You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
626 lines
8.0 KiB
626 lines
8.0 KiB
/*==LICENSE==* |
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools |
|
Copyright (C) 2011 Cyan Worlds, Inc. |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com |
|
or by snail mail at: |
|
Cyan Worlds, Inc. |
|
14617 N Newport Hwy |
|
Mead, WA 99021 |
|
|
|
*==LICENSE==*/ |
|
|
|
#include "hsTypes.h" |
|
#include "hsScalar.h" |
|
#include "hsGeometry3.h" |
|
#include "hsFastMath.h" |
|
|
|
const hsScalar hsFastMath::kSqrtTwo = hsSquareRoot(2.f); |
|
const hsScalar hsFastMath::kInvSqrtTwo = hsScalarInvert(hsFastMath::kSqrtTwo); |
|
const hsScalar hsFastMath::kTwoPI = hsScalarPI * 2.f; |
|
|
|
hsPoint2 statCosSinTable[9] = // must match length in inline |
|
{ |
|
{ 1.f, 0.f }, |
|
{ hsFastMath::kInvSqrtTwo, hsFastMath::kInvSqrtTwo }, |
|
{ 0.f, 1.f }, |
|
{ -hsFastMath::kInvSqrtTwo, hsFastMath::kInvSqrtTwo }, |
|
{ -1.f, 0.f }, |
|
{ -hsFastMath::kInvSqrtTwo, -hsFastMath::kInvSqrtTwo }, |
|
{ 0.f, -1.f }, |
|
{ hsFastMath::kInvSqrtTwo, -hsFastMath::kInvSqrtTwo }, |
|
{ 1.f, 0.f } |
|
}; |
|
|
|
const hsPoint2* hsFastMath::fCosSinTable = statCosSinTable; |
|
|
|
unsigned char statSeedTable[] = { |
|
0x69, |
|
0x69, |
|
0x68, |
|
0x67, |
|
0x67, |
|
0x66, |
|
0x65, |
|
0x65, |
|
0x64, |
|
0x63, |
|
0x63, |
|
0x62, |
|
0x61, |
|
0x61, |
|
0x60, |
|
0x5f, |
|
0x5f, |
|
0x5e, |
|
0x5d, |
|
0x5d, |
|
0x5c, |
|
0x5b, |
|
0x5b, |
|
0x5a, |
|
0x5a, |
|
0x59, |
|
0x58, |
|
0x58, |
|
0x57, |
|
0x57, |
|
0x56, |
|
0x55, |
|
0x55, |
|
0x54, |
|
0x54, |
|
0x53, |
|
0x52, |
|
0x52, |
|
0x51, |
|
0x51, |
|
0x50, |
|
0x50, |
|
0x4f, |
|
0x4e, |
|
0x4e, |
|
0x4d, |
|
0x4d, |
|
0x4c, |
|
0x4c, |
|
0x4b, |
|
0x4b, |
|
0x4a, |
|
0x4a, |
|
0x49, |
|
0x48, |
|
0x48, |
|
0x47, |
|
0x47, |
|
0x46, |
|
0x46, |
|
0x45, |
|
0x45, |
|
0x44, |
|
0x44, |
|
0x43, |
|
0x43, |
|
0x42, |
|
0x42, |
|
0x41, |
|
0x41, |
|
0x40, |
|
0x40, |
|
0x3f, |
|
0x3f, |
|
0x3e, |
|
0x3e, |
|
0x3d, |
|
0x3d, |
|
0x3c, |
|
0x3c, |
|
0x3c, |
|
0x3b, |
|
0x3b, |
|
0x3a, |
|
0x3a, |
|
0x39, |
|
0x39, |
|
0x38, |
|
0x38, |
|
0x37, |
|
0x37, |
|
0x36, |
|
0x36, |
|
0x36, |
|
0x35, |
|
0x35, |
|
0x34, |
|
0x34, |
|
0x33, |
|
0x33, |
|
0x33, |
|
0x32, |
|
0x32, |
|
0x31, |
|
0x31, |
|
0x30, |
|
0x30, |
|
0x30, |
|
0x2f, |
|
0x2f, |
|
0x2e, |
|
0x2e, |
|
0x2e, |
|
0x2d, |
|
0x2d, |
|
0x2c, |
|
0x2c, |
|
0x2b, |
|
0x2b, |
|
0x2b, |
|
0x2a, |
|
0x2a, |
|
0x29, |
|
0x29, |
|
0x29, |
|
0x28, |
|
0x28, |
|
0x28, |
|
0x27, |
|
0x27, |
|
0x26, |
|
0x26, |
|
0x26, |
|
0x25, |
|
0x25, |
|
0x25, |
|
0x24, |
|
0x24, |
|
0x23, |
|
0x23, |
|
0x23, |
|
0x22, |
|
0x22, |
|
0x22, |
|
0x21, |
|
0x21, |
|
0x20, |
|
0x20, |
|
0x20, |
|
0x1f, |
|
0x1f, |
|
0x1f, |
|
0x1e, |
|
0x1e, |
|
0x1e, |
|
0x1d, |
|
0x1d, |
|
0x1d, |
|
0x1c, |
|
0x1c, |
|
0x1c, |
|
0x1b, |
|
0x1b, |
|
0x1b, |
|
0x1a, |
|
0x1a, |
|
0x1a, |
|
0x19, |
|
0x19, |
|
0x19, |
|
0x18, |
|
0x18, |
|
0x18, |
|
0x17, |
|
0x17, |
|
0x17, |
|
0x16, |
|
0x16, |
|
0x16, |
|
0x15, |
|
0x15, |
|
0x15, |
|
0x14, |
|
0x14, |
|
0x14, |
|
0x13, |
|
0x13, |
|
0x13, |
|
0x13, |
|
0x12, |
|
0x12, |
|
0x12, |
|
0x11, |
|
0x11, |
|
0x11, |
|
0x10, |
|
0x10, |
|
0x10, |
|
0xf, |
|
0xf, |
|
0xf, |
|
0xf, |
|
0xe, |
|
0xe, |
|
0xe, |
|
0xd, |
|
0xd, |
|
0xd, |
|
0xd, |
|
0xc, |
|
0xc, |
|
0xc, |
|
0xb, |
|
0xb, |
|
0xb, |
|
0xb, |
|
0xa, |
|
0xa, |
|
0xa, |
|
0x9, |
|
0x9, |
|
0x9, |
|
0x9, |
|
0x8, |
|
0x8, |
|
0x8, |
|
0x7, |
|
0x7, |
|
0x7, |
|
0x7, |
|
0x6, |
|
0x6, |
|
0x6, |
|
0x6, |
|
0x5, |
|
0x5, |
|
0x5, |
|
0x5, |
|
0x4, |
|
0x4, |
|
0x4, |
|
0x3, |
|
0x3, |
|
0x3, |
|
0x3, |
|
0x2, |
|
0x2, |
|
0x2, |
|
0x2, |
|
0x1, |
|
0x1, |
|
0x1, |
|
0x1, |
|
0x0, |
|
0x0, |
|
0x0, |
|
0xff, |
|
0xfe, |
|
0xfd, |
|
0xfc, |
|
0xfb, |
|
0xfa, |
|
0xf9, |
|
0xf8, |
|
0xf7, |
|
0xf7, |
|
0xf6, |
|
0xf5, |
|
0xf4, |
|
0xf3, |
|
0xf2, |
|
0xf1, |
|
0xf0, |
|
0xef, |
|
0xee, |
|
0xed, |
|
0xec, |
|
0xec, |
|
0xeb, |
|
0xea, |
|
0xe9, |
|
0xe8, |
|
0xe7, |
|
0xe6, |
|
0xe5, |
|
0xe5, |
|
0xe4, |
|
0xe3, |
|
0xe2, |
|
0xe1, |
|
0xe0, |
|
0xe0, |
|
0xdf, |
|
0xde, |
|
0xdd, |
|
0xdc, |
|
0xdb, |
|
0xdb, |
|
0xda, |
|
0xd9, |
|
0xd8, |
|
0xd8, |
|
0xd7, |
|
0xd6, |
|
0xd5, |
|
0xd4, |
|
0xd4, |
|
0xd3, |
|
0xd2, |
|
0xd1, |
|
0xd1, |
|
0xd0, |
|
0xcf, |
|
0xce, |
|
0xce, |
|
0xcd, |
|
0xcc, |
|
0xcb, |
|
0xcb, |
|
0xca, |
|
0xc9, |
|
0xc9, |
|
0xc8, |
|
0xc7, |
|
0xc7, |
|
0xc6, |
|
0xc5, |
|
0xc4, |
|
0xc4, |
|
0xc3, |
|
0xc2, |
|
0xc2, |
|
0xc1, |
|
0xc0, |
|
0xc0, |
|
0xbf, |
|
0xbe, |
|
0xbe, |
|
0xbd, |
|
0xbc, |
|
0xbc, |
|
0xbb, |
|
0xba, |
|
0xba, |
|
0xb9, |
|
0xb8, |
|
0xb8, |
|
0xb7, |
|
0xb7, |
|
0xb6, |
|
0xb5, |
|
0xb5, |
|
0xb4, |
|
0xb3, |
|
0xb3, |
|
0xb2, |
|
0xb2, |
|
0xb1, |
|
0xb0, |
|
0xb0, |
|
0xaf, |
|
0xaf, |
|
0xae, |
|
0xad, |
|
0xad, |
|
0xac, |
|
0xac, |
|
0xab, |
|
0xaa, |
|
0xaa, |
|
0xa9, |
|
0xa9, |
|
0xa8, |
|
0xa8, |
|
0xa7, |
|
0xa7, |
|
0xa6, |
|
0xa5, |
|
0xa5, |
|
0xa4, |
|
0xa4, |
|
0xa3, |
|
0xa3, |
|
0xa2, |
|
0xa2, |
|
0xa1, |
|
0xa0, |
|
0xa0, |
|
0x9f, |
|
0x9f, |
|
0x9e, |
|
0x9e, |
|
0x9d, |
|
0x9d, |
|
0x9c, |
|
0x9c, |
|
0x9b, |
|
0x9b, |
|
0x9a, |
|
0x9a, |
|
0x99, |
|
0x99, |
|
0x98, |
|
0x98, |
|
0x97, |
|
0x97, |
|
0x96, |
|
0x96, |
|
0x95, |
|
0x95, |
|
0x94, |
|
0x94, |
|
0x93, |
|
0x93, |
|
0x92, |
|
0x92, |
|
0x91, |
|
0x91, |
|
0x90, |
|
0x90, |
|
0x8f, |
|
0x8f, |
|
0x8e, |
|
0x8e, |
|
0x8d, |
|
0x8d, |
|
0x8c, |
|
0x8c, |
|
0x8b, |
|
0x8b, |
|
0x8b, |
|
0x8a, |
|
0x8a, |
|
0x89, |
|
0x89, |
|
0x88, |
|
0x88, |
|
0x87, |
|
0x87, |
|
0x87, |
|
0x86, |
|
0x86, |
|
0x85, |
|
0x85, |
|
0x84, |
|
0x84, |
|
0x83, |
|
0x83, |
|
0x83, |
|
0x82, |
|
0x82, |
|
0x81, |
|
0x81, |
|
0x80, |
|
0x80, |
|
0x80, |
|
0x7f, |
|
0x7f, |
|
0x7e, |
|
0x7e, |
|
0x7d, |
|
0x7d, |
|
0x7d, |
|
0x7c, |
|
0x7c, |
|
0x7b, |
|
0x7b, |
|
0x7b, |
|
0x7a, |
|
0x7a, |
|
0x79, |
|
0x79, |
|
0x79, |
|
0x78, |
|
0x78, |
|
0x77, |
|
0x77, |
|
0x77, |
|
0x76, |
|
0x76, |
|
0x75, |
|
0x75, |
|
0x75, |
|
0x74, |
|
0x74, |
|
0x74, |
|
0x73, |
|
0x73, |
|
0x72, |
|
0x72, |
|
0x72, |
|
0x71, |
|
0x71, |
|
0x71, |
|
0x70, |
|
0x70, |
|
0x6f, |
|
0x6f, |
|
0x6f, |
|
0x6e, |
|
0x6e, |
|
0x6e, |
|
0x6d, |
|
0x6d, |
|
0x6c, |
|
0x6c, |
|
0x6c, |
|
0x6b, |
|
0x6b, |
|
0x6b, |
|
0x6a, |
|
0x6a |
|
}; |
|
|
|
hsScalar hsFastMath::IATan2OverTwoPi(hsScalar y, hsScalar x) |
|
{ |
|
const int tabSize = 16; // pad with one extra because hi can go hi |
|
const int tabMax = tabSize-1; |
|
static hsScalar tab[tabSize+1] = { |
|
0.f, |
|
0.0105947f, |
|
0.0210962f, |
|
0.0314165f, |
|
0.0414762f, |
|
0.0512082f, |
|
0.0605595f, |
|
0.0694914f, |
|
0.0779791f, |
|
0.0860104f, |
|
0.0935835f, |
|
0.100705f, |
|
0.107388f, |
|
0.113651f, |
|
0.119514f, |
|
0.125f, |
|
0 }; |
|
|
|
if( (x == 0)&&(y == 0) ) |
|
return 0; |
|
|
|
hsBool xNeg, yNeg; |
|
if( yNeg = (y < 0) )y = -y; |
|
if( xNeg = (x < 0) )x = -x; |
|
hsBool yBigger = y >= x; |
|
hsScalar div = yBigger ? x / y : y / x; |
|
|
|
hsScalar fInd = div * tabMax; |
|
int lo = int(fInd); |
|
int hi = lo+1; |
|
hsScalar frac = fInd - lo; |
|
|
|
hsScalar res = tab[lo]; |
|
res += frac * (tab[hi] - res); |
|
|
|
// now move to proper half quadrant |
|
hsAssert((res >= 0)&&(res <= 0.25f), "Lookup atan2 out of bounds"); |
|
if( yBigger ) |
|
res = 0.25f - res; |
|
switch( (yNeg << 1)|xNeg ) |
|
{ |
|
case 0: |
|
break; |
|
case 1: |
|
res = 0.5f - res; |
|
break; |
|
case 3: |
|
res += 0.5f; |
|
break; |
|
case 2: |
|
res = 1.f - res; |
|
break; |
|
} |
|
return res; |
|
} |
|
|
|
|