You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1483 lines
36 KiB
1483 lines
36 KiB
/*==LICENSE==* |
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools |
|
Copyright (C) 2011 Cyan Worlds, Inc. |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
|
Additional permissions under GNU GPL version 3 section 7 |
|
|
|
If you modify this Program, or any covered work, by linking or |
|
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, |
|
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent |
|
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK |
|
(or a modified version of those libraries), |
|
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, |
|
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG |
|
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the |
|
licensors of this Program grant you additional |
|
permission to convey the resulting work. Corresponding Source for a |
|
non-source form of such a combination shall include the source code for |
|
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered |
|
work. |
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com |
|
or by snail mail at: |
|
Cyan Worlds, Inc. |
|
14617 N Newport Hwy |
|
Mead, WA 99021 |
|
|
|
*==LICENSE==*/ |
|
|
|
#include "hsWindows.h" |
|
#include <commdlg.h> |
|
|
|
#include "Max.h" |
|
#include "stdmat.h" |
|
#include "bmmlib.h" |
|
#include "iparamb2.h" |
|
#include "meshdlib.h" |
|
|
|
#include "../MaxExport/plExportProgressBar.h" |
|
#include "../MaxPlasmaMtls/Layers/plLayerTexBitmapPB.h" |
|
#include "../MaxPlasmaMtls/Layers/plLayerTex.h" |
|
|
|
#include "hsMaterialConverter.h" |
|
|
|
#include "hsTypes.h" |
|
#include "hsGeometry3.h" |
|
#include "hsUtils.h" |
|
#include "../plMath/plTriUtils.h" |
|
|
|
#include "plDistributor.h" |
|
#include "../MaxMain/plMaxNode.h" |
|
|
|
#include "plDistTree.h" |
|
|
|
static const float kMaxHeight = 10.f; |
|
|
|
// Inputs: |
|
// seed mesh - geometric entity to replicate over the surface |
|
// surf mesh - surface to cover with seed data |
|
// spacing - nominal distance between replicants (before randomizing). |
|
// rnd pos radius - replicants spread uniformly about nominal spacing by +- radius |
|
// alignment vector- preferred up direction for replicants |
|
// alignment weight- weight between alignment vector and interpolated face normal |
|
// normal range - amount to randomize the weighted normal |
|
// normal bunch - amount randomized normals bunch around input normal |
|
// rotation range - amount to randomize the azimuthal rotation about the randomized normal |
|
// prob bitmap - describes probability that a seed planted here on the surface will sprout |
|
// prob uvws - mapping from verts to prob bitmap, one per src span vertex |
|
// overall rnd - overall probability that a candidate seed point (passing all other criteria) will be used |
|
// |
|
|
|
static inline hsPoint3& hsP3(const Point3& p) { return *(hsPoint3*)&p; } |
|
static inline hsVector3& hsV3(const Point3& p) { return *(hsVector3*)&p; } |
|
static inline Matrix3 Transpose(const Matrix3& m) |
|
{ |
|
return Matrix3(m.GetColumn3(0), m.GetColumn3(1), m.GetColumn3(2), Point3(0,0,0)); |
|
} |
|
|
|
plDistributor::plDistributor() |
|
{ |
|
IClear(); |
|
fRand.SetSeed(UInt32(this)); |
|
} |
|
|
|
plDistributor::~plDistributor() |
|
{ |
|
Reset(); |
|
} |
|
|
|
void plDistributor::Reset() |
|
{ |
|
// Let stuff go... |
|
if( fSurfObjToDelete ) |
|
fSurfObjToDelete->DeleteThis(); |
|
|
|
// Then clear |
|
IClear(); |
|
} |
|
|
|
void plDistributor::IClear() |
|
{ |
|
fInterface = nil; |
|
|
|
fDistTree = nil; |
|
|
|
fMeshTree.Reset(); |
|
|
|
fSurfNode = nil; |
|
fSurfMesh = nil; |
|
fSurfObjToDelete = nil; |
|
|
|
fRepNodes.ZeroCount(); |
|
|
|
fIsolation = kIsoLow; |
|
fConformity = kConformNone; |
|
fFaceNormals = false; |
|
|
|
fMaxConform = 1.f; |
|
|
|
fSpacing = 5.f; |
|
fRndPosRadius = 2.5f; |
|
|
|
fAlignVec.Set(0,0,1.f); |
|
fAlignWgt = 0; |
|
|
|
fOffsetMin = fOffsetMax = 0; |
|
|
|
fPolarRange = 0; |
|
fTanPolarRange = 0; |
|
fAzimuthRange = hsScalarPI; |
|
|
|
fOverallProb = 1.f; |
|
|
|
fPolarBunch = 0; |
|
|
|
fScaleLock = kLockNone; |
|
fScaleLo.Set(1.f,1.f,1.f); |
|
fScaleHi.Set(1.f,1.f,1.f); |
|
|
|
fProbBitmapTex = nil; |
|
fProbLayerTex = nil; |
|
fProbColorChan = kRed; |
|
|
|
fProbRemapFromLo = 0; |
|
fProbRemapFromHi = 1.f; |
|
fProbRemapToLo = 0; |
|
fProbRemapToHi = 1.f; |
|
|
|
fAngProbVec.Set(0.f, 0.f, 1.f); |
|
fAngProbHi = fAngProbLo = 0; |
|
fAngProbTrans = 0; |
|
|
|
fAltProbHi = fAltProbLo = 0; |
|
fAltProbTrans = 0; |
|
|
|
fFade.pmin = fFade.pmax = Point3(0,0,0); |
|
|
|
fBone = nil; |
|
} |
|
|
|
BOOL plDistributor::IGetMesh(INode* node, TriObject*& objToDelete, Mesh*& retMesh) const |
|
{ |
|
if( objToDelete ) |
|
objToDelete->DeleteThis(); |
|
|
|
retMesh = nil; |
|
objToDelete = nil; |
|
|
|
// Get da object |
|
Object *obj = node->EvalWorldState(TimeValue(0)).obj; |
|
if( !obj ) |
|
return false; |
|
|
|
if( !obj->CanConvertToType( triObjectClassID ) ) |
|
return false; |
|
|
|
// Convert to triMesh object |
|
TriObject *meshObj = (TriObject*)obj->ConvertToType(TimeValue(0), triObjectClassID); |
|
if( !meshObj ) |
|
return false; |
|
|
|
if( meshObj != obj ) |
|
objToDelete = meshObj; |
|
|
|
// Get the mesh |
|
Mesh* mesh = &(meshObj->mesh); |
|
if( !mesh->getNumFaces() ) |
|
{ |
|
if( objToDelete ) |
|
objToDelete->DeleteThis(); |
|
objToDelete = nil; |
|
return false; |
|
} |
|
|
|
retMesh = mesh; |
|
retMesh->checkNormals(true); |
|
|
|
return true; |
|
} |
|
|
|
void plDistributor::ISetAngProbCosines() const |
|
{ |
|
if( fAngProbHi == fAngProbLo ) |
|
return; |
|
|
|
float maxAng, minAng; |
|
if( fAngProbHi > fAngProbLo ) |
|
{ |
|
maxAng = hsScalarDegToRad(fAngProbHi); |
|
minAng = hsScalarDegToRad(fAngProbLo); |
|
} |
|
else |
|
{ |
|
maxAng = hsScalarDegToRad(fAngProbLo); |
|
minAng = hsScalarDegToRad(fAngProbHi); |
|
} |
|
|
|
float transAng = hsScalarDegToRad(fAngProbTrans); |
|
if( transAng > (maxAng - minAng) * 0.5f ) |
|
transAng = (maxAng - minAng) * 0.5f; |
|
|
|
float transAngMax = maxAng < hsScalarPI ? transAng : 0; |
|
float transAngMin = minAng > 0 ? transAng : 0; |
|
|
|
fCosAngProbHi = hsCosine(minAng); |
|
fCosAngProbLo = hsCosine(maxAng); |
|
fCosAngProbHiTrans = hsCosine(minAng + transAngMin); |
|
fCosAngProbLoTrans = hsCosine(maxAng - transAngMax); |
|
} |
|
|
|
BOOL plDistributor::ISetSurfaceNode(INode* surfNode) const |
|
{ |
|
if( !IGetMesh(surfNode, fSurfObjToDelete, fSurfMesh) ) |
|
{ |
|
return false; |
|
} |
|
fSurfNode = surfNode; |
|
|
|
fSurfToWorld = surfNode->GetObjectTM(TimeValue(0)); |
|
fWorldToSurf = Inverse(fSurfToWorld); |
|
|
|
fSurfToWorldVec = Transpose(fWorldToSurf); |
|
fWorldToSurfVec = Transpose(fSurfToWorld); |
|
|
|
fSurfAngProbVec = FNormalize(fWorldToSurfVec * fAngProbVec); |
|
// This doesn't have anything to do with the surface node, but it |
|
// does have to do with the SurfAngProbVec, and this is as good a |
|
// place as any to do it. |
|
ISetAngProbCosines(); |
|
|
|
fSurfAlignVec = FNormalize(fWorldToSurfVec * fAlignVec); |
|
|
|
if( INeedMeshTree() ) |
|
IMakeMeshTree(); |
|
|
|
return true; |
|
} |
|
|
|
BOOL plDistributor::INeedMeshTree() const |
|
{ |
|
switch( fConformity ) |
|
{ |
|
case kConformAll: |
|
case kConformHeight: |
|
case kConformCheck: |
|
case kConformBase: |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
void plDistributor::IMakeMeshTree() const |
|
{ |
|
fMeshTree.Reset(); |
|
|
|
const Box3 nonFade = fMeshTree.NonFade(); |
|
int i; |
|
for( i = 0; i < fSurfMesh->getNumFaces(); i++ ) |
|
{ |
|
Point3 p0 = fSurfMesh->getVert(fSurfMesh->faces[i].getVert(0)) * fSurfToWorld; |
|
Point3 p1 = fSurfMesh->getVert(fSurfMesh->faces[i].getVert(1)) * fSurfToWorld; |
|
Point3 p2 = fSurfMesh->getVert(fSurfMesh->faces[i].getVert(2)) * fSurfToWorld; |
|
|
|
Box3 box(p0, p0); |
|
box += p1; |
|
box += p2; |
|
|
|
fMeshTree.AddBoxIData(box, nonFade, i); |
|
|
|
} |
|
} |
|
|
|
void plDistributor::IFindFaceSet(const Box3& box, Tab<Int32>& faces) const |
|
{ |
|
Tab<Int32> distNodes; |
|
fMeshTree.HarvestBox(box, distNodes); |
|
int i; |
|
for( i = 0; i < distNodes.Count(); i++ ) |
|
{ |
|
Int32 iFace = Int32(fMeshTree.GetBox(distNodes[i]).fIData); |
|
faces.Append(1, &iFace); |
|
} |
|
} |
|
|
|
BOOL plDistributor::IValidateSettings(INode* surfNode, plMeshCacheTab& cache) const |
|
{ |
|
if( !fInterface ) |
|
return false; |
|
|
|
if( !ISetSurfaceNode(surfNode) ) |
|
return false; |
|
|
|
if( !IReadyRepNodes(cache) ) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
BOOL plDistributor::Distribute(INode* surfNode, plDistribInstTab& reps, plMeshCacheTab& cache, plExportProgressBar& bar) const |
|
{ |
|
// Validate current settings. |
|
if( !IValidateSettings(surfNode, cache) ) |
|
return false; |
|
|
|
|
|
return IDistributeOverMesh(reps, cache, bar); |
|
} |
|
|
|
BOOL plDistributor::IDistributeOverMesh(plDistribInstTab& reps, plMeshCacheTab& cache, plExportProgressBar& bar) const |
|
{ |
|
int iUpdate = (fSurfMesh->getNumFaces() >> 4) + 1; |
|
int i; |
|
for( i = 0; i < fSurfMesh->getNumFaces(); i++ ) |
|
{ |
|
IDistributeOverFace(i, reps, cache); |
|
|
|
if( ((i / iUpdate) * iUpdate) == i ) |
|
{ |
|
if( bar.Update(nil) ) |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
Point3& plDistributor::IPerturbPoint(Point3& pt) const |
|
{ |
|
pt.x += fRand.RandMinusOneToOne() * fRndPosRadius; |
|
pt.y += fRand.RandMinusOneToOne() * fRndPosRadius; |
|
pt.z += fRand.RandMinusOneToOne() * fRndPosRadius; |
|
return pt; |
|
} |
|
|
|
Box3 plDistributor::ISetupGrid(const Point3& p0, const Point3& p1, const Point3& p2) const |
|
{ |
|
// Add half spacing to max's to protect against precision errors. |
|
Box3 box(p0, p0); |
|
box += p1; |
|
box += p2; |
|
|
|
Point3 mins, maxs; |
|
int i; |
|
for( i = 0; i < 3; i++ ) |
|
{ |
|
hsScalar t = box.Min()[i]; |
|
t /= fSpacing; |
|
t = hsFloor(t); |
|
t *= fSpacing; |
|
mins[i] = t; |
|
|
|
t = box.Max()[i]; |
|
t /= fSpacing; |
|
t = hsCeil(t); |
|
t *= fSpacing; |
|
maxs[i] = t + fSpacing*0.5f; |
|
} |
|
box = Box3(mins, maxs); |
|
|
|
return box; |
|
} |
|
|
|
hsBool plDistributor::IFailsProbBitmap(int iFace, const Point3& bary) const |
|
{ |
|
// If we don't have a probability map, or we don't have |
|
// valid coordinates into it, just return false. That is, |
|
// with no valid probability map, everything goes. |
|
int uvwChan = 1; |
|
Matrix3 uvtrans(true); |
|
Bitmap* bm = nil; |
|
UINT filtType = BMM_FILTER_PYRAMID; |
|
if( fProbBitmapTex ) |
|
{ |
|
uvwChan = fProbBitmapTex->GetMapChannel(); |
|
fProbBitmapTex->GetUVTransform(uvtrans); |
|
|
|
bm = fProbBitmapTex->GetBitmap(TimeValue(0)); |
|
|
|
if( bm && !bm->HasFilter() ) |
|
{ |
|
switch( fProbBitmapTex->GetFilterType() ) |
|
{ |
|
default: |
|
case FILTER_PYR: |
|
filtType = BMM_FILTER_PYRAMID; |
|
break; |
|
case FILTER_SAT: |
|
filtType = BMM_FILTER_SUM; |
|
break; |
|
case FILTER_NADA: |
|
filtType = BMM_FILTER_NONE; |
|
break; |
|
} |
|
} |
|
} |
|
else if( fProbLayerTex ) |
|
{ |
|
uvwChan = fProbLayerTex->GetMapChannel(); |
|
fProbLayerTex->GetUVTransform(uvtrans); |
|
|
|
bm = fProbLayerTex->GetBitmap(TimeValue(0)); |
|
|
|
} |
|
|
|
if( !bm ) |
|
return false; |
|
|
|
if( !bm->HasFilter() ) |
|
bm->SetFilter(filtType); |
|
|
|
bm->PrepareGChannels(&bm->Storage()->bi); |
|
|
|
if( !fSurfMesh->mapSupport(uvwChan) ) |
|
return false; |
|
|
|
if( !fSurfMesh->mapFaces(uvwChan) || !fSurfMesh->mapVerts(uvwChan) ) |
|
return false; |
|
|
|
// Lookup the appropriate texel value |
|
Point3 uvw; |
|
uvw = fSurfMesh->mapVerts(uvwChan)[fSurfMesh->mapFaces(uvwChan)[iFace].getTVert(0)] * bary[0]; |
|
uvw += fSurfMesh->mapVerts(uvwChan)[fSurfMesh->mapFaces(uvwChan)[iFace].getTVert(1)] * bary[1]; |
|
uvw += fSurfMesh->mapVerts(uvwChan)[fSurfMesh->mapFaces(uvwChan)[iFace].getTVert(2)] * bary[2]; |
|
|
|
uvw = uvw * uvtrans; |
|
|
|
float fu = uvw.x - int(uvw.x); |
|
if( fu < 0 ) |
|
fu += 1.f; |
|
float fv = 1.0f - (uvw.y - int(uvw.y)); |
|
if( fv < 0 ) |
|
fv += 1.f; |
|
float du = 1.f / bm->Width(); |
|
float dv = 1.f / bm->Height(); |
|
|
|
BMM_Color_fl evCol; |
|
bm->GetFiltered(fu, fv, du, dv, &evCol); |
|
|
|
float frac; |
|
switch( fProbColorChan ) |
|
{ |
|
case kRed: |
|
frac = evCol.r; |
|
break; |
|
case kGreen: |
|
frac = evCol.g; |
|
break; |
|
case kBlue: |
|
frac = evCol.b; |
|
break; |
|
case kAlpha: |
|
frac = evCol.a; |
|
break; |
|
case kAverageRedGreen: |
|
frac = (evCol.r + evCol.g) / 2.f; |
|
break; |
|
case kAverageRedGreenTimesAlpha: |
|
frac = (evCol.r + evCol.g) / 2.f * evCol.a; |
|
break; |
|
case kAverage: |
|
frac = (evCol.r + evCol.g + evCol.b ) / 3.f; |
|
break; |
|
case kAverageTimesAlpha: |
|
frac = (evCol.r + evCol.g + evCol.b ) / 3.f * evCol.a; |
|
break; |
|
case kMax: |
|
case kMaxColor: |
|
frac = hsMaximum(evCol.r, hsMaximum(evCol.g, evCol.b)); |
|
break; |
|
case kMaxColorTimesAlpha: |
|
frac = hsMaximum(evCol.r, hsMaximum(evCol.g, evCol.b)) * evCol.a; |
|
break; |
|
case kMaxRedGreen: |
|
frac = hsMaximum(evCol.r, evCol.g); |
|
break; |
|
case kMaxRedGreenTimesAlpha: |
|
frac = hsMaximum(evCol.r, evCol.g) * evCol.a; |
|
break; |
|
} |
|
|
|
if( fProbRemapFromHi != fProbRemapFromLo ) |
|
frac = fProbRemapToLo + (frac - fProbRemapFromLo) / (fProbRemapFromHi - fProbRemapFromLo) * (fProbRemapToHi - fProbRemapToLo); |
|
else |
|
frac = frac > fProbRemapFromHi ? fProbRemapToHi : fProbRemapToLo; |
|
|
|
return frac < fRand.RandZeroToOne(); |
|
} |
|
|
|
Point3 plDistributor::IGetSurfaceNormal(int iFace, const Point3& bary) const |
|
{ |
|
fSurfMesh->checkNormals(true); |
|
|
|
if( !fFaceNormals ) |
|
{ |
|
Face& face = fSurfMesh->faces[iFace]; |
|
Point3 norm = FNormalize(fSurfMesh->getNormal(face.getVert(0))) * bary[0]; |
|
norm += FNormalize(fSurfMesh->getNormal(face.getVert(1))) * bary[1]; |
|
norm += FNormalize(fSurfMesh->getNormal(face.getVert(2))) * bary[2]; |
|
|
|
return norm; |
|
} |
|
|
|
Point3 faceNorm = fSurfMesh->getFaceNormal(iFace); |
|
return FNormalize(faceNorm); |
|
} |
|
|
|
hsBool plDistributor::IFailsAngProb(int iFace, const Point3& bary) const |
|
{ |
|
if( fAngProbLo == fAngProbHi ) |
|
return false; |
|
|
|
Point3 norm = IGetSurfaceNormal(iFace, bary); |
|
|
|
float dot = DotProd(norm, fSurfAngProbVec); |
|
|
|
if( dot > fCosAngProbHi ) |
|
return true; |
|
if( dot < fCosAngProbLo ) |
|
return true; |
|
|
|
if( dot > fCosAngProbHiTrans ) |
|
{ |
|
float prob = fCosAngProbHi - dot; |
|
prob /= fCosAngProbHi - fCosAngProbHiTrans; |
|
return fRand.RandZeroToOne() >= prob; |
|
} |
|
|
|
if( dot < fCosAngProbLoTrans ) |
|
{ |
|
float prob = dot - fCosAngProbLo; |
|
prob /= fCosAngProbLoTrans - fCosAngProbLo; |
|
return fRand.RandZeroToOne() >= prob; |
|
} |
|
|
|
return false; |
|
|
|
} |
|
|
|
hsBool plDistributor::IFailsAltProb(int iFace, const Point3& bary) const |
|
{ |
|
if( fAltProbLo == fAltProbHi ) |
|
return false; |
|
|
|
Face& face = fSurfMesh->faces[iFace]; |
|
Point3 pos = fSurfMesh->getVert(fSurfMesh->faces[iFace].getVert(0)) * bary[0]; |
|
pos += fSurfMesh->getVert(fSurfMesh->faces[iFace].getVert(1)) * bary[1]; |
|
pos += fSurfMesh->getVert(fSurfMesh->faces[iFace].getVert(2)) * bary[2]; |
|
|
|
pos = pos * fSurfToWorld; |
|
|
|
if( pos.z > fAltProbHi ) |
|
return true; |
|
if( pos.z < fAltProbLo ) |
|
return true; |
|
if( pos.z < fAltProbLo + fAltProbTrans ) |
|
{ |
|
float prob = (pos.z - fAltProbLo) / fAltProbTrans; |
|
return fRand.RandZeroToOne() >= prob; |
|
} |
|
if( pos.z > fAltProbHi - fAltProbTrans ) |
|
{ |
|
float prob = (fAltProbHi - pos.z) / fAltProbTrans; |
|
return fRand.RandZeroToOne() >= prob; |
|
} |
|
|
|
return false; |
|
|
|
} |
|
|
|
// If |projGridPt - GridPt| < gridCubeRadius |
|
// and probBitmap->GetPixel(src->UVW(bary)) < RandomZeroToOne() |
|
// Also a generic random factor. |
|
hsBool plDistributor::IProbablyDoIt(int iFace, Point3& del, const Point3& bary) const |
|
{ |
|
if( fRand.RandZeroToOne() >= fOverallProb ) |
|
{ |
|
return false; |
|
} |
|
|
|
if( (kIsoNone == fIsolation) || (kIsoLow == fIsolation) ) |
|
{ |
|
if( LengthSquared(del) >= fSpacing*fSpacing ) |
|
{ |
|
return false; |
|
} |
|
|
|
Point3 faceNorm = fSurfMesh->FaceNormal(iFace, FALSE); |
|
if( DotProd(del, faceNorm) < 0 ) |
|
{ |
|
return false; |
|
} |
|
} |
|
|
|
if( IFailsAngProb(iFace, bary) ) |
|
{ |
|
return false; |
|
} |
|
|
|
if( IFailsAltProb(iFace, bary) ) |
|
{ |
|
return false; |
|
} |
|
|
|
if( IFailsProbBitmap(iFace, bary) ) |
|
{ |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
Point3 plDistributor::IPerpAxis(const Point3& p) const |
|
{ |
|
const hsScalar kMinLengthSquared = 1.e-1f; |
|
|
|
int minAx = p.MinComponent(); |
|
Point3 ax(0,0,0); |
|
ax[minAx] = 1.f; |
|
|
|
Point3 perp = p ^ ax; |
|
if( perp.LengthSquared() < kMinLengthSquared ) |
|
{ |
|
// hmm, think we might be screwed, but this shouldn't happen. |
|
} |
|
|
|
return perp = perp.FNormalize(); |
|
} |
|
|
|
// Generate local to world from face info (pos, normal, etc) |
|
Matrix3 plDistributor::IGenerateTransform(int iRepNode, int iFace, const Point3& pt, const Point3& bary) const |
|
{ |
|
const float kMinVecLengthSq = 1.e-6f; |
|
Matrix3 l2w(true); |
|
|
|
// First, set the scale |
|
Point3 scale; |
|
switch( fScaleLock ) |
|
{ |
|
case kLockX | kLockY: |
|
scale.x = fRand.RandRangeF(fScaleLo.x, fScaleHi.x); |
|
scale.y = scale.x; |
|
scale.z = fRand.RandRangeF(fScaleLo.z, fScaleHi.z); |
|
break; |
|
case kLockX | kLockY | kLockZ: |
|
scale.x = fRand.RandRangeF(fScaleLo.x, fScaleHi.x); |
|
scale.y = scale.z = scale.x; |
|
break; |
|
default: |
|
scale.x = fRand.RandRangeF(fScaleLo.x, fScaleHi.x); |
|
scale.y = fRand.RandRangeF(fScaleLo.y, fScaleHi.y); |
|
scale.z = fRand.RandRangeF(fScaleLo.z, fScaleHi.z); |
|
break; |
|
} |
|
|
|
l2w.Scale(scale); |
|
|
|
// Next up, get the rotation. |
|
// First we'll randomly rotate about local Z |
|
float azimRot = fRand.RandMinusOneToOne() * fAzimuthRange; |
|
Matrix3 azimMat; |
|
azimMat.SetRotateZ(azimRot); |
|
|
|
l2w = l2w * azimMat; |
|
|
|
// Now align with the surface. |
|
// Get the interpolated surface normal. |
|
Point3 surfNorm = IGetSurfaceNormal(iFace, bary); |
|
|
|
Matrix3 repNodeTM = fRepNodes[iRepNode]->GetNodeTM(TimeValue(0)); |
|
|
|
Point3 alignVec = repNodeTM.GetRow(2); |
|
alignVec = alignVec * fWorldToSurfVec; |
|
alignVec = FNormalize(alignVec); |
|
|
|
Point3 norm = surfNorm + (alignVec - surfNorm) * fAlignWgt; |
|
// The norm can come out of this zero length, if the surace normal |
|
// is directly opposite the "natural" up direction and the weight |
|
// is 50% (for example). In that case, this is just a bad place |
|
// to drop this replicant. |
|
if( norm.LengthSquared() < kMinVecLengthSq ) |
|
{ |
|
l2w.IdentityMatrix(); |
|
return l2w; |
|
} |
|
norm = norm.Normalize(); |
|
|
|
// Randomize through the cone around that. |
|
Point3 rndNorm = norm; |
|
Point3 rndDir = IPerpAxis(norm); |
|
Point3 rndOut = rndDir ^ norm; |
|
rndDir *= fRand.RandMinusOneToOne(); |
|
float len = hsSquareRoot(1.f - rndDir.LengthSquared()); |
|
rndOut *= len; |
|
if( fRand.RandMinusOneToOne() < 0 ) |
|
rndOut *= -1.f; |
|
Point3 rndPol = rndDir + rndOut; |
|
|
|
float polScale = fRand.RandZeroToOne() * fTanPolarRange; |
|
|
|
// Combine using the bunching factor |
|
polScale = polScale * (1.f - fPolarBunch) + polScale * polScale * fPolarBunch; |
|
|
|
rndPol *= polScale; |
|
rndNorm += rndPol; |
|
norm = rndNorm.Normalize(); |
|
|
|
// Have "up" alignment, now just generate random dir vector perpindicular to up |
|
Point3 dir = repNodeTM.GetRow(1); |
|
dir = dir * fWorldToSurfVec; |
|
Point3 out = dir ^ norm; |
|
if( out.LengthSquared() < kMinVecLengthSq ) |
|
{ |
|
if( fAzimuthRange < hsScalarPI * 0.5f ) |
|
{ |
|
l2w.IdentityMatrix(); |
|
return l2w; |
|
} |
|
else |
|
{ |
|
dir = IPerpAxis(norm); |
|
out = dir ^ norm; |
|
} |
|
} |
|
out = FNormalize(out); |
|
dir = norm ^ out; |
|
|
|
// If our "up" direction points into the surface, return an "up" direction |
|
// tangent to the surface. Also, make the "dir" direction point out from |
|
// the surface. So if the alignVec/fAlignWgt turns the replicant around |
|
// to penetrate the surface, it just lies down instead. |
|
// |
|
// There's an early out here, for the case where the surface normal is |
|
// exactly opposed to the destination normal. This usually means the |
|
// surface normal is directly opposite the alignVec. In that |
|
// case, we just want to bag it. |
|
if( DotProd(norm, surfNorm) < 0 ) |
|
{ |
|
dir = surfNorm; |
|
dir = dir.Normalize(); |
|
out = dir ^ norm; |
|
if( out.LengthSquared() < kMinVecLengthSq ) |
|
{ |
|
l2w.IdentityMatrix(); |
|
return l2w; |
|
} |
|
out = out.Normalize(); |
|
norm = out ^ dir; |
|
} |
|
|
|
Matrix3 align; |
|
align.Set(out, dir, norm, Point3(0,0,0)); |
|
|
|
l2w = l2w * align; |
|
|
|
|
|
// Lastly, set the position. |
|
Point3 pos = pt; |
|
const float offset = fRand.RandRangeF(fOffsetMin, fOffsetMax); |
|
pos += norm * offset; |
|
l2w.Translate(pos); |
|
|
|
l2w = l2w * fSurfNode->GetObjectTM(TimeValue(0)); |
|
|
|
return l2w; |
|
} |
|
|
|
int plDistributor::ISelectRepNode() const |
|
{ |
|
if( fRepNodes.Count() < 2 ) |
|
return 0; |
|
|
|
int i = fRand.RandRangeI(0, fRepNodes.Count()-1); |
|
|
|
return i; |
|
} |
|
|
|
BOOL plDistributor::ISetupNormals(plMaxNode* node, Mesh* mesh, BOOL radiateNorm) const |
|
{ |
|
const char* dbgNodeName = node->GetName(); |
|
|
|
UVVert *normMap = mesh->mapVerts(kNormMapChan); |
|
int numNormVerts = mesh->getNumMapVerts(kNormMapChan); |
|
if( !mesh->mapSupport(kNormMapChan) || !mesh->mapVerts(kNormMapChan) || !mesh->mapFaces(kNormMapChan) ) |
|
{ |
|
mesh->setMapSupport(kNormMapChan); |
|
|
|
mesh->setNumMapVerts(kNormMapChan, mesh->getNumVerts()); |
|
mesh->setNumMapFaces(kNormMapChan, mesh->getNumFaces()); |
|
} |
|
|
|
int i; |
|
if( radiateNorm ) |
|
{ |
|
Matrix3 otm = node->GetOTM(); |
|
Matrix3 invOtm = Inverse(otm); |
|
invOtm.SetTrans(Point3(0,0,0)); |
|
invOtm.ValidateFlags(); |
|
|
|
for( i = 0; i < mesh->getNumVerts(); i++ ) |
|
{ |
|
Point3 pos = mesh->getVert(i) * otm; |
|
pos = pos * invOtm; |
|
|
|
mesh->setMapVert(kNormMapChan, i, pos); |
|
} |
|
} |
|
else |
|
{ |
|
mesh->checkNormals(true); |
|
|
|
for( i = 0; i < mesh->getNumVerts(); i++ ) |
|
{ |
|
Point3 norm = mesh->getNormal(i); |
|
|
|
mesh->setMapVert(kNormMapChan, i, norm); |
|
} |
|
} |
|
|
|
TVFace* mapFaces = mesh->mapFaces(kNormMapChan); |
|
Face* faces = mesh->faces; |
|
for( i = 0; i < mesh->getNumFaces(); i++ ) |
|
{ |
|
mapFaces[i].setTVerts(faces[i].getVert(0), faces[i].getVert(1), faces[i].getVert(2)); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
BOOL plDistributor::ISetupSkinWeights(plMaxNode* node, Mesh* mesh, const Point3& flex) const |
|
{ |
|
const char* dbgNodeName = node->GetName(); |
|
|
|
Matrix3 otm = node->GetOTM(); |
|
|
|
Box3 bnd = mesh->getBoundingBox() * otm; |
|
|
|
float meshHeight = bnd.Max().z; |
|
float maxHeight = kMaxHeight; |
|
if( meshHeight > maxHeight ) |
|
maxHeight = meshHeight; |
|
float maxNorm = meshHeight / maxHeight; |
|
|
|
float flexibility = flex[0]; |
|
|
|
UVVert *wgtMap = mesh->mapVerts(kWgtMapChan); |
|
int numWgtVerts = mesh->getNumMapVerts(kWgtMapChan); |
|
if( !mesh->mapSupport(kWgtMapChan) || !mesh->mapVerts(kWgtMapChan) || !mesh->mapFaces(kWgtMapChan) ) |
|
{ |
|
mesh->setMapSupport(kWgtMapChan); |
|
|
|
mesh->setNumMapVerts(kWgtMapChan, mesh->getNumVerts()); |
|
mesh->setNumMapFaces(kWgtMapChan, mesh->getNumFaces()); |
|
} |
|
|
|
int i; |
|
for( i = 0; i < mesh->getNumVerts(); i++ ) |
|
{ |
|
Point3 pos = mesh->getVert(i) * otm; |
|
float wgt = pos.z / meshHeight; |
|
wgt *= wgt > 0 ? wgt : 0; |
|
wgt *= maxNorm; |
|
wgt *= flexibility; |
|
|
|
pos.x = wgt; |
|
pos.y = wgt; |
|
pos.z = wgt; |
|
|
|
mesh->setMapVert(kWgtMapChan, i, pos); |
|
} |
|
|
|
TVFace* mapFaces = mesh->mapFaces(kWgtMapChan); |
|
Face* faces = mesh->faces; |
|
for( i = 0; i < mesh->getNumFaces(); i++ ) |
|
{ |
|
mapFaces[i].setTVerts(faces[i].getVert(0), faces[i].getVert(1), faces[i].getVert(2)); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
BOOL plDistributor::IDuplicate2Sided(plMaxNode* node, Mesh* mesh) const |
|
{ |
|
Mtl* mtl = node->GetMtl(); |
|
|
|
BitArray faces(mesh->getNumFaces()); |
|
|
|
int num2Sided = 0; |
|
|
|
int origNumFaces = mesh->getNumFaces(); |
|
|
|
int i; |
|
for( i = 0; i < mesh->getNumFaces(); i++ ) |
|
{ |
|
if( hsMaterialConverter::IsTwoSided(mtl, mesh->faces[i].getMatID()) ) |
|
{ |
|
num2Sided++; |
|
faces.Set(i); |
|
} |
|
} |
|
|
|
if( !num2Sided ) |
|
return false; |
|
|
|
MeshDelta meshDelta(*mesh); |
|
meshDelta.CloneFaces(*mesh, faces); |
|
meshDelta.Apply(*mesh); |
|
|
|
BitArray verts(mesh->getNumVerts()); |
|
verts.SetAll(); |
|
const float kWeldThresh = 0.1f; |
|
meshDelta.WeldByThreshold(*mesh, verts, kWeldThresh); |
|
meshDelta.Apply(*mesh); |
|
|
|
hsAssert(origNumFaces + num2Sided == mesh->getNumFaces(), "Whoa, lost or gained, unexpected"); |
|
|
|
for( i = origNumFaces; i < mesh->getNumFaces(); i++ ) |
|
{ |
|
meshDelta.FlipNormal(*mesh, i); |
|
} |
|
meshDelta.Apply(*mesh); |
|
|
|
return true; |
|
} |
|
|
|
BOOL plDistributor::IReadyRepNodes(plMeshCacheTab& cache) const |
|
{ |
|
int i; |
|
for( i = 0; i < fRepNodes.Count(); i++ ) |
|
{ |
|
Mesh* mesh = nil; |
|
TriObject* obj = nil; |
|
if( IGetMesh(fRepNodes[i], obj, mesh) ) |
|
{ |
|
plMaxNode* repNode = (plMaxNode*)fRepNodes[i]; |
|
|
|
int iCache = cache.Count(); |
|
cache.SetCount(iCache + 1); |
|
|
|
cache[iCache].fMesh = TRACKED_NEW Mesh(*mesh); |
|
cache[iCache].fFlex = repNode->GetFlexibility(); |
|
|
|
if( obj ) |
|
obj->DeleteThis(); |
|
|
|
BOOL hasXImp = nil != repNode->GetXImposterComp(); |
|
|
|
ISetupNormals(repNode, cache[iCache].fMesh, hasXImp); |
|
|
|
ISetupSkinWeights(repNode, cache[iCache].fMesh, cache[iCache].fFlex); |
|
} |
|
else |
|
{ |
|
fRepNodes.Delete(i, 1); |
|
i--; |
|
} |
|
} |
|
|
|
return fRepNodes.Count() > 0; |
|
} |
|
|
|
void plDistributor::ClearReplicateNodes() |
|
{ |
|
fRepNodes.ZeroCount(); |
|
} |
|
|
|
void plDistributor::AddReplicateNode(INode* node) |
|
{ |
|
fRepNodes.Append(1, &node); |
|
} |
|
|
|
BOOL plDistributor::IProjectVertex(const Point3& pt, const Point3& dir, float maxDist, Tab<Int32>&faces, Point3& projPt) const |
|
{ |
|
BOOL retVal = false; |
|
plTriUtils triUtil; |
|
int i; |
|
for( i = 0; i < faces.Count(); i++ ) |
|
{ |
|
int iFace = faces[i]; |
|
const hsPoint3& p0 = hsP3(fSurfMesh->getVert(fSurfMesh->faces[iFace].getVert(0)) * fSurfToWorld); |
|
const hsPoint3& p1 = hsP3(fSurfMesh->getVert(fSurfMesh->faces[iFace].getVert(1)) * fSurfToWorld); |
|
const hsPoint3& p2 = hsP3(fSurfMesh->getVert(fSurfMesh->faces[iFace].getVert(2)) * fSurfToWorld); |
|
|
|
Point3 plnPt = pt; |
|
if( triUtil.ProjectOntoPlaneAlongVector(p0, p1, p2, hsV3(dir), hsP3(plnPt)) ) |
|
{ |
|
Point3 bary = plnPt; |
|
plTriUtils::Bary baryVal = triUtil.ComputeBarycentric(p0, p1, p2, hsP3(plnPt), hsP3(bary)); |
|
if( (plTriUtils::kOutsideTri != baryVal) && (plTriUtils::kDegenerateTri != baryVal) ) |
|
{ |
|
float dist = DotProd((pt - plnPt), dir); |
|
if( (dist <= maxDist) && (dist >= -maxDist) ) |
|
{ |
|
projPt = plnPt; |
|
maxDist = dist >= 0 ? dist : -dist; |
|
retVal = true; |
|
} |
|
} |
|
} |
|
|
|
} |
|
return retVal; |
|
} |
|
|
|
BOOL plDistributor::IConformCheck(Matrix3& l2w, int iRepNode, plMeshCacheTab& cache, int& iCache) const |
|
{ |
|
Matrix3 OTM = IOTM(iRepNode); |
|
Mesh* mesh = cache[iRepNode].fMesh; |
|
|
|
Point3 dir = l2w.VectorTransform(Point3(0.f, 0.f, 1.f)); |
|
dir = FNormalize(dir); |
|
|
|
const float kOneOverSqrt2 = 0.707107f; |
|
Point3 scalePt(kOneOverSqrt2, kOneOverSqrt2, 0.f); |
|
scalePt = l2w.VectorTransform(scalePt); |
|
float maxScaledDist = fMaxConform * scalePt.Length(); |
|
|
|
Box3 bnd = mesh->getBoundingBox() * OTM; |
|
bnd = Box3(Point3(bnd.Min().x, bnd.Min().y, -bnd.Max().z), bnd.Max()); |
|
bnd = bnd * l2w; |
|
Tab<Int32> faces; |
|
IFindFaceSet(bnd, faces); |
|
|
|
int i; |
|
for( i = 0; i < mesh->getNumVerts(); i++ ) |
|
{ |
|
Point3 pt = mesh->getVert(i) * OTM; |
|
pt.z = 0; |
|
|
|
pt = pt * l2w; |
|
|
|
Point3 projPt; |
|
if( !IProjectVertex(pt, dir, maxScaledDist, faces, projPt) ) |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
BOOL plDistributor::IConformAll(Matrix3& l2w, int iRepNode, plMeshCacheTab& cache, int& iCache) const |
|
{ |
|
Matrix3 OTM = IOTM(iRepNode); |
|
Mesh* mesh = cache[iRepNode].fMesh; |
|
|
|
Point3 dir = l2w.VectorTransform(Point3(0.f, 0.f, 1.f)); |
|
dir = FNormalize(dir); |
|
|
|
const float kOneOverSqrt2 = 0.707107f; |
|
Point3 scalePt(kOneOverSqrt2, kOneOverSqrt2, 0.f); |
|
scalePt = l2w.VectorTransform(scalePt); |
|
float maxScaledDist = fMaxConform * scalePt.Length(); |
|
|
|
Box3 bnd = mesh->getBoundingBox() * OTM; |
|
bnd = Box3(Point3(bnd.Min().x, bnd.Min().y, -bnd.Max().z), bnd.Max()); |
|
bnd = bnd * l2w; |
|
Tab<Int32> faces; |
|
IFindFaceSet(bnd, faces); |
|
|
|
// l2w, iRepNode, cache, &iCache, maxScaledDist, dir |
|
iCache = cache.Count(); |
|
cache.SetCount(iCache + 1); |
|
cache[iCache] = cache[iRepNode]; |
|
cache[iCache].fMesh = TRACKED_NEW Mesh(*mesh); |
|
|
|
mesh = cache[iCache].fMesh; |
|
|
|
Matrix3 v2w = OTM * l2w; |
|
Matrix3 w2v = Inverse(v2w); |
|
|
|
BOOL retVal = true; |
|
int i; |
|
for( i = 0; i < mesh->getNumVerts(); i++ ) |
|
{ |
|
Point3 pt = mesh->getVert(i) * OTM; |
|
pt.z = 0; |
|
|
|
pt = pt * l2w; |
|
|
|
Point3 projPt; |
|
if( !IProjectVertex(pt, dir, maxScaledDist, faces, projPt) ) |
|
{ |
|
retVal = false; |
|
break; |
|
} |
|
|
|
Point3 del = w2v.VectorTransform(projPt - pt); |
|
mesh->getVert(i) += del; |
|
} |
|
if( !retVal ) |
|
{ |
|
// delete cache[iCache].fMesh; |
|
delete mesh; |
|
cache.SetCount(iCache); |
|
iCache = iRepNode; |
|
} |
|
return retVal; |
|
} |
|
|
|
BOOL plDistributor::IConformHeight(Matrix3& l2w, int iRepNode, plMeshCacheTab& cache, int& iCache) const |
|
{ |
|
Matrix3 OTM = IOTM(iRepNode); |
|
Mesh* mesh = cache[iRepNode].fMesh; |
|
|
|
Point3 dir = l2w.VectorTransform(Point3(0.f, 0.f, 1.f)); |
|
dir = FNormalize(dir); |
|
|
|
const float kOneOverSqrt2 = 0.707107f; |
|
Point3 scalePt(kOneOverSqrt2, kOneOverSqrt2, 0.f); |
|
scalePt = l2w.VectorTransform(scalePt); |
|
float maxScaledDist = fMaxConform * scalePt.Length(); |
|
|
|
Box3 bnd = mesh->getBoundingBox() * OTM; |
|
bnd = Box3(Point3(bnd.Min().x, bnd.Min().y, -bnd.Max().z), bnd.Max()); |
|
bnd = bnd * l2w; |
|
Tab<Int32> faces; |
|
IFindFaceSet(bnd, faces); |
|
|
|
// l2w, iRepNode, cache, &iCache, maxScaledDist, dir |
|
iCache = cache.Count(); |
|
cache.SetCount(iCache + 1); |
|
cache[iCache] = cache[iRepNode]; |
|
cache[iCache].fMesh = TRACKED_NEW Mesh(*mesh); |
|
|
|
mesh = cache[iCache].fMesh; |
|
|
|
Matrix3 v2w = OTM * l2w; |
|
Matrix3 w2v = Inverse(v2w); |
|
|
|
|
|
float maxZ = (mesh->getBoundingBox() * OTM).Max().z; |
|
|
|
BOOL retVal = true; |
|
int i; |
|
for( i = 0; i < mesh->getNumVerts(); i++ ) |
|
{ |
|
Point3 pt = mesh->getVert(i) * OTM; |
|
|
|
float conScale = 1.f - pt.z / maxZ; |
|
if( conScale > 1.f ) |
|
conScale = 1.f; |
|
else if( conScale < 0 ) |
|
conScale = 0; |
|
|
|
pt.z = 0; |
|
|
|
pt = pt * l2w; |
|
|
|
Point3 projPt; |
|
if( !IProjectVertex(pt, dir, maxScaledDist, faces, projPt) ) |
|
{ |
|
retVal = false; |
|
break; |
|
} |
|
|
|
Point3 del = w2v.VectorTransform(projPt - pt); |
|
del *= conScale; |
|
mesh->getVert(i) += del; |
|
} |
|
if( !retVal ) |
|
{ |
|
delete cache[iCache].fMesh; |
|
cache.SetCount(iCache); |
|
iCache = iRepNode; |
|
} |
|
return retVal; |
|
} |
|
|
|
BOOL plDistributor::IConformBase(Matrix3& l2w, int iRepNode, plMeshCacheTab& cache, int& iCache) const |
|
{ |
|
Matrix3 OTM = IOTM(iRepNode); |
|
Mesh* mesh = cache[iRepNode].fMesh; |
|
|
|
Point3 dir = l2w.VectorTransform(Point3(0.f, 0.f, 1.f)); |
|
dir = FNormalize(dir); |
|
|
|
const float kOneOverSqrt2 = 0.707107f; |
|
Point3 scalePt(kOneOverSqrt2, kOneOverSqrt2, 0.f); |
|
scalePt = l2w.VectorTransform(scalePt); |
|
float maxScaledDist = fMaxConform * scalePt.Length(); |
|
|
|
Box3 bnd = mesh->getBoundingBox() * OTM; |
|
bnd = Box3(Point3(bnd.Min().x, bnd.Min().y, -bnd.Max().z), bnd.Max()); |
|
bnd = bnd * l2w; |
|
Tab<Int32> faces; |
|
IFindFaceSet(bnd, faces); |
|
|
|
// l2w, iRepNode, cache, &iCache, maxScaledDist, dir |
|
iCache = cache.Count(); |
|
cache.SetCount(iCache + 1); |
|
cache[iCache] = cache[iRepNode]; |
|
cache[iCache].fMesh = TRACKED_NEW Mesh(*mesh); |
|
|
|
mesh = cache[iCache].fMesh; |
|
|
|
Matrix3 v2w = OTM * l2w; |
|
Matrix3 w2v = Inverse(v2w); |
|
|
|
|
|
float maxZ = (mesh->getBoundingBox() * OTM).Max().z; |
|
|
|
BOOL retVal = true; |
|
int i; |
|
for( i = 0; i < mesh->getNumVerts(); i++ ) |
|
{ |
|
Point3 pt = mesh->getVert(i) * OTM; |
|
|
|
const float kMaxConformZ = 0.5f; |
|
if( pt.z < kMaxConformZ ) |
|
{ |
|
pt.z = 0; |
|
|
|
pt = pt * l2w; |
|
|
|
Point3 projPt; |
|
if( !IProjectVertex(pt, dir, maxScaledDist, faces, projPt) ) |
|
{ |
|
retVal = false; |
|
break; |
|
} |
|
|
|
Point3 del = w2v.VectorTransform(projPt - pt); |
|
mesh->getVert(i) += del; |
|
} |
|
} |
|
if( !retVal ) |
|
{ |
|
delete cache[iCache].fMesh; |
|
cache.SetCount(iCache); |
|
iCache = iRepNode; |
|
} |
|
return retVal; |
|
} |
|
|
|
BOOL plDistributor::IConform(Matrix3& l2w, int iRepNode, plMeshCacheTab& cache, int& iCache) const |
|
{ |
|
iCache = iRepNode; |
|
switch( fConformity ) |
|
{ |
|
case kConformAll: |
|
return IConformAll(l2w, iRepNode, cache, iCache); |
|
case kConformHeight: |
|
return IConformHeight(l2w, iRepNode, cache, iCache); |
|
case kConformCheck: |
|
return IConformCheck(l2w, iRepNode, cache, iCache); |
|
case kConformBase: |
|
return IConformBase(l2w, iRepNode, cache, iCache); |
|
} |
|
return true; |
|
} |
|
|
|
|
|
// Clone the replicant and set its transform appropriately. Should set the plMaxNode property |
|
// that the node's spans are collapseable? No, we'll make a separate component for that. |
|
void plDistributor::IReplicate(Matrix3& l2w, int iRepNode, plDistribInstTab& reps, plMeshCache& mCache) const |
|
{ |
|
INode* repNode = fRepNodes[iRepNode]; |
|
plDistribInstance inst; |
|
inst.fNode = repNode; |
|
inst.fNodeTM = l2w; |
|
inst.fObjectTM = repNode->GetObjectTM(TimeValue(0)) * Inverse(repNode->GetNodeTM(TimeValue(0))) * l2w; |
|
|
|
inst.fMesh = mCache.fMesh; |
|
|
|
inst.fFlex = mCache.fFlex; |
|
|
|
inst.fFade = fFade; |
|
|
|
inst.fBone = fBone; |
|
|
|
inst.fRigid = fRigid; |
|
|
|
reps.Append(1, &inst); |
|
} |
|
|
|
void plDistributor::IDistributeOverFace(int iFace, plDistribInstTab& reps, plMeshCacheTab& cache) const |
|
{ |
|
Point3 p0 = fSurfMesh->getVert(fSurfMesh->faces[iFace].getVert(0)); |
|
Point3 p1 = fSurfMesh->getVert(fSurfMesh->faces[iFace].getVert(1)); |
|
Point3 p2 = fSurfMesh->getVert(fSurfMesh->faces[iFace].getVert(2)); |
|
|
|
Box3 grid = ISetupGrid(p0, p1, p2); |
|
|
|
hsScalar delta = fSpacing; |
|
|
|
hsScalar x, y, z; |
|
for( x = grid.Min().x; x < grid.Max().x; x += delta ) |
|
{ |
|
for( y = grid.Min().y; y < grid.Max().y; y += delta ) |
|
{ |
|
for( z = grid.Min().z; z < grid.Max().z; z += delta ) |
|
{ |
|
Point3 pt(x, y, z); |
|
|
|
pt = IPerturbPoint(pt); |
|
|
|
Point3 plnPt = pt; |
|
Point3 bary; |
|
|
|
// Get Barycentric coord of projection of grid pt onto face |
|
plTriUtils triUtil; |
|
plTriUtils::Bary baryVal = triUtil.ComputeBarycentricProjection(hsP3(p0), hsP3(p1), hsP3(p2), hsP3(plnPt), hsP3(bary)); |
|
if( !(baryVal & (plTriUtils::kOutsideTri | plTriUtils::kDegenerateTri)) ) |
|
{ |
|
int iRepNode = ISelectRepNode(); |
|
|
|
Matrix3 l2w = IGenerateTransform(iRepNode, iFace, plnPt, bary); |
|
|
|
// l2w as ident means this position turned out to be not so good afterall. |
|
if( l2w.IsIdentity() ) |
|
{ |
|
continue; |
|
} |
|
|
|
Box3 clearBox; |
|
if( !ISpaceClear(iRepNode, l2w, clearBox, cache) ) |
|
{ |
|
continue; |
|
} |
|
|
|
int iCacheNode = iRepNode; |
|
if( !IConform(l2w, iRepNode, cache, iCacheNode) ) |
|
{ |
|
continue; |
|
} |
|
|
|
// If |projGridPt - GridPt| < gridCubeRadius |
|
// and probBitmap->GetPixel(src->UVW(bary)) < RandomZeroToOne() |
|
// Also a generic random factor. |
|
if( IProbablyDoIt(iFace, pt - plnPt, bary) ) |
|
{ |
|
IReplicate(l2w, iRepNode, reps, cache[iCacheNode]); |
|
|
|
IReserveSpace(clearBox); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
Matrix3 plDistributor::IInvOTM(int iRepNode) const |
|
{ |
|
// objectTM = otm * nodeTM |
|
// invOTM * objectTM = nodeTM |
|
// invOTM = nodeTM * invObjectTM |
|
INode* repNode = fRepNodes[iRepNode]; |
|
Matrix3 objectTM = repNode->GetObjectTM(TimeValue(0)); |
|
Matrix3 nodeTM = repNode->GetNodeTM(TimeValue(0)); |
|
Matrix3 invOTM = nodeTM * Inverse(objectTM); |
|
return invOTM; |
|
} |
|
|
|
Matrix3 plDistributor::IOTM(int iRepNode) const |
|
{ |
|
// objectTM = otm * nodeTM |
|
// objectTM * Inverse(nodeTM) = otm |
|
INode* repNode = fRepNodes[iRepNode]; |
|
Matrix3 objectTM = repNode->GetObjectTM(TimeValue(0)); |
|
Matrix3 nodeTM = repNode->GetNodeTM(TimeValue(0)); |
|
Matrix3 OTM = objectTM * Inverse(nodeTM); |
|
return OTM; |
|
} |
|
|
|
BOOL plDistributor::ISpaceClear(int iRepNode, const Matrix3& l2w, Box3& clearBox, plMeshCacheTab& cache) const |
|
{ |
|
if( !fDistTree ) |
|
return true; |
|
|
|
// If we have high isolation, |
|
// clearBox = Box3(Point3(-fSpacing*0.5f, -fSpacing*0.5f, 0), Point3(fSpacing*0.5f, fSpacing*0.5f, fSpacing)); |
|
// Else if we have medium isolation |
|
// clearBox = cache[iRepNode]->getBoundingBox(); // The mesh's bounds |
|
// Else if we have low isolation or None isolation |
|
// clearBox = Box3(Point3(-kSmallSpace, -kSmallSpace, 0), Point3(kSmallSpace, kSmallSpace, kSmallSpace)); // kSmallSpace ~= 0.5f or one or something |
|
|
|
// We want to set up the box (for high, low and none) in Post OTM space. So instead of multiplying |
|
// by l2w, we want to multiply box = box * invOTM * l2w (because l2w already has OTM folded in). When using |
|
// the mesh bounds (Medium), l2w is the right transform. |
|
// objectTM = otm * nodeTM |
|
// invOTM * objectTM = nodeTM |
|
// invOTM = nodeTM * invObjectTM |
|
const float kSmallSpace = 0.5f; |
|
switch( fIsolation ) |
|
{ |
|
case kIsoHigh: |
|
{ |
|
INode* repNode = fRepNodes[iRepNode]; |
|
Matrix3 objectTM = repNode->GetObjectTM(TimeValue(0)); |
|
Matrix3 nodeTM = repNode->GetNodeTM(TimeValue(0)); |
|
Matrix3 invOTM = nodeTM * Inverse(objectTM); |
|
clearBox = Box3(Point3(-fSpacing*0.5f, -fSpacing*0.5f, 0.f), Point3(fSpacing*0.5f, fSpacing*0.5f, fSpacing)); |
|
clearBox = clearBox * invOTM; |
|
} |
|
break; |
|
case kIsoMedium: |
|
clearBox = cache[iRepNode].fMesh->getBoundingBox(); // The mesh's bounds |
|
break; |
|
case kIsoLow: |
|
case kIsoNone: |
|
default: |
|
{ |
|
INode* repNode = fRepNodes[iRepNode]; |
|
Matrix3 objectTM = repNode->GetObjectTM(TimeValue(0)); |
|
Matrix3 nodeTM = repNode->GetNodeTM(TimeValue(0)); |
|
Matrix3 invOTM = nodeTM * Inverse(objectTM); |
|
clearBox = Box3(Point3(-kSmallSpace, -kSmallSpace, 0.f), Point3(kSmallSpace, kSmallSpace, kSmallSpace)); |
|
clearBox = clearBox * invOTM; |
|
} |
|
break; |
|
} |
|
|
|
clearBox = clearBox * l2w; |
|
|
|
return fDistTree->BoxClear(clearBox, fFade); |
|
} |
|
|
|
void plDistributor::IReserveSpace(const Box3& clearBox) const |
|
{ |
|
// if isolation isn't None, add the box. |
|
if( fDistTree && (fIsolation != kIsoNone) ) |
|
fDistTree->AddBox(clearBox, fFade); |
|
} |
|
|
|
UInt32 plDistributor::GetRandSeed() const |
|
{ |
|
return fRand.GetSeed(); |
|
} |
|
|
|
void plDistributor::SetRandSeed(int seed) |
|
{ |
|
fRand.SetSeed(seed); |
|
} |
|
|
|
void plDistributor::SetPolarRange(float deg) |
|
{ |
|
fPolarRange = hsScalarDegToRad(deg); |
|
fTanPolarRange = tan(fPolarRange); |
|
} |
|
|
|
void plDistributor::SetProbabilityBitmapTex(BitmapTex* t) |
|
{ |
|
fProbLayerTex = nil; |
|
fProbBitmapTex = t; |
|
} |
|
|
|
void plDistributor::SetProbabilityLayerTex(plLayerTex* t) |
|
{ |
|
fProbBitmapTex = nil; |
|
fProbLayerTex = t; |
|
} |
|
|
|
|
|
|