471 lines
15 KiB
471 lines
15 KiB
vs.1.1 |
|
|
|
dcl_position v0 |
|
|
|
//m4x4 oPos, v0, c0 |
|
|
|
|
|
/* |
|
In fact, I was trying to understand how it was possible to expand FRC into 4 |
|
instructions... |
|
Actually, I can do it in 7 instructions :) |
|
|
|
EXPP r0.y, r1.xxxx |
|
MOV r0.x, r0.y |
|
EXPP r0.y, r1.zzzz |
|
MOV r0.z, r0.y |
|
EXPP r0.y, r1.wwww |
|
MOV r0.w, r0.y |
|
EXPP r0.y, r1.yyyy |
|
*/ |
|
|
|
/* |
|
// Constants for sin and cos. 3 term approximation seems plenty |
|
// (it's what i used for software sim, and had no visibly different |
|
// results than the math library functions). |
|
// When doing sin/cos together, some speedup might be obtained |
|
// with good pairing of ops doing them simultaneously. Also save |
|
// an instruction calculating r0^3. |
|
D3DXVECTOR4 vSin( 1.0f, -1.0f/6.0f, 1.0f/120.0f, -1.0f/5040.0f ); |
|
D3DXVECTOR4 vCos( 1.0f, -1.0f/2.0f, 1.0f/ 24.0f, -1.0f/ 720.0f ); |
|
*/ |
|
|
|
/* |
|
Cos(): |
|
|
|
|
|
r1 = mul(r0, r0); // r0^2 |
|
r2 = mul(r1, r1); // r0^4 |
|
|
|
//cos |
|
r3 = mad( r1, vCos.yyyy, vCos.xxxx ); |
|
r3 = mad( r2, vCos.zzzz, r3 ); |
|
*/ |
|
|
|
/* |
|
Sin(); |
|
r1 = mul(r0, r0); // r0^3 |
|
r1 = mul(r0, r1); |
|
r2 = mul(r1, r1); // r0^6 |
|
|
|
r3 = mad( r1, vSin.yyyy, r0 ); |
|
r3 = mad( r2, vSin.zzzz, r3 ); |
|
*/ |
|
|
|
/* |
|
SinCos(): |
|
|
|
r1 = mul(r0, r0); // r0^2 |
|
r2 = mul(r1, r0); // r0^3 // probably stall |
|
r3 = mul(r1, r1); // r0^4 |
|
r4 = mul(r2, r2); // r0^6 |
|
|
|
r5 = mad( r1, vCos.yyyy, vCos.xxxx ); |
|
r6 = mad( r2, vSin.yyyy, r0 ); |
|
r5 = mad( r3, vCos.zzzz, r5 ); |
|
r6 = mad( r4, vSin.zzzz, r6 ); |
|
|
|
*/ |
|
|
|
/* |
|
consts |
|
kOneOverEightNsqPi = 1.f / ( 8.f * Pi * 4.f * 4.f ); |
|
kPiOverTwo = Pi / 2.f; |
|
kTwoPi = Pi * 2.f; |
|
kPi = Pi; |
|
*/ |
|
/* |
|
CONSTANT REGISTERS |
|
VOLATILE CONSTS - change per invocation |
|
C0-C3 local2proj matrix |
|
C4 color |
|
C5 freq vector |
|
C6 phase vector |
|
C7 amplitude vector |
|
C8 center0 |
|
C9 center1 |
|
C10 center2 |
|
C11 center3 |
|
C12 scrunch = (scrunch, -scrunch, 0, 1); |
|
CONSTANT CONSTS - forever more |
|
C13 SinConsts = (1.0f, -1.0f/6.0f, 1.0f/120.0f, -1.0f/5040.0f); |
|
C14 CosConsts = (1.0f, -1.0f/2.0f, 1.0f/ 24.0f, -1.0f/ 720.0f); |
|
C15 PiConsts = (1.f / 8*Pi*N^2, Pi/2, Pi, 2*Pi); |
|
C16 numberConsts = (0.f, 0.5f, 1.f, 2.f); |
|
//===================================== |
|
TEMP REGISTERS |
|
r6 accumPos |
|
r7 accumCos |
|
r8 toCenter_Y |
|
r9 toCenter_X |
|
r11 filter |
|
r10 tempFloat |
|
*/ |
|
// const float4 kCosConsts = float4(1.0f, -1.0f/2.0f, 1.0f/ 24.0f, -1.0f/ 720.0f); |
|
// const float4 kSinConsts = float4(1.0f, -1.0f/6.0f, 1.0f/120.0f, -1.0f/5040.0f); |
|
|
|
// const float4 kPiConsts = float4(1.f / (8.f * 3.1415f * 16f), 3.1415f*0.5f, 3.1415f, 3.1515f*2.f); |
|
// const float4 k0512 = float4(0.f, 0.5f, 1.f, 2.f); |
|
|
|
// accumPos = inPos; |
|
mov r6, v0; |
|
// |
|
// For each wave |
|
// { |
|
// // First, we want to filter out waves based on distance from the local origin |
|
// dist = dp3(inPos, inPos); |
|
dp3 r0, r6, r6; |
|
// dist *= kFreqSq.xyzw; |
|
mul r0, r0, c5; |
|
mul r0, r0, c5; |
|
// dist *= kOneOverEightNsqPi; // combine this into kFreqSq? |
|
mul r0, r0, c15.xxxx; |
|
// dist = min(dist, kPiOverTwo); |
|
min r0, r0, c15.yyyy; |
|
// filter = cos(dist); |
|
mul r1, r0, r0; // r0^2 |
|
mul r2, r1, r1; // r1^2 |
|
mul r1, r1, c14.yyyy; |
|
add r11, r1, c14.xxxx; |
|
mad r11, r2, c14.zzzz, r11; |
|
|
|
|
|
// filter *= kAmplitude.xyzw; |
|
// mul r11, r11, c7; |
|
// // Notice that if dist is a 4vec, all this can be simultaneously done for 4 waves at a time. |
|
// |
|
// Find the x/y distances and stuff them into r9(x) and r8(y) respectively |
|
// toCenter_X.x = dir0.x * pos.x; |
|
// toCenter_Y.x = dir0.y * pos.y; |
|
mul r0, c8, r6.xxxx; |
|
mad r0, c9, r6.yyyy, r0; |
|
|
|
// |
|
// dist = mad( dist, kFreq.xyzw, kPhase.xyzw); |
|
mul r0, r0, c5; |
|
add r0, r0, c6; |
|
// |
|
// // Now we need dist mod'd into range [-Pi..Pi] |
|
// dist *= rcp(kTwoPi); |
|
rcp r4, c15.wwww; |
|
add r0, r0, c15.zzzz; |
|
mul r0, r0, r4; |
|
// dist = frac(dist); |
|
expp r1.y, r0.xxxx |
|
mov r1.x, r1.yyyy |
|
expp r1.y, r0.zzzz |
|
mov r1.z, r1.yyyy |
|
expp r1.y, r0.wwww |
|
mov r1.w, r1.yyyy |
|
expp r1.y, r0.yyyy |
|
// dist *= kTwoPi; |
|
mul r0, r1, c15.wwww; |
|
// dist += -kPi; |
|
sub r0, r0, c15.zzzz; |
|
|
|
// |
|
// sincos(dist, sinDist, cosDist); |
|
// sin = r0 + r0^3 * vSin.y + r0^5 * vSin.z |
|
// cos = 1 + r0^2 * vCos.y + r0^4 * vCos.z |
|
mul r1, r0, r0; // r0^2 |
|
mul r2, r1, r0; // r0^3 - probably stall |
|
mul r3, r1, r1; // r0^4 |
|
mul r4, r1, r2; // r0^5 |
|
mul r5, r2, r3; // r0^7 |
|
|
|
mul r1, r1, c14.yyyy; // r1 = r0^2 * vCos.y |
|
mad r2, r2, c13.yyyy, r0; // r2 = r0 + r0^3 * vSin.y |
|
add r1, r1, c14.xxxx; // r1 = 1 + r0^2 * vCos.y |
|
mad r2, r4, c13.zzzz, r2; // r2 = r0 + r0^3 * vSin.y + r0^5 * vSin.z |
|
mad r1, r3, c14.zzzz, r1; // r1 = 1 + r0^2 * vCos.y + r0^4 * vCos.z |
|
|
|
// r0^7 & r0^6 terms |
|
mul r4, r4, r0; // r0^6 |
|
mad r2, r5, c13.wwww, r2; |
|
mad r1, r4, c14.wwww, r1; |
|
|
|
//mov r2, r1; |
|
// r2 == sinDist |
|
// r1 == cosDist |
|
// sinDist *= filter; |
|
mul r2, r2, r11; |
|
// sinDist *= kAmplitude.xyzw |
|
mul r2, r2, c7; |
|
// height = dp4(sinDist, kOne); |
|
// accumPos.z += height; (but accumPos.z is currently 0). |
|
dp4 r6.z, r2, c16.zzzz; |
|
// |
|
// cosDist *= kFreq.xyzw; |
|
mul r1, r1, c5; |
|
// cosDist *= kAmplitude.xyzw; // Combine? |
|
mul r1, r1, c7; |
|
// cosDist *= filter; |
|
mul r1, r1, r11; |
|
// |
|
// accumCos = (0, 0, 0, 0); |
|
mov r7, c16.xxxx; |
|
// temp = dp4( cosDist, toCenter_X ); |
|
// accumCos.x += temp.xxxx; (but accumCos = (0,0,0,0) |
|
dp4 r7.x, r1, -c8 |
|
// |
|
// temp = dp4( cosDist, toCenter_Y ); |
|
// accumCos.y += temp.xxxx; |
|
dp4 r7.y, r1, -c9 |
|
// |
|
// } |
|
// |
|
// accumBin = (1, 0, -accumCos.x); |
|
// accumTan = (0, 1, -accumCos.y); |
|
// accumNorm = (accumCos.x, accumCos.y, 1); |
|
mov r11, c16.xxzx; |
|
add r11, r11, r7; |
|
dp3 r10.x, r11, r11; |
|
rsq r10.x, r10.x; |
|
mul r11, r11, r10.xxxx; |
|
|
|
// |
|
// // Scrunch in based on computed (normalized) normal |
|
// temp = mul( accumNorm, kNegScrunchScale ); // kNegScrunchScale = (-scrunchScale, -scrunchScale, 0, 0); |
|
// accumPos += temp; |
|
dp3 r10.x, r11, c18.zxw; // winddir.x, winddir.y, 0, 0 |
|
// r10.x tells us whether our normal is opposed to the wind. |
|
// If opposed, r10.x = 0, else r10.x = 1.f; |
|
// We'll use this to kill the Scrunch on the back sides of waves. |
|
// We use it for position right here, and then again for the |
|
// normal just down a bit further. |
|
slt r10.x, r10.x, c16.x; |
|
mul r9, r10.xxxx, r11; |
|
|
|
mad r6, r9, c12.yyzz, r6; |
|
|
|
// mul r6.z, r6.z, r10.xxxx; DEBUG |
|
|
|
// mad r6, r11, c12.yyzz, r6; |
|
|
|
// accumNorm = mul (accumNorm, kScrunchScale ); // kScrunchScale = (scrunchScale, scrunchScale, 1, 1); |
|
// accumCos *= (scrunchScale, scrunchScale, 0, 0); |
|
|
|
mul r2.x, r6.z, c12.x; |
|
mul r2.x, r2.x, r10.x; // ??? |
|
add r2.x, r2.x, c16.z; |
|
|
|
// mul r7, r7, c12.xxzz; |
|
mul r7.xy, r7.xy, r2.xx; |
|
|
|
// This is actually wrong, but useful right now for visualizing the generated coords. |
|
// See below for correct version. |
|
|
|
sub r3, c16.xxzx, r7.xyzz; |
|
|
|
// Normalize? |
|
|
|
// We can either calculate an orthonormal basis from the |
|
// computed normal, with Binormal = (0,1,0) X Normal, Tangent = Normal X (1,0,0), |
|
// or compute our basis directly from the partial derivatives, with |
|
// Binormal = (1, 0, -cosX), Tangent = (0, 1, -cosY), Normal = (cosX, cosY, 1) |
|
// |
|
// These work out to identically the same result, so we'll compute directly |
|
// from the partials because it takes 2 fewer instructions. |
|
// |
|
// Note that our basis is NOT orthonormal. The Normal is equal to |
|
// Binormal X Tangent, but Dot(Binormal, Tangent) != 0. The Binormal and Tangents |
|
// are both correct tangents to the surface, and their projections on the XY plane |
|
// are 90 degrees apart, but in 3-space, they are not orthogonal. Practical implications? |
|
// Not really. I'm actually not really sure which is more "proper" for bump mapping. |
|
// |
|
// Note also that we add when we should subtract and subtract when we should |
|
// add, so that r1, r2, r3 aren't Binormal, Tangent, Normal, but the rows |
|
// of our transform, (Bx, Tx, Nx), (By, Ty, Ny), (Bz, Tz, Nz). See below for |
|
// explanation. |
|
// |
|
// Binormal = Y % Normal |
|
// Cross product3 is: |
|
// mul res.xyz, a.yzx, b.zxy |
|
// mad res.xyz, -a.zxy, b.yzx, res.xyz |
|
// mul r1.xyz, c16.zxx, r3.zxy; |
|
// mad r1.xyz, -c16.xxz, r3.yzx, r1.xyz; |
|
|
|
// Tangent = Normal % X |
|
// mul r2.xyz, r3.yzx, c16.xzx; |
|
// mad r2.xyz, -r3.zxy, c16.xxz, r2; |
|
|
|
add r1, c16.zxxx, r7.zzxz; |
|
add r2, c16.xzxx, r7.zzyz; |
|
|
|
// Note that we're swapping z and y to match our environment map tools in max. |
|
// We do this through our normal map transform (oT1, oT2, oT3), making it |
|
// a concatenation of: |
|
// |
|
// rotate about Z (blue) to turn our map into the wind |
|
// windRot = | dirY -dirX 0 | |
|
// | dirX dirY 0 | |
|
// | 0 0 1 | |
|
// |
|
// swap our Y and Z axes to match our environment map |
|
// swapYZ = | 1 0 0 | |
|
// | 0 0 1 | |
|
// | 0 1 0 | |
|
// |
|
// rotate the normal into the surface's tangent space basis |
|
// basis = | Bx Tx Nx | |
|
// | By Ty Ny | |
|
// | Bz Tz Nz | |
|
// |
|
// Note that we've constucted the basis by taking advantage of the |
|
// matrix being a pure rotation, as noted below, so r1, r2 and r3 |
|
// are actually constructed as: |
|
// basis = | Bx -By -Bz | |
|
// | -Tx Ty -Tz | |
|
// | -Nx -Ny -Nz | |
|
// |
|
// Then the final normal map transform is: |
|
// |
|
// basis * swapYZ * windRot [ * normal ] |
|
|
|
|
|
// sub r1.w, c17.x, r6.x; |
|
// sub r2.w, c17.z, r6.z; |
|
// sub r3.w, c17.y, r6.y; |
|
|
|
// Big note here. All this math can blow up if the camera position |
|
// is outside the environment sphere. It's assumed that's dealt |
|
// with in the app setting up the constants. For that reason, the |
|
// camera position used here might not be the real local camera position, |
|
// which is needed for the angular attenuation, so we burn another constant |
|
// with our pseudo-camera position. To restrain the pseudo-camera from |
|
// leaving the sphere, we make: |
|
// pseudoPos = envCenter + (realPos - envCenter) * dist * R / (dist + R) |
|
// where dist = |realPos - envCenter| |
|
|
|
// So, our "finitized" eyeray is: |
|
// camPos + D * t - envCenter = D * t - (envCenter - camPos) |
|
// with |
|
// D = (pos - camPos) / |pos - camPos| // normalized usual eyeray |
|
// and |
|
// t = D dot F + sqrt( (D dot F)^2 - G ) |
|
// with |
|
// F = (envCenter - camPos) => c19.xyz |
|
// G = F^2 - R^2 => c19.w |
|
// R = environment radius. => unused |
|
// |
|
// This all derives from the positive root of equation |
|
// (camPos + (pos - camPos) * t - envCenter)^2 = R^2, |
|
// In other words, where on a sphere of radius R centered about envCenter |
|
// does the ray from the real camera position through this point hit. |
|
// |
|
// Note that F, G, and R are all constants (one point, two scalars). |
|
// |
|
// So first we calculate D into r0, |
|
// then D dot F into r10.x, |
|
// then (D dot F)^2 - G into r10.y |
|
// then rsq( (D dot F)^2 - G ) into r9.x; |
|
// then t = r10.z = r10.x + r10.y * r9.x; |
|
// and |
|
// r0 = D * t - (envCenter - camPos) |
|
// = r0 * r10.zzzz - F; |
|
// |
|
sub r0, r6, c17; |
|
dp3 r10.x, r0, r0; |
|
rsq r10.x, r10.x; |
|
mul r0, r0, r10.xxxx; |
|
|
|
dp3 r10.x, r0, c19; |
|
mad r10.y, r10.x, r10.x, -c19.w; |
|
|
|
rsq r9.x, r10.y; |
|
|
|
mad r10.z, r10.y, r9.x, r10.x; |
|
|
|
mad r0.xyz, r0, r10.zzz, -c19.xyz; |
|
|
|
mov r1.w, -r0.x; |
|
mov r2.w, -r0.y; |
|
mov r3.w, -r0.z; |
|
|
|
// Now rotate our basis vectors into the wind |
|
dp3 r0.x, r1, c18.xyww; |
|
dp3 r0.y, r1, c18.zxww; |
|
mov r1.xy, r0; |
|
|
|
dp3 r0.x, r2, c18.xyww; |
|
dp3 r0.y, r2, c18.zxww; |
|
mov r2.xy, r0; |
|
|
|
dp3 r0.x, r3, c18.xyww; |
|
dp3 r0.y, r3, c18.zxww; |
|
mov r3.xy, r0; |
|
|
|
mov r0.w, c16.zzzz; |
|
|
|
dp3 r0.x, r1, r1; |
|
rsq r0.x, r0.x; |
|
mul oT1, r1.xyzw, r0.xxxw; |
|
// mul r8, r1.xyzw, r0.xxxw; // VISUAL |
|
|
|
dp3 r0.x, r2, r2; |
|
rsq r0.x, r0.x; |
|
mul oT3, r2.xyzw, r0.xxxw; |
|
// mul r9, r2.xyzw, r0.xxxw; // VISUAL |
|
|
|
dp3 r0.x, r3, r3; |
|
rsq r0.x, r0.x; |
|
mul oT2, r3.xyzw, r0.xxxw; |
|
// mul r9, r3.xyzw, r0.xxxw; // VISUAL |
|
|
|
// mul r3, r3.xzyw, r0.xxxw; |
|
// mul r3.xy, r3, -c16.zzzz; |
|
|
|
/* |
|
// Want: |
|
// oT1 = (BIN.x, TAN.x, NORM.x, view2pos.x) |
|
// oT2 = (BIN.y, TAN.y, NORM.y, view2pos.y) |
|
// ot3 = (BIN.z, TAN.z, NORM.z, view2pos.z) |
|
// with BIN, TAN, and NORM normalized. |
|
// Unnormalized, we have |
|
// BIN = (1, 0, -r7.x) where r7 == accumCos |
|
// TAN = (0, 1, -r7.y) |
|
// NORM= (r7.x, r7.y, 1) |
|
// So, unnormalized, we have |
|
// oT1 = (1, 0, r7.x, view2pos.x) |
|
// oT2 = (0, 1, r7.y, view2pos.y) |
|
// oT3 = (-r7.x, -r7.y, 1, view2pos.z) |
|
// which is just reversing the signs on the accumCos |
|
// terms above. So the normalized version is just |
|
// reversing the signs on the normalized version above. |
|
*/ |
|
//mov oT3, r4; |
|
|
|
// |
|
// // Transform position to screen |
|
// |
|
// |
|
m4x4 oPos, r6, c0; |
|
|
|
// Still need to attenuate based on position |
|
mov oD0, c4; |
|
|
|
// This should be in local space after xforming v0 |
|
dp4 r0.x, v0, c10; |
|
dp4 r0.y, v0, c11; |
|
mov r0.zw, c16.xxxz; |
|
mov oT0, r0 |
|
// mov oT0, v7; |
|
|
|
// Questionble attenuation follows |
|
// Find vector from this point to camera and normalize |
|
sub r0, c17, r6; |
|
dp3 r1.x, r0, r0; |
|
rsq r1.x, r1.x; |
|
mul r0, r0, r1.xxxx; |
|
// Dot that with the computed normal |
|
dp3 r1.x, r0, r11; |
|
// dp3 r1.x, r0, r3; // if you want the adjusted normal, you'll need to normalize/swizzle r3 |
|
// Map dot=1 => 0, dot=0 => 1 |
|
sub r1.xyzw, c16.zzzz, r1.xxxx; |
|
add r1.w, r1.wwww, c16.zzzz; |
|
mul r1.w, r1.wwww, c16.yyyy; |
|
// No need to clamp, since the destination register (in the pixel shader) |
|
// will saturate [0..1] anyway. |
|
mul oD1, r1, c20; |
|
// mov oD1, r9; |
|
// mov oD1, r8.xzyw;
|
|
|