshSmooth.h" |
|
|
|
#include "plGeometrySpan.h" |
|
#include "plAccessGeometry.h" |
|
#include "plAccessTriSpan.h" |
|
|
|
#include "hsFastMath.h" |
|
|
|
class EdgeBin |
|
{ |
|
public: |
|
uint16_t fVtx; |
|
uint16_t fCount; |
|
|
|
EdgeBin() : fVtx(0), fCount(0) {} |
|
}; |
|
|
|
void plAvMeshSmooth::FindEdges(uint32_t maxVtxIdx, uint32_t nTris, uint16_t* idxList, hsTArray<uint16_t>& edgeVerts) |
|
{ |
|
hsTArray<EdgeBin>* bins = TRACKED_NEW hsTArray<EdgeBin>[maxVtxIdx+1]; |
|
|
|
hsBitVector edgeVertBits; |
|
// For each vert pair (edge) in idxList |
|
int i; |
|
for( i = 0; i < nTris; i++ ) |
|
{ |
|
int j; |
|
for( j = 0; j < 3; j++ ) |
|
{ |
|
int jPlus = j < 2 ? j+1 : 0; |
|
int idx0 = idxList[i*3 + j]; |
|
int idx1 = idxList[i*3 + jPlus]; |
|
|
|
int lo, hi; |
|
|
|
// Look in the LUT for the lower index. |
|
if( idx0 < idx1 ) |
|
{ |
|
lo = idx0; |
|
hi = idx1; |
|
} |
|
else |
|
{ |
|
lo = idx1; |
|
hi = idx0; |
|
} |
|
|
|
hsTArray<EdgeBin>& loBin = bins[lo]; |
|
// In that bucket, look for the higher index. |
|
int k; |
|
for( k = 0; k < loBin.GetCount(); k++ ) |
|
{ |
|
if( loBin[k].fVtx == hi ) |
|
break; |
|
} |
|
|
|
// If we find it, increment it's count, |
|
// else add it. |
|
if( k < loBin.GetCount() ) |
|
{ |
|
loBin[k].fCount++; |
|
} |
|
else |
|
{ |
|
EdgeBin* b = loBin.Push(); |
|
b->fVtx = hi; |
|
b->fCount = 1; |
|
} |
|
} |
|
} |
|
|
|
// For each bucket in the LUT, |
|
for( i = 0; i < maxVtxIdx+1; i++ ) |
|
{ |
|
hsTArray<EdgeBin>& loBin = bins[i]; |
|
// For each higher index |
|
int j; |
|
for( j = 0; j < loBin.GetCount(); j++ ) |
|
{ |
|
// If the count is one, it's an edge, so set the edge bit for both indices (hi and lo) |
|
if( 1 == loBin[j].fCount ) |
|
{ |
|
edgeVertBits.SetBit(i); |
|
edgeVertBits.SetBit(loBin[j].fVtx); |
|
} |
|
} |
|
} |
|
|
|
// Now translate the bitvector to a list of indices. |
|
for( i = 0; i < maxVtxIdx+1; i++ ) |
|
{ |
|
if( edgeVertBits.IsBitSet(i) ) |
|
edgeVerts.Append(i); |
|
} |
|
delete [] bins; |
|
} |
|
|
|
void plAvMeshSmooth::FindEdges(hsTArray<XfmSpan>& spans, hsTArray<uint16_t>* edgeVerts) |
|
{ |
|
int i; |
|
for( i = 0; i < spans.GetCount(); i++ ) |
|
{ |
|
fAccGeom.AccessSpanFromGeometrySpan(spans[i].fAccSpan, spans[i].fSpan); |
|
if( !spans[i].fAccSpan.HasAccessTri() ) |
|
continue; |
|
|
|
plAccessTriSpan& triSpan = spans[i].fAccSpan.AccessTri(); |
|
|
|
uint32_t nTris = triSpan.TriCount(); |
|
uint16_t* idxList = triSpan.fTris; |
|
uint32_t maxVertIdx = triSpan.VertCount()-1; |
|
|
|
FindEdges(maxVertIdx, nTris, idxList, edgeVerts[i]); |
|
} |
|
} |
|
|
|
// A little note about why we need to pass in so much to do this. |
|
// If the input geometryspans were in local space (ForceLocal), then |
|
// all we would need to do is ignore any transforms they might have, |
|
// and life is grand. |
|
// But for reasons I don't pretend to understand, we can't do that, so |
|
// here, to smooth the delta meshes, we transform both them and the base "snap-to" |
|
// meshes into their respective local spaces, and then look for matches. This works |
|
// because the base and delta meshes are constrained, not to be coincident in world space, |
|
// but to be coincident in the local space relative to Max pivot. |
|
// The funny painful thing is that later, when we go to use these smoothed delta meshes, |
|
// again we need to coerce them into a neutral space. At that time, we'll use the |
|
// morph target mesh's local space. Whatever. |
|
void plAvMeshSmooth::Smooth(hsTArray<XfmSpan>& srcSpans, hsTArray<XfmSpan>& dstSpans) |
|
{ |
|
hsTArray<uint16_t>* dstEdgeVerts = TRACKED_NEW hsTArray<uint16_t>[dstSpans.GetCount()]; |
|
FindEdges(dstSpans, dstEdgeVerts); |
|
|
|
hsTArray<uint16_t>* srcEdgeVerts = TRACKED_NEW hsTArray<uint16_t>[srcSpans.GetCount()]; |
|
FindEdges(srcSpans, srcEdgeVerts); |
|
|
|
int i; |
|
for( i = 0; i < dstSpans.GetCount(); i++ ) |
|
{ |
|
plAccessTriSpan& dstTriSpan = dstSpans[i].fAccSpan.AccessTri(); |
|
|
|
int j; |
|
for( j = 0; j < dstEdgeVerts[i].GetCount(); j++ ) |
|
{ |
|
|
|
hsPoint3 dstPos = IPositionToNeutral(dstSpans[i], dstEdgeVerts[i][j]); |
|
hsVector3 dstNorm = INormalToNeutral(dstSpans[i], dstEdgeVerts[i][j]); |
|
hsColorRGBA dstDiff; |
|
if( dstTriSpan.HasDiffuse() ) |
|
dstDiff = dstTriSpan.DiffuseRGBA(dstEdgeVerts[i][j]); |
|
else |
|
dstDiff.Set(1.f, 1.f, 1.f, 1.f); |
|
|
|
float maxDot = fMinNormDot; |
|
|
|
hsPoint3 smoothPos = dstPos; |
|
hsVector3 smoothNorm = dstNorm; |
|
hsColorRGBA smoothDiff = dstDiff; |
|
|
|
int k; |
|
for( k = 0; k < srcSpans.GetCount(); k++ ) |
|
{ |
|
int m; |
|
for( m = 0; m < srcEdgeVerts[k].GetCount(); m++ ) |
|
{ |
|
hsPoint3 srcPos = IPositionToNeutral(srcSpans[k], srcEdgeVerts[k][m]); |
|
hsVector3 srcNorm = INormalToNeutral(srcSpans[k], srcEdgeVerts[k][m]); |
|
|
|
float dist = hsVector3(&dstPos, &srcPos).MagnitudeSquared(); |
|
if( dist <= fDistTolSq ) |
|
{ |
|
smoothPos = srcPos; |
|
|
|
float currDot = srcNorm.InnerProduct(dstNorm); |
|
if( currDot > maxDot ) |
|
{ |
|
maxDot = currDot; |
|
smoothNorm = srcNorm; |
|
if( srcSpans[k].fAccSpan.AccessTri().HasDiffuse() ) |
|
smoothDiff = srcSpans[k].fAccSpan.AccessTri().DiffuseRGBA(srcEdgeVerts[k][m]); |
|
else |
|
smoothDiff = dstDiff; |
|
} |
|
} |
|
} |
|
} |
|
if( fFlags & kSmoothPos ) |
|
dstTriSpan.Position(dstEdgeVerts[i][j]) = IPositionToSpan(dstSpans[i], smoothPos); |
|
if( fFlags & kSmoothNorm ) |
|
dstTriSpan.Normal(dstEdgeVerts[i][j]) = INormalToSpan(dstSpans[i], smoothNorm); |
|
if( (fFlags & kSmoothDiffuse) && dstTriSpan.HasDiffuse() ) |
|
dstTriSpan.Diffuse32(dstEdgeVerts[i][j]) = smoothDiff.ToARGB32(); |
|
} |
|
|
|
} |
|
|
|
delete [] srcEdgeVerts; |
|
delete [] dstEdgeVerts; |
|
} |
|
|
|
hsPoint3 plAvMeshSmooth::IPositionToNeutral(XfmSpan& span, int i) const |
|
{ |
|
return span.fSpanToNeutral * span.fAccSpan.AccessTri().Position(i); |
|
} |
|
|
|
hsVector3 plAvMeshSmooth::INormalToNeutral(XfmSpan& span, int i) const |
|
{ |
|
hsVector3 ret = span.fNormSpanToNeutral * span.fAccSpan.AccessTri().Normal(i); |
|
hsFastMath::Normalize(ret); |
|
return ret; |
|
} |
|
|
|
hsPoint3 plAvMeshSmooth::IPositionToSpan(XfmSpan& span, const hsPoint3& wPos) const |
|
{ |
|
return span.fNeutralToSpan * wPos; |
|
} |
|
|
|
hsVector3 plAvMeshSmooth::INormalToSpan(XfmSpan& span, const hsVector3& wNorm) const |
|
{ |
|
hsVector3 ret = span.fNormNeutralToSpan * wNorm; |
|
hsFastMath::Normalize(ret); |
|
return ret; |
|
} |
|
|
|
void plAvMeshSmooth::SetAngle(float degs) |
|
{ |
|
fMinNormDot = cos(hsDegreesToRadians(degs)); |
|
} |
|
|
|
float plAvMeshSmooth::GetAngle() const |
|
{ |
|
return hsRadiansToDegrees(acos(fMinNormDot)); |
|
} |
|
|
|
void plAvMeshSmooth::SetDistTol(float dist) |
|
{ |
|
fDistTolSq = dist * dist; |
|
} |
|
|
|
float plAvMeshSmooth::GetDistTol() const |
|
{ |
|
return sqrt(fDistTolSq); |
|
} |