You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1566 lines
48 KiB
1566 lines
48 KiB
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
// Author: wan@google.com (Zhanyong Wan) |
|
|
|
// Google Test - The Google C++ Testing Framework |
|
// |
|
// This file tests the universal value printer. |
|
|
|
#include "gtest/gtest-printers.h" |
|
|
|
#include <ctype.h> |
|
#include <limits.h> |
|
#include <string.h> |
|
#include <algorithm> |
|
#include <deque> |
|
#include <list> |
|
#include <map> |
|
#include <set> |
|
#include <sstream> |
|
#include <string> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "gtest/gtest.h" |
|
|
|
// hash_map and hash_set are available under Visual C++. |
|
#if _MSC_VER |
|
# define GTEST_HAS_HASH_MAP_ 1 // Indicates that hash_map is available. |
|
# include <hash_map> // NOLINT |
|
# define GTEST_HAS_HASH_SET_ 1 // Indicates that hash_set is available. |
|
# include <hash_set> // NOLINT |
|
#endif // GTEST_OS_WINDOWS |
|
|
|
// Some user-defined types for testing the universal value printer. |
|
|
|
// An anonymous enum type. |
|
enum AnonymousEnum { |
|
kAE1 = -1, |
|
kAE2 = 1 |
|
}; |
|
|
|
// An enum without a user-defined printer. |
|
enum EnumWithoutPrinter { |
|
kEWP1 = -2, |
|
kEWP2 = 42 |
|
}; |
|
|
|
// An enum with a << operator. |
|
enum EnumWithStreaming { |
|
kEWS1 = 10 |
|
}; |
|
|
|
std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) { |
|
return os << (e == kEWS1 ? "kEWS1" : "invalid"); |
|
} |
|
|
|
// An enum with a PrintTo() function. |
|
enum EnumWithPrintTo { |
|
kEWPT1 = 1 |
|
}; |
|
|
|
void PrintTo(EnumWithPrintTo e, std::ostream* os) { |
|
*os << (e == kEWPT1 ? "kEWPT1" : "invalid"); |
|
} |
|
|
|
// A class implicitly convertible to BiggestInt. |
|
class BiggestIntConvertible { |
|
public: |
|
operator ::testing::internal::BiggestInt() const { return 42; } |
|
}; |
|
|
|
// A user-defined unprintable class template in the global namespace. |
|
template <typename T> |
|
class UnprintableTemplateInGlobal { |
|
public: |
|
UnprintableTemplateInGlobal() : value_() {} |
|
private: |
|
T value_; |
|
}; |
|
|
|
// A user-defined streamable type in the global namespace. |
|
class StreamableInGlobal { |
|
public: |
|
virtual ~StreamableInGlobal() {} |
|
}; |
|
|
|
inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) { |
|
os << "StreamableInGlobal"; |
|
} |
|
|
|
void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) { |
|
os << "StreamableInGlobal*"; |
|
} |
|
|
|
namespace foo { |
|
|
|
// A user-defined unprintable type in a user namespace. |
|
class UnprintableInFoo { |
|
public: |
|
UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); } |
|
private: |
|
char xy_[8]; |
|
double z_; |
|
}; |
|
|
|
// A user-defined printable type in a user-chosen namespace. |
|
struct PrintableViaPrintTo { |
|
PrintableViaPrintTo() : value() {} |
|
int value; |
|
}; |
|
|
|
void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) { |
|
*os << "PrintableViaPrintTo: " << x.value; |
|
} |
|
|
|
// A type with a user-defined << for printing its pointer. |
|
struct PointerPrintable { |
|
}; |
|
|
|
::std::ostream& operator<<(::std::ostream& os, |
|
const PointerPrintable* /* x */) { |
|
return os << "PointerPrintable*"; |
|
} |
|
|
|
// A user-defined printable class template in a user-chosen namespace. |
|
template <typename T> |
|
class PrintableViaPrintToTemplate { |
|
public: |
|
explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {} |
|
|
|
const T& value() const { return value_; } |
|
private: |
|
T value_; |
|
}; |
|
|
|
template <typename T> |
|
void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) { |
|
*os << "PrintableViaPrintToTemplate: " << x.value(); |
|
} |
|
|
|
// A user-defined streamable class template in a user namespace. |
|
template <typename T> |
|
class StreamableTemplateInFoo { |
|
public: |
|
StreamableTemplateInFoo() : value_() {} |
|
|
|
const T& value() const { return value_; } |
|
private: |
|
T value_; |
|
}; |
|
|
|
template <typename T> |
|
inline ::std::ostream& operator<<(::std::ostream& os, |
|
const StreamableTemplateInFoo<T>& x) { |
|
return os << "StreamableTemplateInFoo: " << x.value(); |
|
} |
|
|
|
} // namespace foo |
|
|
|
namespace testing { |
|
namespace gtest_printers_test { |
|
|
|
using ::std::deque; |
|
using ::std::list; |
|
using ::std::make_pair; |
|
using ::std::map; |
|
using ::std::multimap; |
|
using ::std::multiset; |
|
using ::std::pair; |
|
using ::std::set; |
|
using ::std::vector; |
|
using ::testing::PrintToString; |
|
using ::testing::internal::FormatForComparisonFailureMessage; |
|
using ::testing::internal::ImplicitCast_; |
|
using ::testing::internal::NativeArray; |
|
using ::testing::internal::RE; |
|
using ::testing::internal::Strings; |
|
using ::testing::internal::UniversalPrint; |
|
using ::testing::internal::UniversalPrinter; |
|
using ::testing::internal::UniversalTersePrint; |
|
using ::testing::internal::UniversalTersePrintTupleFieldsToStrings; |
|
using ::testing::internal::kReference; |
|
using ::testing::internal::string; |
|
|
|
#if GTEST_HAS_TR1_TUPLE |
|
using ::std::tr1::make_tuple; |
|
using ::std::tr1::tuple; |
|
#endif |
|
|
|
// The hash_* classes are not part of the C++ standard. STLport |
|
// defines them in namespace std. MSVC defines them in ::stdext. GCC |
|
// defines them in ::. |
|
#ifdef _STLP_HASH_MAP // We got <hash_map> from STLport. |
|
using ::std::hash_map; |
|
using ::std::hash_set; |
|
using ::std::hash_multimap; |
|
using ::std::hash_multiset; |
|
#elif _MSC_VER |
|
using ::stdext::hash_map; |
|
using ::stdext::hash_set; |
|
using ::stdext::hash_multimap; |
|
using ::stdext::hash_multiset; |
|
#endif |
|
|
|
// Prints a value to a string using the universal value printer. This |
|
// is a helper for testing UniversalPrinter<T>::Print() for various types. |
|
template <typename T> |
|
string Print(const T& value) { |
|
::std::stringstream ss; |
|
UniversalPrinter<T>::Print(value, &ss); |
|
return ss.str(); |
|
} |
|
|
|
// Prints a value passed by reference to a string, using the universal |
|
// value printer. This is a helper for testing |
|
// UniversalPrinter<T&>::Print() for various types. |
|
template <typename T> |
|
string PrintByRef(const T& value) { |
|
::std::stringstream ss; |
|
UniversalPrinter<T&>::Print(value, &ss); |
|
return ss.str(); |
|
} |
|
|
|
// Tests printing various enum types. |
|
|
|
TEST(PrintEnumTest, AnonymousEnum) { |
|
EXPECT_EQ("-1", Print(kAE1)); |
|
EXPECT_EQ("1", Print(kAE2)); |
|
} |
|
|
|
TEST(PrintEnumTest, EnumWithoutPrinter) { |
|
EXPECT_EQ("-2", Print(kEWP1)); |
|
EXPECT_EQ("42", Print(kEWP2)); |
|
} |
|
|
|
TEST(PrintEnumTest, EnumWithStreaming) { |
|
EXPECT_EQ("kEWS1", Print(kEWS1)); |
|
EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0))); |
|
} |
|
|
|
TEST(PrintEnumTest, EnumWithPrintTo) { |
|
EXPECT_EQ("kEWPT1", Print(kEWPT1)); |
|
EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0))); |
|
} |
|
|
|
// Tests printing a class implicitly convertible to BiggestInt. |
|
|
|
TEST(PrintClassTest, BiggestIntConvertible) { |
|
EXPECT_EQ("42", Print(BiggestIntConvertible())); |
|
} |
|
|
|
// Tests printing various char types. |
|
|
|
// char. |
|
TEST(PrintCharTest, PlainChar) { |
|
EXPECT_EQ("'\\0'", Print('\0')); |
|
EXPECT_EQ("'\\'' (39, 0x27)", Print('\'')); |
|
EXPECT_EQ("'\"' (34, 0x22)", Print('"')); |
|
EXPECT_EQ("'?' (63, 0x3F)", Print('?')); |
|
EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\')); |
|
EXPECT_EQ("'\\a' (7)", Print('\a')); |
|
EXPECT_EQ("'\\b' (8)", Print('\b')); |
|
EXPECT_EQ("'\\f' (12, 0xC)", Print('\f')); |
|
EXPECT_EQ("'\\n' (10, 0xA)", Print('\n')); |
|
EXPECT_EQ("'\\r' (13, 0xD)", Print('\r')); |
|
EXPECT_EQ("'\\t' (9)", Print('\t')); |
|
EXPECT_EQ("'\\v' (11, 0xB)", Print('\v')); |
|
EXPECT_EQ("'\\x7F' (127)", Print('\x7F')); |
|
EXPECT_EQ("'\\xFF' (255)", Print('\xFF')); |
|
EXPECT_EQ("' ' (32, 0x20)", Print(' ')); |
|
EXPECT_EQ("'a' (97, 0x61)", Print('a')); |
|
} |
|
|
|
// signed char. |
|
TEST(PrintCharTest, SignedChar) { |
|
EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0'))); |
|
EXPECT_EQ("'\\xCE' (-50)", |
|
Print(static_cast<signed char>(-50))); |
|
} |
|
|
|
// unsigned char. |
|
TEST(PrintCharTest, UnsignedChar) { |
|
EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0'))); |
|
EXPECT_EQ("'b' (98, 0x62)", |
|
Print(static_cast<unsigned char>('b'))); |
|
} |
|
|
|
// Tests printing other simple, built-in types. |
|
|
|
// bool. |
|
TEST(PrintBuiltInTypeTest, Bool) { |
|
EXPECT_EQ("false", Print(false)); |
|
EXPECT_EQ("true", Print(true)); |
|
} |
|
|
|
// wchar_t. |
|
TEST(PrintBuiltInTypeTest, Wchar_t) { |
|
EXPECT_EQ("L'\\0'", Print(L'\0')); |
|
EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\'')); |
|
EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"')); |
|
EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?')); |
|
EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\')); |
|
EXPECT_EQ("L'\\a' (7)", Print(L'\a')); |
|
EXPECT_EQ("L'\\b' (8)", Print(L'\b')); |
|
EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f')); |
|
EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n')); |
|
EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r')); |
|
EXPECT_EQ("L'\\t' (9)", Print(L'\t')); |
|
EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v')); |
|
EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F')); |
|
EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF')); |
|
EXPECT_EQ("L' ' (32, 0x20)", Print(L' ')); |
|
EXPECT_EQ("L'a' (97, 0x61)", Print(L'a')); |
|
EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576))); |
|
EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D))); |
|
} |
|
|
|
// Test that Int64 provides more storage than wchar_t. |
|
TEST(PrintTypeSizeTest, Wchar_t) { |
|
EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64)); |
|
} |
|
|
|
// Various integer types. |
|
TEST(PrintBuiltInTypeTest, Integer) { |
|
EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255))); // uint8 |
|
EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128))); // int8 |
|
EXPECT_EQ("65535", Print(USHRT_MAX)); // uint16 |
|
EXPECT_EQ("-32768", Print(SHRT_MIN)); // int16 |
|
EXPECT_EQ("4294967295", Print(UINT_MAX)); // uint32 |
|
EXPECT_EQ("-2147483648", Print(INT_MIN)); // int32 |
|
EXPECT_EQ("18446744073709551615", |
|
Print(static_cast<testing::internal::UInt64>(-1))); // uint64 |
|
EXPECT_EQ("-9223372036854775808", |
|
Print(static_cast<testing::internal::Int64>(1) << 63)); // int64 |
|
} |
|
|
|
// Size types. |
|
TEST(PrintBuiltInTypeTest, Size_t) { |
|
EXPECT_EQ("1", Print(sizeof('a'))); // size_t. |
|
#if !GTEST_OS_WINDOWS |
|
// Windows has no ssize_t type. |
|
EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2))); // ssize_t. |
|
#endif // !GTEST_OS_WINDOWS |
|
} |
|
|
|
// Floating-points. |
|
TEST(PrintBuiltInTypeTest, FloatingPoints) { |
|
EXPECT_EQ("1.5", Print(1.5f)); // float |
|
EXPECT_EQ("-2.5", Print(-2.5)); // double |
|
} |
|
|
|
// Since ::std::stringstream::operator<<(const void *) formats the pointer |
|
// output differently with different compilers, we have to create the expected |
|
// output first and use it as our expectation. |
|
static string PrintPointer(const void *p) { |
|
::std::stringstream expected_result_stream; |
|
expected_result_stream << p; |
|
return expected_result_stream.str(); |
|
} |
|
|
|
// Tests printing C strings. |
|
|
|
// const char*. |
|
TEST(PrintCStringTest, Const) { |
|
const char* p = "World"; |
|
EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p)); |
|
} |
|
|
|
// char*. |
|
TEST(PrintCStringTest, NonConst) { |
|
char p[] = "Hi"; |
|
EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"", |
|
Print(static_cast<char*>(p))); |
|
} |
|
|
|
// NULL C string. |
|
TEST(PrintCStringTest, Null) { |
|
const char* p = NULL; |
|
EXPECT_EQ("NULL", Print(p)); |
|
} |
|
|
|
// Tests that C strings are escaped properly. |
|
TEST(PrintCStringTest, EscapesProperly) { |
|
const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a"; |
|
EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f" |
|
"\\n\\r\\t\\v\\x7F\\xFF a\"", |
|
Print(p)); |
|
} |
|
|
|
|
|
|
|
// MSVC compiler can be configured to define whar_t as a typedef |
|
// of unsigned short. Defining an overload for const wchar_t* in that case |
|
// would cause pointers to unsigned shorts be printed as wide strings, |
|
// possibly accessing more memory than intended and causing invalid |
|
// memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when |
|
// wchar_t is implemented as a native type. |
|
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) |
|
|
|
// const wchar_t*. |
|
TEST(PrintWideCStringTest, Const) { |
|
const wchar_t* p = L"World"; |
|
EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p)); |
|
} |
|
|
|
// wchar_t*. |
|
TEST(PrintWideCStringTest, NonConst) { |
|
wchar_t p[] = L"Hi"; |
|
EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"", |
|
Print(static_cast<wchar_t*>(p))); |
|
} |
|
|
|
// NULL wide C string. |
|
TEST(PrintWideCStringTest, Null) { |
|
const wchar_t* p = NULL; |
|
EXPECT_EQ("NULL", Print(p)); |
|
} |
|
|
|
// Tests that wide C strings are escaped properly. |
|
TEST(PrintWideCStringTest, EscapesProperly) { |
|
const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r', |
|
'\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'}; |
|
EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f" |
|
"\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"", |
|
Print(static_cast<const wchar_t*>(s))); |
|
} |
|
#endif // native wchar_t |
|
|
|
// Tests printing pointers to other char types. |
|
|
|
// signed char*. |
|
TEST(PrintCharPointerTest, SignedChar) { |
|
signed char* p = reinterpret_cast<signed char*>(0x1234); |
|
EXPECT_EQ(PrintPointer(p), Print(p)); |
|
p = NULL; |
|
EXPECT_EQ("NULL", Print(p)); |
|
} |
|
|
|
// const signed char*. |
|
TEST(PrintCharPointerTest, ConstSignedChar) { |
|
signed char* p = reinterpret_cast<signed char*>(0x1234); |
|
EXPECT_EQ(PrintPointer(p), Print(p)); |
|
p = NULL; |
|
EXPECT_EQ("NULL", Print(p)); |
|
} |
|
|
|
// unsigned char*. |
|
TEST(PrintCharPointerTest, UnsignedChar) { |
|
unsigned char* p = reinterpret_cast<unsigned char*>(0x1234); |
|
EXPECT_EQ(PrintPointer(p), Print(p)); |
|
p = NULL; |
|
EXPECT_EQ("NULL", Print(p)); |
|
} |
|
|
|
// const unsigned char*. |
|
TEST(PrintCharPointerTest, ConstUnsignedChar) { |
|
const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234); |
|
EXPECT_EQ(PrintPointer(p), Print(p)); |
|
p = NULL; |
|
EXPECT_EQ("NULL", Print(p)); |
|
} |
|
|
|
// Tests printing pointers to simple, built-in types. |
|
|
|
// bool*. |
|
TEST(PrintPointerToBuiltInTypeTest, Bool) { |
|
bool* p = reinterpret_cast<bool*>(0xABCD); |
|
EXPECT_EQ(PrintPointer(p), Print(p)); |
|
p = NULL; |
|
EXPECT_EQ("NULL", Print(p)); |
|
} |
|
|
|
// void*. |
|
TEST(PrintPointerToBuiltInTypeTest, Void) { |
|
void* p = reinterpret_cast<void*>(0xABCD); |
|
EXPECT_EQ(PrintPointer(p), Print(p)); |
|
p = NULL; |
|
EXPECT_EQ("NULL", Print(p)); |
|
} |
|
|
|
// const void*. |
|
TEST(PrintPointerToBuiltInTypeTest, ConstVoid) { |
|
const void* p = reinterpret_cast<const void*>(0xABCD); |
|
EXPECT_EQ(PrintPointer(p), Print(p)); |
|
p = NULL; |
|
EXPECT_EQ("NULL", Print(p)); |
|
} |
|
|
|
// Tests printing pointers to pointers. |
|
TEST(PrintPointerToPointerTest, IntPointerPointer) { |
|
int** p = reinterpret_cast<int**>(0xABCD); |
|
EXPECT_EQ(PrintPointer(p), Print(p)); |
|
p = NULL; |
|
EXPECT_EQ("NULL", Print(p)); |
|
} |
|
|
|
// Tests printing (non-member) function pointers. |
|
|
|
void MyFunction(int /* n */) {} |
|
|
|
TEST(PrintPointerTest, NonMemberFunctionPointer) { |
|
// We cannot directly cast &MyFunction to const void* because the |
|
// standard disallows casting between pointers to functions and |
|
// pointers to objects, and some compilers (e.g. GCC 3.4) enforce |
|
// this limitation. |
|
EXPECT_EQ( |
|
PrintPointer(reinterpret_cast<const void*>( |
|
reinterpret_cast<internal::BiggestInt>(&MyFunction))), |
|
Print(&MyFunction)); |
|
int (*p)(bool) = NULL; // NOLINT |
|
EXPECT_EQ("NULL", Print(p)); |
|
} |
|
|
|
// An assertion predicate determining whether a one string is a prefix for |
|
// another. |
|
template <typename StringType> |
|
AssertionResult HasPrefix(const StringType& str, const StringType& prefix) { |
|
if (str.find(prefix, 0) == 0) |
|
return AssertionSuccess(); |
|
|
|
const bool is_wide_string = sizeof(prefix[0]) > 1; |
|
const char* const begin_string_quote = is_wide_string ? "L\"" : "\""; |
|
return AssertionFailure() |
|
<< begin_string_quote << prefix << "\" is not a prefix of " |
|
<< begin_string_quote << str << "\"\n"; |
|
} |
|
|
|
// Tests printing member variable pointers. Although they are called |
|
// pointers, they don't point to a location in the address space. |
|
// Their representation is implementation-defined. Thus they will be |
|
// printed as raw bytes. |
|
|
|
struct Foo { |
|
public: |
|
virtual ~Foo() {} |
|
int MyMethod(char x) { return x + 1; } |
|
virtual char MyVirtualMethod(int /* n */) { return 'a'; } |
|
|
|
int value; |
|
}; |
|
|
|
TEST(PrintPointerTest, MemberVariablePointer) { |
|
EXPECT_TRUE(HasPrefix(Print(&Foo::value), |
|
Print(sizeof(&Foo::value)) + "-byte object ")); |
|
int (Foo::*p) = NULL; // NOLINT |
|
EXPECT_TRUE(HasPrefix(Print(p), |
|
Print(sizeof(p)) + "-byte object ")); |
|
} |
|
|
|
// Tests printing member function pointers. Although they are called |
|
// pointers, they don't point to a location in the address space. |
|
// Their representation is implementation-defined. Thus they will be |
|
// printed as raw bytes. |
|
TEST(PrintPointerTest, MemberFunctionPointer) { |
|
EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod), |
|
Print(sizeof(&Foo::MyMethod)) + "-byte object ")); |
|
EXPECT_TRUE( |
|
HasPrefix(Print(&Foo::MyVirtualMethod), |
|
Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object ")); |
|
int (Foo::*p)(char) = NULL; // NOLINT |
|
EXPECT_TRUE(HasPrefix(Print(p), |
|
Print(sizeof(p)) + "-byte object ")); |
|
} |
|
|
|
// Tests printing C arrays. |
|
|
|
// The difference between this and Print() is that it ensures that the |
|
// argument is a reference to an array. |
|
template <typename T, size_t N> |
|
string PrintArrayHelper(T (&a)[N]) { |
|
return Print(a); |
|
} |
|
|
|
// One-dimensional array. |
|
TEST(PrintArrayTest, OneDimensionalArray) { |
|
int a[5] = { 1, 2, 3, 4, 5 }; |
|
EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a)); |
|
} |
|
|
|
// Two-dimensional array. |
|
TEST(PrintArrayTest, TwoDimensionalArray) { |
|
int a[2][5] = { |
|
{ 1, 2, 3, 4, 5 }, |
|
{ 6, 7, 8, 9, 0 } |
|
}; |
|
EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a)); |
|
} |
|
|
|
// Array of const elements. |
|
TEST(PrintArrayTest, ConstArray) { |
|
const bool a[1] = { false }; |
|
EXPECT_EQ("{ false }", PrintArrayHelper(a)); |
|
} |
|
|
|
// char array without terminating NUL. |
|
TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) { |
|
// Array a contains '\0' in the middle and doesn't end with '\0'. |
|
char a[] = { 'H', '\0', 'i' }; |
|
EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a)); |
|
} |
|
|
|
// const char array with terminating NUL. |
|
TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) { |
|
const char a[] = "\0Hi"; |
|
EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a)); |
|
} |
|
|
|
// const wchar_t array without terminating NUL. |
|
TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) { |
|
// Array a contains '\0' in the middle and doesn't end with '\0'. |
|
const wchar_t a[] = { L'H', L'\0', L'i' }; |
|
EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a)); |
|
} |
|
|
|
// wchar_t array with terminating NUL. |
|
TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) { |
|
const wchar_t a[] = L"\0Hi"; |
|
EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a)); |
|
} |
|
|
|
// Array of objects. |
|
TEST(PrintArrayTest, ObjectArray) { |
|
string a[3] = { "Hi", "Hello", "Ni hao" }; |
|
EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a)); |
|
} |
|
|
|
// Array with many elements. |
|
TEST(PrintArrayTest, BigArray) { |
|
int a[100] = { 1, 2, 3 }; |
|
EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }", |
|
PrintArrayHelper(a)); |
|
} |
|
|
|
// Tests printing ::string and ::std::string. |
|
|
|
#if GTEST_HAS_GLOBAL_STRING |
|
// ::string. |
|
TEST(PrintStringTest, StringInGlobalNamespace) { |
|
const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a"; |
|
const ::string str(s, sizeof(s)); |
|
EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"", |
|
Print(str)); |
|
} |
|
#endif // GTEST_HAS_GLOBAL_STRING |
|
|
|
// ::std::string. |
|
TEST(PrintStringTest, StringInStdNamespace) { |
|
const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a"; |
|
const ::std::string str(s, sizeof(s)); |
|
EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"", |
|
Print(str)); |
|
} |
|
|
|
TEST(PrintStringTest, StringAmbiguousHex) { |
|
// "\x6BANANA" is ambiguous, it can be interpreted as starting with either of: |
|
// '\x6', '\x6B', or '\x6BA'. |
|
|
|
// a hex escaping sequence following by a decimal digit |
|
EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3"))); |
|
// a hex escaping sequence following by a hex digit (lower-case) |
|
EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas"))); |
|
// a hex escaping sequence following by a hex digit (upper-case) |
|
EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA"))); |
|
// a hex escaping sequence following by a non-xdigit |
|
EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!"))); |
|
} |
|
|
|
// Tests printing ::wstring and ::std::wstring. |
|
|
|
#if GTEST_HAS_GLOBAL_WSTRING |
|
// ::wstring. |
|
TEST(PrintWideStringTest, StringInGlobalNamespace) { |
|
const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a"; |
|
const ::wstring str(s, sizeof(s)/sizeof(wchar_t)); |
|
EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v" |
|
"\\xD3\\x576\\x8D3\\xC74D a\\0\"", |
|
Print(str)); |
|
} |
|
#endif // GTEST_HAS_GLOBAL_WSTRING |
|
|
|
#if GTEST_HAS_STD_WSTRING |
|
// ::std::wstring. |
|
TEST(PrintWideStringTest, StringInStdNamespace) { |
|
const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a"; |
|
const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t)); |
|
EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v" |
|
"\\xD3\\x576\\x8D3\\xC74D a\\0\"", |
|
Print(str)); |
|
} |
|
|
|
TEST(PrintWideStringTest, StringAmbiguousHex) { |
|
// same for wide strings. |
|
EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3"))); |
|
EXPECT_EQ("L\"mm\\x6\" L\"bananas\"", |
|
Print(::std::wstring(L"mm\x6" L"bananas"))); |
|
EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"", |
|
Print(::std::wstring(L"NOM\x6" L"BANANA"))); |
|
EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!"))); |
|
} |
|
#endif // GTEST_HAS_STD_WSTRING |
|
|
|
// Tests printing types that support generic streaming (i.e. streaming |
|
// to std::basic_ostream<Char, CharTraits> for any valid Char and |
|
// CharTraits types). |
|
|
|
// Tests printing a non-template type that supports generic streaming. |
|
|
|
class AllowsGenericStreaming {}; |
|
|
|
template <typename Char, typename CharTraits> |
|
std::basic_ostream<Char, CharTraits>& operator<<( |
|
std::basic_ostream<Char, CharTraits>& os, |
|
const AllowsGenericStreaming& /* a */) { |
|
return os << "AllowsGenericStreaming"; |
|
} |
|
|
|
TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) { |
|
AllowsGenericStreaming a; |
|
EXPECT_EQ("AllowsGenericStreaming", Print(a)); |
|
} |
|
|
|
// Tests printing a template type that supports generic streaming. |
|
|
|
template <typename T> |
|
class AllowsGenericStreamingTemplate {}; |
|
|
|
template <typename Char, typename CharTraits, typename T> |
|
std::basic_ostream<Char, CharTraits>& operator<<( |
|
std::basic_ostream<Char, CharTraits>& os, |
|
const AllowsGenericStreamingTemplate<T>& /* a */) { |
|
return os << "AllowsGenericStreamingTemplate"; |
|
} |
|
|
|
TEST(PrintTypeWithGenericStreamingTest, TemplateType) { |
|
AllowsGenericStreamingTemplate<int> a; |
|
EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a)); |
|
} |
|
|
|
// Tests printing a type that supports generic streaming and can be |
|
// implicitly converted to another printable type. |
|
|
|
template <typename T> |
|
class AllowsGenericStreamingAndImplicitConversionTemplate { |
|
public: |
|
operator bool() const { return false; } |
|
}; |
|
|
|
template <typename Char, typename CharTraits, typename T> |
|
std::basic_ostream<Char, CharTraits>& operator<<( |
|
std::basic_ostream<Char, CharTraits>& os, |
|
const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) { |
|
return os << "AllowsGenericStreamingAndImplicitConversionTemplate"; |
|
} |
|
|
|
TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) { |
|
AllowsGenericStreamingAndImplicitConversionTemplate<int> a; |
|
EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a)); |
|
} |
|
|
|
#if GTEST_HAS_STRING_PIECE_ |
|
|
|
// Tests printing StringPiece. |
|
|
|
TEST(PrintStringPieceTest, SimpleStringPiece) { |
|
const StringPiece sp = "Hello"; |
|
EXPECT_EQ("\"Hello\"", Print(sp)); |
|
} |
|
|
|
TEST(PrintStringPieceTest, UnprintableCharacters) { |
|
const char str[] = "NUL (\0) and \r\t"; |
|
const StringPiece sp(str, sizeof(str) - 1); |
|
EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp)); |
|
} |
|
|
|
#endif // GTEST_HAS_STRING_PIECE_ |
|
|
|
// Tests printing STL containers. |
|
|
|
TEST(PrintStlContainerTest, EmptyDeque) { |
|
deque<char> empty; |
|
EXPECT_EQ("{}", Print(empty)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, NonEmptyDeque) { |
|
deque<int> non_empty; |
|
non_empty.push_back(1); |
|
non_empty.push_back(3); |
|
EXPECT_EQ("{ 1, 3 }", Print(non_empty)); |
|
} |
|
|
|
#if GTEST_HAS_HASH_MAP_ |
|
|
|
TEST(PrintStlContainerTest, OneElementHashMap) { |
|
hash_map<int, char> map1; |
|
map1[1] = 'a'; |
|
EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, HashMultiMap) { |
|
hash_multimap<int, bool> map1; |
|
map1.insert(make_pair(5, true)); |
|
map1.insert(make_pair(5, false)); |
|
|
|
// Elements of hash_multimap can be printed in any order. |
|
const string result = Print(map1); |
|
EXPECT_TRUE(result == "{ (5, true), (5, false) }" || |
|
result == "{ (5, false), (5, true) }") |
|
<< " where Print(map1) returns \"" << result << "\"."; |
|
} |
|
|
|
#endif // GTEST_HAS_HASH_MAP_ |
|
|
|
#if GTEST_HAS_HASH_SET_ |
|
|
|
TEST(PrintStlContainerTest, HashSet) { |
|
hash_set<string> set1; |
|
set1.insert("hello"); |
|
EXPECT_EQ("{ \"hello\" }", Print(set1)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, HashMultiSet) { |
|
const int kSize = 5; |
|
int a[kSize] = { 1, 1, 2, 5, 1 }; |
|
hash_multiset<int> set1(a, a + kSize); |
|
|
|
// Elements of hash_multiset can be printed in any order. |
|
const string result = Print(set1); |
|
const string expected_pattern = "{ d, d, d, d, d }"; // d means a digit. |
|
|
|
// Verifies the result matches the expected pattern; also extracts |
|
// the numbers in the result. |
|
ASSERT_EQ(expected_pattern.length(), result.length()); |
|
std::vector<int> numbers; |
|
for (size_t i = 0; i != result.length(); i++) { |
|
if (expected_pattern[i] == 'd') { |
|
ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0); |
|
numbers.push_back(result[i] - '0'); |
|
} else { |
|
EXPECT_EQ(expected_pattern[i], result[i]) << " where result is " |
|
<< result; |
|
} |
|
} |
|
|
|
// Makes sure the result contains the right numbers. |
|
std::sort(numbers.begin(), numbers.end()); |
|
std::sort(a, a + kSize); |
|
EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin())); |
|
} |
|
|
|
#endif // GTEST_HAS_HASH_SET_ |
|
|
|
TEST(PrintStlContainerTest, List) { |
|
const string a[] = { |
|
"hello", |
|
"world" |
|
}; |
|
const list<string> strings(a, a + 2); |
|
EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, Map) { |
|
map<int, bool> map1; |
|
map1[1] = true; |
|
map1[5] = false; |
|
map1[3] = true; |
|
EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, MultiMap) { |
|
multimap<bool, int> map1; |
|
// The make_pair template function would deduce the type as |
|
// pair<bool, int> here, and since the key part in a multimap has to |
|
// be constant, without a templated ctor in the pair class (as in |
|
// libCstd on Solaris), make_pair call would fail to compile as no |
|
// implicit conversion is found. Thus explicit typename is used |
|
// here instead. |
|
map1.insert(pair<const bool, int>(true, 0)); |
|
map1.insert(pair<const bool, int>(true, 1)); |
|
map1.insert(pair<const bool, int>(false, 2)); |
|
EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, Set) { |
|
const unsigned int a[] = { 3, 0, 5 }; |
|
set<unsigned int> set1(a, a + 3); |
|
EXPECT_EQ("{ 0, 3, 5 }", Print(set1)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, MultiSet) { |
|
const int a[] = { 1, 1, 2, 5, 1 }; |
|
multiset<int> set1(a, a + 5); |
|
EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, Pair) { |
|
pair<const bool, int> p(true, 5); |
|
EXPECT_EQ("(true, 5)", Print(p)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, Vector) { |
|
vector<int> v; |
|
v.push_back(1); |
|
v.push_back(2); |
|
EXPECT_EQ("{ 1, 2 }", Print(v)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, LongSequence) { |
|
const int a[100] = { 1, 2, 3 }; |
|
const vector<int> v(a, a + 100); |
|
EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, " |
|
"0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, NestedContainer) { |
|
const int a1[] = { 1, 2 }; |
|
const int a2[] = { 3, 4, 5 }; |
|
const list<int> l1(a1, a1 + 2); |
|
const list<int> l2(a2, a2 + 3); |
|
|
|
vector<list<int> > v; |
|
v.push_back(l1); |
|
v.push_back(l2); |
|
EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, OneDimensionalNativeArray) { |
|
const int a[3] = { 1, 2, 3 }; |
|
NativeArray<int> b(a, 3, kReference); |
|
EXPECT_EQ("{ 1, 2, 3 }", Print(b)); |
|
} |
|
|
|
TEST(PrintStlContainerTest, TwoDimensionalNativeArray) { |
|
const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } }; |
|
NativeArray<int[3]> b(a, 2, kReference); |
|
EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b)); |
|
} |
|
|
|
// Tests that a class named iterator isn't treated as a container. |
|
|
|
struct iterator { |
|
char x; |
|
}; |
|
|
|
TEST(PrintStlContainerTest, Iterator) { |
|
iterator it = {}; |
|
EXPECT_EQ("1-byte object <00>", Print(it)); |
|
} |
|
|
|
// Tests that a class named const_iterator isn't treated as a container. |
|
|
|
struct const_iterator { |
|
char x; |
|
}; |
|
|
|
TEST(PrintStlContainerTest, ConstIterator) { |
|
const_iterator it = {}; |
|
EXPECT_EQ("1-byte object <00>", Print(it)); |
|
} |
|
|
|
#if GTEST_HAS_TR1_TUPLE |
|
// Tests printing tuples. |
|
|
|
// Tuples of various arities. |
|
TEST(PrintTupleTest, VariousSizes) { |
|
tuple<> t0; |
|
EXPECT_EQ("()", Print(t0)); |
|
|
|
tuple<int> t1(5); |
|
EXPECT_EQ("(5)", Print(t1)); |
|
|
|
tuple<char, bool> t2('a', true); |
|
EXPECT_EQ("('a' (97, 0x61), true)", Print(t2)); |
|
|
|
tuple<bool, int, int> t3(false, 2, 3); |
|
EXPECT_EQ("(false, 2, 3)", Print(t3)); |
|
|
|
tuple<bool, int, int, int> t4(false, 2, 3, 4); |
|
EXPECT_EQ("(false, 2, 3, 4)", Print(t4)); |
|
|
|
tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true); |
|
EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5)); |
|
|
|
tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6); |
|
EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6)); |
|
|
|
tuple<bool, int, int, int, bool, int, int> t7(false, 2, 3, 4, true, 6, 7); |
|
EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7)); |
|
|
|
tuple<bool, int, int, int, bool, int, int, bool> t8( |
|
false, 2, 3, 4, true, 6, 7, true); |
|
EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8)); |
|
|
|
tuple<bool, int, int, int, bool, int, int, bool, int> t9( |
|
false, 2, 3, 4, true, 6, 7, true, 9); |
|
EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9)); |
|
|
|
const char* const str = "8"; |
|
// VC++ 2010's implementation of tuple of C++0x is deficient, requiring |
|
// an explicit type cast of NULL to be used. |
|
tuple<bool, char, short, testing::internal::Int32, // NOLINT |
|
testing::internal::Int64, float, double, const char*, void*, string> |
|
t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str, |
|
ImplicitCast_<void*>(NULL), "10"); |
|
EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) + |
|
" pointing to \"8\", NULL, \"10\")", |
|
Print(t10)); |
|
} |
|
|
|
// Nested tuples. |
|
TEST(PrintTupleTest, NestedTuple) { |
|
tuple<tuple<int, bool>, char> nested(make_tuple(5, true), 'a'); |
|
EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested)); |
|
} |
|
|
|
#endif // GTEST_HAS_TR1_TUPLE |
|
|
|
// Tests printing user-defined unprintable types. |
|
|
|
// Unprintable types in the global namespace. |
|
TEST(PrintUnprintableTypeTest, InGlobalNamespace) { |
|
EXPECT_EQ("1-byte object <00>", |
|
Print(UnprintableTemplateInGlobal<char>())); |
|
} |
|
|
|
// Unprintable types in a user namespace. |
|
TEST(PrintUnprintableTypeTest, InUserNamespace) { |
|
EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>", |
|
Print(::foo::UnprintableInFoo())); |
|
} |
|
|
|
// Unprintable types are that too big to be printed completely. |
|
|
|
struct Big { |
|
Big() { memset(array, 0, sizeof(array)); } |
|
char array[257]; |
|
}; |
|
|
|
TEST(PrintUnpritableTypeTest, BigObject) { |
|
EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 " |
|
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " |
|
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " |
|
"00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 " |
|
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " |
|
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " |
|
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>", |
|
Print(Big())); |
|
} |
|
|
|
// Tests printing user-defined streamable types. |
|
|
|
// Streamable types in the global namespace. |
|
TEST(PrintStreamableTypeTest, InGlobalNamespace) { |
|
StreamableInGlobal x; |
|
EXPECT_EQ("StreamableInGlobal", Print(x)); |
|
EXPECT_EQ("StreamableInGlobal*", Print(&x)); |
|
} |
|
|
|
// Printable template types in a user namespace. |
|
TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) { |
|
EXPECT_EQ("StreamableTemplateInFoo: 0", |
|
Print(::foo::StreamableTemplateInFoo<int>())); |
|
} |
|
|
|
// Tests printing user-defined types that have a PrintTo() function. |
|
TEST(PrintPrintableTypeTest, InUserNamespace) { |
|
EXPECT_EQ("PrintableViaPrintTo: 0", |
|
Print(::foo::PrintableViaPrintTo())); |
|
} |
|
|
|
// Tests printing a pointer to a user-defined type that has a << |
|
// operator for its pointer. |
|
TEST(PrintPrintableTypeTest, PointerInUserNamespace) { |
|
::foo::PointerPrintable x; |
|
EXPECT_EQ("PointerPrintable*", Print(&x)); |
|
} |
|
|
|
// Tests printing user-defined class template that have a PrintTo() function. |
|
TEST(PrintPrintableTypeTest, TemplateInUserNamespace) { |
|
EXPECT_EQ("PrintableViaPrintToTemplate: 5", |
|
Print(::foo::PrintableViaPrintToTemplate<int>(5))); |
|
} |
|
|
|
#if GTEST_HAS_PROTOBUF_ |
|
|
|
// Tests printing a protocol message. |
|
TEST(PrintProtocolMessageTest, PrintsShortDebugString) { |
|
testing::internal::TestMessage msg; |
|
msg.set_member("yes"); |
|
EXPECT_EQ("<member:\"yes\">", Print(msg)); |
|
} |
|
|
|
// Tests printing a short proto2 message. |
|
TEST(PrintProto2MessageTest, PrintsShortDebugStringWhenItIsShort) { |
|
testing::internal::FooMessage msg; |
|
msg.set_int_field(2); |
|
msg.set_string_field("hello"); |
|
EXPECT_PRED2(RE::FullMatch, Print(msg), |
|
"<int_field:\\s*2\\s+string_field:\\s*\"hello\">"); |
|
} |
|
|
|
// Tests printing a long proto2 message. |
|
TEST(PrintProto2MessageTest, PrintsDebugStringWhenItIsLong) { |
|
testing::internal::FooMessage msg; |
|
msg.set_int_field(2); |
|
msg.set_string_field("hello"); |
|
msg.add_names("peter"); |
|
msg.add_names("paul"); |
|
msg.add_names("mary"); |
|
EXPECT_PRED2(RE::FullMatch, Print(msg), |
|
"<\n" |
|
"int_field:\\s*2\n" |
|
"string_field:\\s*\"hello\"\n" |
|
"names:\\s*\"peter\"\n" |
|
"names:\\s*\"paul\"\n" |
|
"names:\\s*\"mary\"\n" |
|
">"); |
|
} |
|
|
|
#endif // GTEST_HAS_PROTOBUF_ |
|
|
|
// Tests that the universal printer prints both the address and the |
|
// value of a reference. |
|
TEST(PrintReferenceTest, PrintsAddressAndValue) { |
|
int n = 5; |
|
EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n)); |
|
|
|
int a[2][3] = { |
|
{ 0, 1, 2 }, |
|
{ 3, 4, 5 } |
|
}; |
|
EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }", |
|
PrintByRef(a)); |
|
|
|
const ::foo::UnprintableInFoo x; |
|
EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object " |
|
"<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>", |
|
PrintByRef(x)); |
|
} |
|
|
|
// Tests that the universal printer prints a function pointer passed by |
|
// reference. |
|
TEST(PrintReferenceTest, HandlesFunctionPointer) { |
|
void (*fp)(int n) = &MyFunction; |
|
const string fp_pointer_string = |
|
PrintPointer(reinterpret_cast<const void*>(&fp)); |
|
// We cannot directly cast &MyFunction to const void* because the |
|
// standard disallows casting between pointers to functions and |
|
// pointers to objects, and some compilers (e.g. GCC 3.4) enforce |
|
// this limitation. |
|
const string fp_string = PrintPointer(reinterpret_cast<const void*>( |
|
reinterpret_cast<internal::BiggestInt>(fp))); |
|
EXPECT_EQ("@" + fp_pointer_string + " " + fp_string, |
|
PrintByRef(fp)); |
|
} |
|
|
|
// Tests that the universal printer prints a member function pointer |
|
// passed by reference. |
|
TEST(PrintReferenceTest, HandlesMemberFunctionPointer) { |
|
int (Foo::*p)(char ch) = &Foo::MyMethod; |
|
EXPECT_TRUE(HasPrefix( |
|
PrintByRef(p), |
|
"@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " + |
|
Print(sizeof(p)) + "-byte object ")); |
|
|
|
char (Foo::*p2)(int n) = &Foo::MyVirtualMethod; |
|
EXPECT_TRUE(HasPrefix( |
|
PrintByRef(p2), |
|
"@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " + |
|
Print(sizeof(p2)) + "-byte object ")); |
|
} |
|
|
|
// Tests that the universal printer prints a member variable pointer |
|
// passed by reference. |
|
TEST(PrintReferenceTest, HandlesMemberVariablePointer) { |
|
int (Foo::*p) = &Foo::value; // NOLINT |
|
EXPECT_TRUE(HasPrefix( |
|
PrintByRef(p), |
|
"@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object ")); |
|
} |
|
|
|
// Tests that FormatForComparisonFailureMessage(), which is used to print |
|
// an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion |
|
// fails, formats the operand in the desired way. |
|
|
|
// scalar |
|
TEST(FormatForComparisonFailureMessageTest, WorksForScalar) { |
|
EXPECT_STREQ("123", |
|
FormatForComparisonFailureMessage(123, 124).c_str()); |
|
} |
|
|
|
// non-char pointer |
|
TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) { |
|
int n = 0; |
|
EXPECT_EQ(PrintPointer(&n), |
|
FormatForComparisonFailureMessage(&n, &n).c_str()); |
|
} |
|
|
|
// non-char array |
|
TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) { |
|
// In expression 'array == x', 'array' is compared by pointer. |
|
// Therefore we want to print an array operand as a pointer. |
|
int n[] = { 1, 2, 3 }; |
|
EXPECT_EQ(PrintPointer(n), |
|
FormatForComparisonFailureMessage(n, n).c_str()); |
|
} |
|
|
|
// Tests formatting a char pointer when it's compared with another pointer. |
|
// In this case we want to print it as a raw pointer, as the comparision is by |
|
// pointer. |
|
|
|
// char pointer vs pointer |
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) { |
|
// In expression 'p == x', where 'p' and 'x' are (const or not) char |
|
// pointers, the operands are compared by pointer. Therefore we |
|
// want to print 'p' as a pointer instead of a C string (we don't |
|
// even know if it's supposed to point to a valid C string). |
|
|
|
// const char* |
|
const char* s = "hello"; |
|
EXPECT_EQ(PrintPointer(s), |
|
FormatForComparisonFailureMessage(s, s).c_str()); |
|
|
|
// char* |
|
char ch = 'a'; |
|
EXPECT_EQ(PrintPointer(&ch), |
|
FormatForComparisonFailureMessage(&ch, &ch).c_str()); |
|
} |
|
|
|
// wchar_t pointer vs pointer |
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) { |
|
// In expression 'p == x', where 'p' and 'x' are (const or not) char |
|
// pointers, the operands are compared by pointer. Therefore we |
|
// want to print 'p' as a pointer instead of a wide C string (we don't |
|
// even know if it's supposed to point to a valid wide C string). |
|
|
|
// const wchar_t* |
|
const wchar_t* s = L"hello"; |
|
EXPECT_EQ(PrintPointer(s), |
|
FormatForComparisonFailureMessage(s, s).c_str()); |
|
|
|
// wchar_t* |
|
wchar_t ch = L'a'; |
|
EXPECT_EQ(PrintPointer(&ch), |
|
FormatForComparisonFailureMessage(&ch, &ch).c_str()); |
|
} |
|
|
|
// Tests formatting a char pointer when it's compared to a string object. |
|
// In this case we want to print the char pointer as a C string. |
|
|
|
#if GTEST_HAS_GLOBAL_STRING |
|
// char pointer vs ::string |
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsString) { |
|
const char* s = "hello \"world"; |
|
EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped. |
|
FormatForComparisonFailureMessage(s, ::string()).c_str()); |
|
|
|
// char* |
|
char str[] = "hi\1"; |
|
char* p = str; |
|
EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped. |
|
FormatForComparisonFailureMessage(p, ::string()).c_str()); |
|
} |
|
#endif |
|
|
|
// char pointer vs std::string |
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) { |
|
const char* s = "hello \"world"; |
|
EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped. |
|
FormatForComparisonFailureMessage(s, ::std::string()).c_str()); |
|
|
|
// char* |
|
char str[] = "hi\1"; |
|
char* p = str; |
|
EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped. |
|
FormatForComparisonFailureMessage(p, ::std::string()).c_str()); |
|
} |
|
|
|
#if GTEST_HAS_GLOBAL_WSTRING |
|
// wchar_t pointer vs ::wstring |
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsWString) { |
|
const wchar_t* s = L"hi \"world"; |
|
EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped. |
|
FormatForComparisonFailureMessage(s, ::wstring()).c_str()); |
|
|
|
// wchar_t* |
|
wchar_t str[] = L"hi\1"; |
|
wchar_t* p = str; |
|
EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped. |
|
FormatForComparisonFailureMessage(p, ::wstring()).c_str()); |
|
} |
|
#endif |
|
|
|
#if GTEST_HAS_STD_WSTRING |
|
// wchar_t pointer vs std::wstring |
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) { |
|
const wchar_t* s = L"hi \"world"; |
|
EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped. |
|
FormatForComparisonFailureMessage(s, ::std::wstring()).c_str()); |
|
|
|
// wchar_t* |
|
wchar_t str[] = L"hi\1"; |
|
wchar_t* p = str; |
|
EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped. |
|
FormatForComparisonFailureMessage(p, ::std::wstring()).c_str()); |
|
} |
|
#endif |
|
|
|
// Tests formatting a char array when it's compared with a pointer or array. |
|
// In this case we want to print the array as a row pointer, as the comparison |
|
// is by pointer. |
|
|
|
// char array vs pointer |
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) { |
|
char str[] = "hi \"world\""; |
|
char* p = NULL; |
|
EXPECT_EQ(PrintPointer(str), |
|
FormatForComparisonFailureMessage(str, p).c_str()); |
|
} |
|
|
|
// char array vs char array |
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) { |
|
const char str[] = "hi \"world\""; |
|
EXPECT_EQ(PrintPointer(str), |
|
FormatForComparisonFailureMessage(str, str).c_str()); |
|
} |
|
|
|
// wchar_t array vs pointer |
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) { |
|
wchar_t str[] = L"hi \"world\""; |
|
wchar_t* p = NULL; |
|
EXPECT_EQ(PrintPointer(str), |
|
FormatForComparisonFailureMessage(str, p).c_str()); |
|
} |
|
|
|
// wchar_t array vs wchar_t array |
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) { |
|
const wchar_t str[] = L"hi \"world\""; |
|
EXPECT_EQ(PrintPointer(str), |
|
FormatForComparisonFailureMessage(str, str).c_str()); |
|
} |
|
|
|
// Tests formatting a char array when it's compared with a string object. |
|
// In this case we want to print the array as a C string. |
|
|
|
#if GTEST_HAS_GLOBAL_STRING |
|
// char array vs string |
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsString) { |
|
const char str[] = "hi \"w\0rld\""; |
|
EXPECT_STREQ("\"hi \\\"w\"", // The content should be escaped. |
|
// Embedded NUL terminates the string. |
|
FormatForComparisonFailureMessage(str, ::string()).c_str()); |
|
} |
|
#endif |
|
|
|
// char array vs std::string |
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) { |
|
const char str[] = "hi \"world\""; |
|
EXPECT_STREQ("\"hi \\\"world\\\"\"", // The content should be escaped. |
|
FormatForComparisonFailureMessage(str, ::std::string()).c_str()); |
|
} |
|
|
|
#if GTEST_HAS_GLOBAL_WSTRING |
|
// wchar_t array vs wstring |
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWString) { |
|
const wchar_t str[] = L"hi \"world\""; |
|
EXPECT_STREQ("L\"hi \\\"world\\\"\"", // The content should be escaped. |
|
FormatForComparisonFailureMessage(str, ::wstring()).c_str()); |
|
} |
|
#endif |
|
|
|
#if GTEST_HAS_STD_WSTRING |
|
// wchar_t array vs std::wstring |
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) { |
|
const wchar_t str[] = L"hi \"w\0rld\""; |
|
EXPECT_STREQ( |
|
"L\"hi \\\"w\"", // The content should be escaped. |
|
// Embedded NUL terminates the string. |
|
FormatForComparisonFailureMessage(str, ::std::wstring()).c_str()); |
|
} |
|
#endif |
|
|
|
// Useful for testing PrintToString(). We cannot use EXPECT_EQ() |
|
// there as its implementation uses PrintToString(). The caller must |
|
// ensure that 'value' has no side effect. |
|
#define EXPECT_PRINT_TO_STRING_(value, expected_string) \ |
|
EXPECT_TRUE(PrintToString(value) == (expected_string)) \ |
|
<< " where " #value " prints as " << (PrintToString(value)) |
|
|
|
TEST(PrintToStringTest, WorksForScalar) { |
|
EXPECT_PRINT_TO_STRING_(123, "123"); |
|
} |
|
|
|
TEST(PrintToStringTest, WorksForPointerToConstChar) { |
|
const char* p = "hello"; |
|
EXPECT_PRINT_TO_STRING_(p, "\"hello\""); |
|
} |
|
|
|
TEST(PrintToStringTest, WorksForPointerToNonConstChar) { |
|
char s[] = "hello"; |
|
char* p = s; |
|
EXPECT_PRINT_TO_STRING_(p, "\"hello\""); |
|
} |
|
|
|
TEST(PrintToStringTest, EscapesForPointerToConstChar) { |
|
const char* p = "hello\n"; |
|
EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\""); |
|
} |
|
|
|
TEST(PrintToStringTest, EscapesForPointerToNonConstChar) { |
|
char s[] = "hello\1"; |
|
char* p = s; |
|
EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\""); |
|
} |
|
|
|
TEST(PrintToStringTest, WorksForArray) { |
|
int n[3] = { 1, 2, 3 }; |
|
EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }"); |
|
} |
|
|
|
TEST(PrintToStringTest, WorksForCharArray) { |
|
char s[] = "hello"; |
|
EXPECT_PRINT_TO_STRING_(s, "\"hello\""); |
|
} |
|
|
|
TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) { |
|
const char str_with_nul[] = "hello\0 world"; |
|
EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\""); |
|
|
|
char mutable_str_with_nul[] = "hello\0 world"; |
|
EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\""); |
|
} |
|
|
|
#undef EXPECT_PRINT_TO_STRING_ |
|
|
|
TEST(UniversalTersePrintTest, WorksForNonReference) { |
|
::std::stringstream ss; |
|
UniversalTersePrint(123, &ss); |
|
EXPECT_EQ("123", ss.str()); |
|
} |
|
|
|
TEST(UniversalTersePrintTest, WorksForReference) { |
|
const int& n = 123; |
|
::std::stringstream ss; |
|
UniversalTersePrint(n, &ss); |
|
EXPECT_EQ("123", ss.str()); |
|
} |
|
|
|
TEST(UniversalTersePrintTest, WorksForCString) { |
|
const char* s1 = "abc"; |
|
::std::stringstream ss1; |
|
UniversalTersePrint(s1, &ss1); |
|
EXPECT_EQ("\"abc\"", ss1.str()); |
|
|
|
char* s2 = const_cast<char*>(s1); |
|
::std::stringstream ss2; |
|
UniversalTersePrint(s2, &ss2); |
|
EXPECT_EQ("\"abc\"", ss2.str()); |
|
|
|
const char* s3 = NULL; |
|
::std::stringstream ss3; |
|
UniversalTersePrint(s3, &ss3); |
|
EXPECT_EQ("NULL", ss3.str()); |
|
} |
|
|
|
TEST(UniversalPrintTest, WorksForNonReference) { |
|
::std::stringstream ss; |
|
UniversalPrint(123, &ss); |
|
EXPECT_EQ("123", ss.str()); |
|
} |
|
|
|
TEST(UniversalPrintTest, WorksForReference) { |
|
const int& n = 123; |
|
::std::stringstream ss; |
|
UniversalPrint(n, &ss); |
|
EXPECT_EQ("123", ss.str()); |
|
} |
|
|
|
TEST(UniversalPrintTest, WorksForCString) { |
|
const char* s1 = "abc"; |
|
::std::stringstream ss1; |
|
UniversalPrint(s1, &ss1); |
|
EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", string(ss1.str())); |
|
|
|
char* s2 = const_cast<char*>(s1); |
|
::std::stringstream ss2; |
|
UniversalPrint(s2, &ss2); |
|
EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", string(ss2.str())); |
|
|
|
const char* s3 = NULL; |
|
::std::stringstream ss3; |
|
UniversalPrint(s3, &ss3); |
|
EXPECT_EQ("NULL", ss3.str()); |
|
} |
|
|
|
TEST(UniversalPrintTest, WorksForCharArray) { |
|
const char str[] = "\"Line\0 1\"\nLine 2"; |
|
::std::stringstream ss1; |
|
UniversalPrint(str, &ss1); |
|
EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str()); |
|
|
|
const char mutable_str[] = "\"Line\0 1\"\nLine 2"; |
|
::std::stringstream ss2; |
|
UniversalPrint(mutable_str, &ss2); |
|
EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str()); |
|
} |
|
|
|
#if GTEST_HAS_TR1_TUPLE |
|
|
|
TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsEmptyTuple) { |
|
Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple()); |
|
EXPECT_EQ(0u, result.size()); |
|
} |
|
|
|
TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsOneTuple) { |
|
Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple(1)); |
|
ASSERT_EQ(1u, result.size()); |
|
EXPECT_EQ("1", result[0]); |
|
} |
|
|
|
TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsTwoTuple) { |
|
Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple(1, 'a')); |
|
ASSERT_EQ(2u, result.size()); |
|
EXPECT_EQ("1", result[0]); |
|
EXPECT_EQ("'a' (97, 0x61)", result[1]); |
|
} |
|
|
|
TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsTersely) { |
|
const int n = 1; |
|
Strings result = UniversalTersePrintTupleFieldsToStrings( |
|
tuple<const int&, const char*>(n, "a")); |
|
ASSERT_EQ(2u, result.size()); |
|
EXPECT_EQ("1", result[0]); |
|
EXPECT_EQ("\"a\"", result[1]); |
|
} |
|
|
|
#endif // GTEST_HAS_TR1_TUPLE |
|
|
|
} // namespace gtest_printers_test |
|
} // namespace testing
|
|
|