701 lines
20 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Additional permissions under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "HeadSpin.h"
#include "hsGeometry3.h"
#include "plClosest.h"
#include "hsFastMath.h"
static const float kRealSmall = 1.e-5f;
// Find the closest point on a line (or segment) to a point.
uint32_t plClosest::PointOnLine(const hsPoint3& p0,
const hsPoint3& p1, const hsVector3& v1,
hsPoint3& cp,
uint32_t clamp)
{
float invV1Sq = v1.MagnitudeSquared();
// v1 is also zero length. The two input points are the only options for output.
if( invV1Sq < kRealSmall )
{
cp = p1;
return kClamp;
}
float t = v1.InnerProduct(p0 - p1) / invV1Sq;
cp = p1;
// clamp to the ends of segment v1.
if( (clamp & kClampLower1) && (t < 0) )
{
return kClampLower1;
}
if( (clamp & kClampUpper1) && (t > 1.f) )
{
cp += v1;
return kClampUpper1;
}
cp += v1 * t;
return 0;
}
// Find closest points to each other from two lines (or segments).
uint32_t plClosest::PointsOnLines(const hsPoint3& p0, const hsVector3& v0,
const hsPoint3& p1, const hsVector3& v1,
hsPoint3& cp0, hsPoint3& cp1,
uint32_t clamp)
{
float invV0Sq = v0.MagnitudeSquared();
// First handle degenerate cases.
// v0 is zero length. Resolves to finding closest point on p1+v1 to p0
if( invV0Sq < kRealSmall )
{
cp0 = p0;
return kClamp0 | PointOnLine(p0, p1, v1, cp1, clamp);
}
invV0Sq = 1.f / invV0Sq;
// The real thing here, two non-zero length segments. (v1 can
// be zero length, it doesn't affect the math like |v0|=0 does,
// so we don't even bother to check. Only means maybe doing extra
// work, since we're using segment-segment math when all we really
// need is point-segment.)
// The parameterized points for along each of the segments are
// P(t0) = p0 + v0*t0
// P(t1) = p1 + v1*t1
//
// The closest point on p0+v0 to P(t1) is:
// cp0 = p0 + ((P(t1) - p0) dot v0) * v0 / ||v0|| ||x|| is mag squared here
// cp0 = p0 + v0*t0 => t0 = ((P(t1) - p0) dot v0 ) / ||v0||
// t0 = ((p1 + v1*t1 - p0) dot v0) / ||v0||
//
// The distance squared from P(t1) to cp0 is:
// (cp0 - P(t1)) dot (cp0 - P(t1))
//
// This expands out to:
//
// CV0 dot CV0 + 2 CV0 dot DV0 * t1 + (DV0 dot DV0) * t1^2
//
// where
//
// CV0 = p0 - p1 + ((p1 - p0) dot v0) / ||v0||) * v0 == vector from p1 to closest point on p0+v0
// and
// DV0 = ((v1 dot v0) / ||v0||) * v0 - v1 == ortho divergence vector of v1 from v0 negated.
//
// Taking the first derivative to find the local minimum of the function gives
//
// t1 = - (CV0 dot DV0) / (DV0 dot DV0)
// and
// t0 = ((p1 - v1 * t1 - p0) dot v0) / ||v0||
//
// which seems kind of obvious in retrospect.
hsVector3 p0subp1(&p0, &p1);
hsVector3 CV0 = p0subp1;
CV0 += v0 * p0subp1.InnerProduct(v0) * -invV0Sq;
hsVector3 DV0 = v0 * (v1.InnerProduct(v0) * invV0Sq) - v1;
// Check for the vectors v0 and v1 being parallel, in which case
// following the lines won't get us to any closer point.
float DV0dotDV0 = DV0.InnerProduct(DV0);
if( DV0dotDV0 < kRealSmall )
{
// If neither is clamped, return any two corresponding points.
// If one is clamped, return closest points in its clamp range.
// If both are clamped, well, both are clamped. The distance between
// points will no longer be the distance between lines.
// In any case, the distance between the points should be correct.
uint32_t clamp1 = PointOnLine(p0, p1, v1, cp1, clamp);
uint32_t clamp0 = PointOnLine(cp1, p0, v0, cp0, clamp >> 1);
return clamp1 | (clamp0 << 1);
}
uint32_t retVal = 0;
float t1 = - (CV0.InnerProduct(DV0)) / DV0dotDV0;
if( (clamp & kClampLower1) && (t1 <= 0) )
{
t1 = 0;
retVal |= kClampLower1;
}
else if( (clamp & kClampUpper1) && (t1 >= 1.f) )
{
t1 = 1.f;
retVal |= kClampUpper1;
}
float t0 = v0.InnerProduct(p0subp1 - v1 * t1) * -invV0Sq;
cp0 = p0;
if( (clamp & kClampUpper0) && (t0 >= 1.f) )
{
cp0 += v0;
retVal |= kClampUpper0;
}
else if( !(clamp & kClampLower0) || (t0 > 0) )
{
cp0 += v0 * t0;
}
else
{
retVal |= kClampLower0;
}
// If we clamped t0, we need to recalc t1 because the original
// calculation of t1 was based on an infinite p0+v0.
if( retVal & kClamp0 )
{
t1 = v1.InnerProduct(cp0 - p1) / v1.MagnitudeSquared();
retVal &= ~kClamp1;
if( (clamp & kClampLower1) && (t1 <= 0) )
{
t1 = 0;
retVal |= kClampLower1;
}
else if( (clamp & kClampUpper1) && (t1 >= 1.f) )
{
t1 = 1.f;
retVal |= kClampUpper1;
}
}
cp1 = p1;
cp1 += v1 * t1;
return retVal;;
}
bool plClosest::PointOnSphere(const hsPoint3& p0,
const hsPoint3& center, float rad,
hsPoint3& cp)
{
hsVector3 del(&p0, &center);
float dist = hsFastMath::InvSqrtAppr(del.MagnitudeSquared());
dist *= rad;
del *= dist;
cp = center;
cp += del;
return dist <= 1.f;
}
bool plClosest::PointOnBox(const hsPoint3& p0,
const hsPoint3& corner,
const hsVector3& axis0,
const hsVector3& axis1,
const hsVector3& axis2,
hsPoint3& cp)
{
uint32_t clamps = 0;
hsPoint3 currPt = corner;
clamps |= PointOnLine(p0, currPt, axis0, cp, kClamp);
currPt = cp;
clamps |= PointOnLine(p0, currPt, axis1, cp, kClamp);
currPt = cp;
clamps |= PointOnLine(p0, currPt, axis2, cp, kClamp);
return !clamps;
}
bool plClosest::PointOnSphere(const hsPoint3& p0, const hsVector3& v0,
const hsPoint3& center, float rad,
hsPoint3& cp,
uint32_t clamp)
{
// Does the line hit the sphere? If it does, we return the entry point in cp,
// otherwise we find the closest point on the sphere to the line.
/*
((p0 + v0*t) - center)^2 = rad
v0*v0 * t*t + 2 * v0*t * (p0-c) + (p0-c)^2 - rad = 0
t = (-2 * v0*(p0-c) +- sqrt(4 * (v0*(p0-c))^2 - 4 * v0*v0 * ((p0-c)^2 - rad) / 2 * v0 * v0
t = (-v0*(p0-c) +- sqrt((v0*(p0-c))^2 - v0*v0 * ((p0-c)^2 - rad) / v0 * v0
So, line hits the sphere if
(v0*(p0-c))^2 > v0*v0 * ((p0-c)^2 - rad)
If clamped, need additional checks on t before returning true
If line doesn't hit the sphere, we find the closest point on the line
to the center of the sphere, and return the intersection of the segment
connecting that point and the center with the sphere.
*/
float termA = v0.InnerProduct(v0);
if( termA < kRealSmall )
{
return PointOnSphere(p0, center, rad, cp);
}
hsVector3 p0Subc(&p0, &center);
float termB = v0.InnerProduct(p0Subc);
float termC = p0Subc.InnerProduct(p0Subc) - rad;
float disc = termB * termB - 4 * termA * termC;
if( disc >= 0 )
{
disc = sqrt(disc);
float t = (-termB - disc) / (2.f * termA);
if( (t < 0) && (clamp & kClampLower0) )
{
float tOut = (-termB + disc) / (2.f * termA);
if( tOut < 0 )
{
// Both isects are before beginning of clamped line.
cp = p0;
cp += v0 * tOut;
return false;
}
if( (tOut > 1.f) && (clamp & kClampUpper0) )
{
// The segment is entirely within the sphere. Take the closer end.
if( -t < tOut - 1.f )
{
cp = p0;
cp += v0 * t;
}
else
{
cp = p0;
cp += v0 * tOut;
}
return true;
}
// We pierce the sphere from inside.
cp = p0;
cp += v0 * tOut;
return true;
}
cp = p0;
cp += v0 * t;
if( (t > 1.f) && (clamp & kClampUpper0) )
{
return false;
}
return true;
}
// Okay, missed the sphere, find closest point.
hsPoint3 lp;
PointOnLine(center, p0, v0, lp, clamp);
PointOnSphere(lp, center, rad, cp);
return false;
}
bool plClosest::PointOnBox(const hsPoint3& p0, const hsVector3& v0,
const hsPoint3& corner,
const hsVector3& axis0,
const hsVector3& axis1,
const hsVector3& axis2,
hsPoint3& cp,
uint32_t clamp)
{
uint32_t clampRes = 0;
hsPoint3 cp0, cp1;
hsPoint3 currPt = corner;
clampRes |= PointsOnLines(p0, v0, currPt, axis0, cp0, cp1, clamp);
currPt = cp1;
clampRes |= PointsOnLines(p0, v0, currPt, axis1, cp0, cp1, clamp);
currPt = cp1;
clampRes |= PointsOnLines(p0, v0, currPt, axis2, cp0, cp1, clamp);
currPt = cp1;
return !clampRes;
}
bool plClosest::PointOnPlane(const hsPoint3& p0,
const hsPoint3& pPln, const hsVector3& n,
hsPoint3& cp)
{
/*
p' = p - ((p-pPln)*n)/|n| * n/|n|
p' = p + ((pPln-p)*n) * n / |n|^2
*/
float invNLen = hsFastMath::InvSqrt(n.MagnitudeSquared());
float nDotp = n.InnerProduct(pPln - p0);
cp = p0 + n * (nDotp * invNLen);
return nDotp >= 0;
}
bool plClosest::PointOnPlane(const hsPoint3& p0, const hsVector3& v0,
const hsPoint3& pPln, const hsVector3& n,
hsPoint3& cp,
uint32_t clamp)
{
/*
p0 + v0*t is on plane, i.e.
(p0 + v0*t) * n = pPln * n
p0 * n + v0 * n * t = pPln * n
v0 * n * t = (pPln - p0) * n
t = (pPln - p0) * n / (v0 * n)
Then clamp appropriately, garnish, and serve with wild rice.
*/
bool retVal = true;
float pDotn = n.InnerProduct(pPln - p0);
float v0Dotn = n.InnerProduct(v0);
if( (v0Dotn < -kRealSmall) || (v0Dotn > kRealSmall) )
{
float t = pDotn / v0Dotn;
if( (clamp & kClampLower) && (t < 0) )
{
t = 0;
retVal = false;
}
else if( (clamp & kClampUpper) && (t > 1.f) )
{
t = 1.f;
retVal = false;
}
cp = p0;
cp += v0 * t;
}
else
{
cp = p0 + v0 * 0.5f;
retVal = (pDotn > -kRealSmall) && (pDotn < kRealSmall);
}
return retVal;
}
bool plClosest::PointBetweenBoxes(const hsPoint3& aCorner,
const hsVector3& aAxis0,
const hsVector3& aAxis1,
const hsVector3& aAxis2,
const hsPoint3& bCorner,
const hsVector3& bAxis0,
const hsVector3& bAxis1,
const hsVector3& bAxis2,
hsPoint3& cp0, hsPoint3& cp1)
{
const hsVector3* aAxes[3] = { &aAxis0, &aAxis1, &aAxis2 };
const hsVector3* bAxes[3] = { &bAxis0, &bAxis1, &bAxis2 };
return PointBetweenBoxes(aCorner, aAxes, bCorner, bAxes, cp0, cp1);
}
#if 0 // TRASH THIS
bool plClosest::PointBetweenBoxes(const hsPoint3& aCorner,
const hsVector3* aAxes[3],
const hsPoint3& bCorner,
const hsVector3* bAxes[3],
hsPoint3& cp0, hsPoint3& cp1)
{
hsPoint3 aCurrPt = aCorner;
hsPoint3 bCurrPt = bCorner;
hsPoint3 bStartPt[3];
bStartPt[0] = bStartPt[1] = bStartPt[2] = bCorner;
bool retVal = true;
int i, j;
for( i = 0; i < 3; i++ )
{
hsPoint3 aBestPt;
hsPoint3 bBestPt;
float minDistSq = 1.e33f;
for( j = 0; j < 3; j++ )
{
hsPoint3 aNextPt, bNextPt;
PointsOnLines(aCurrPt, *aAxes[i],
bStartPt[j], *bAxes[j],
aNextPt, bNextPt,
plClosest::kClamp);
float distSq = hsVector3(&aNextPt, &bNextPt).MagnitudeSquared();
if( distSq < minDistSq )
{
aBestPt = aNextPt;
bBestPt = bNextPt;
if( distSq < kRealSmall )
retVal = true;
minDistSq = distSq;
}
hsVector3 bMove(&bNextPt, &bStartPt[j]);
int k;
for( k = 0; k < 3; k++ )
{
if( k != j )
bStartPt[k] += bMove;
}
}
aCurrPt = aBestPt;
bCurrPt = bBestPt;
}
cp0 = aCurrPt;
cp1 = bCurrPt;
return retVal;
}
#elif 0 // TRASH THIS
bool plClosest::PointBetweenBoxes(const hsPoint3& aCorner,
const hsVector3* aAxes[3],
const hsPoint3& bCorner,
const hsVector3* bAxes[3],
hsPoint3& cp0, hsPoint3& cp1)
{
/*
Six combinations to try to go through every possible
combination of axes from A and B
00 00 01 01 02 02
11 12 12 10 10 11
22 21 20 22 21 20
*/
int bIdx0 = 0;
int bIdx1 = 1;
int bIdx2 = 2;
hsPoint3 aBestPt, bBestPt;
float minDistSq = 1.e33f;
bool retVal = false;
int i;
for( i = 0; i < 6; i++ )
{
hsPoint3 aCurrPt = aCorner;
hsPoint3 bCurrPt = bCorner;
hsPoint3 aNextPt, bNextPt;
PointsOnLines(aCurrPt, *aAxes[0],
bCurrPt, *bAxes[bIdx0],
aNextPt, bNextPt,
plClosest::kClamp);
aCurrPt = aNextPt;
bCurrPt = bNextPt;
PointsOnLines(aCurrPt, *aAxes[1],
bCurrPt, *bAxes[bIdx1],
aNextPt, bNextPt,
plClosest::kClamp);
aCurrPt = aNextPt;
bCurrPt = bNextPt;
PointsOnLines(aCurrPt, *aAxes[2],
bCurrPt, *bAxes[bIdx2],
aNextPt, bNextPt,
plClosest::kClamp);
float distSq = hsVector3(&aNextPt, &bNextPt).MagnitudeSquared();
if( distSq < minDistSq )
{
aBestPt = aNextPt;
bBestPt = bNextPt;
if( distSq < kRealSmall )
retVal = true;
minDistSq = distSq;
}
if( i & 0x1 )
{
bIdx0++;
bIdx1 = bIdx0 < 2 ? bIdx0+1 : 0;
bIdx2 = bIdx1 < 2 ? bIdx1+1 : 0;
}
else
{
int t = bIdx1;
bIdx1 = bIdx2;
bIdx2 = t;
}
}
cp0 = aBestPt;
cp1 = bBestPt;
return retVal;
}
#else // TRASH THIS
bool plClosest::PointBetweenBoxes(const hsPoint3& aCorner,
const hsVector3* aAxes[3],
const hsPoint3& bCorner,
const hsVector3* bAxes[3],
hsPoint3& cp0, hsPoint3& cp1)
{
/*
Six combinations to try to go through every possible
combination of axes from A and B
00 00 01 01 02 02
11 12 12 10 10 11
22 21 20 22 21 20
*/
struct trial {
int aIdx[3];
int bIdx[3];
} trials[36];
int tNext = 0;
int k,l;
for( k = 0; k < 3; k++ )
{
for( l = 0; l < 3; l++ )
{
int kPlus = k < 2 ? k+1 : 0;
int kPlusPlus = kPlus < 2 ? kPlus+1 : 0;
int lPlus = l < 2 ? l+1 : 0;
int lPlusPlus = lPlus < 2 ? lPlus+1 : 0;
trials[tNext].aIdx[0] = k;
trials[tNext].bIdx[0] = l;
trials[tNext].aIdx[1] = kPlus;
trials[tNext].bIdx[1] = lPlus;
trials[tNext].aIdx[2] = kPlusPlus;
trials[tNext].bIdx[2] = lPlusPlus;
tNext++;
trials[tNext].aIdx[0] = k;
trials[tNext].bIdx[0] = l;
trials[tNext].aIdx[1] = kPlusPlus;
trials[tNext].bIdx[1] = lPlusPlus;
trials[tNext].aIdx[2] = kPlus;
trials[tNext].bIdx[2] = lPlus;
tNext++;
trials[tNext].aIdx[0] = k;
trials[tNext].bIdx[0] = l;
trials[tNext].aIdx[1] = kPlus;
trials[tNext].bIdx[1] = lPlusPlus;
trials[tNext].aIdx[2] = kPlusPlus;
trials[tNext].bIdx[2] = lPlus;
tNext++;
trials[tNext].aIdx[0] = k;
trials[tNext].bIdx[0] = l;
trials[tNext].aIdx[1] = kPlusPlus;
trials[tNext].bIdx[1] = lPlus;
trials[tNext].aIdx[2] = kPlus;
trials[tNext].bIdx[2] = lPlusPlus;
tNext++;
}
}
hsPoint3 aBestPt, bBestPt;
float minDistSq = 1.e33f;
bool retVal = false;
int i;
for( i = 0; i < 36; i++ )
{
hsPoint3 aCurrPt = aCorner;
hsPoint3 bCurrPt = bCorner;
hsPoint3 aNextPt, bNextPt;
PointsOnLines(aCurrPt, *aAxes[trials[i].aIdx[0]],
bCurrPt, *bAxes[trials[i].bIdx[0]],
aNextPt, bNextPt,
plClosest::kClamp);
aCurrPt = aNextPt;
bCurrPt = bNextPt;
PointsOnLines(aCurrPt, *aAxes[trials[i].aIdx[1]],
bCurrPt, *bAxes[trials[i].bIdx[1]],
aNextPt, bNextPt,
plClosest::kClamp);
aCurrPt = aNextPt;
bCurrPt = bNextPt;
PointsOnLines(aCurrPt, *aAxes[trials[i].aIdx[2]],
bCurrPt, *bAxes[trials[i].bIdx[2]],
aNextPt, bNextPt,
plClosest::kClamp);
float distSq = hsVector3(&aNextPt, &bNextPt).MagnitudeSquared();
if( distSq < minDistSq )
{
aBestPt = aNextPt;
bBestPt = bNextPt;
if( distSq < kRealSmall )
retVal = true;
minDistSq = distSq;
}
}
cp0 = aBestPt;
cp1 = bBestPt;
return retVal;
}
#endif // TRASH THIS