471 lines
15 KiB

vs.1.1
dcl_position v0
//m4x4 oPos, v0, c0
/*
In fact, I was trying to understand how it was possible to expand FRC into 4
instructions...
Actually, I can do it in 7 instructions :)
EXPP r0.y, r1.xxxx
MOV r0.x, r0.y
EXPP r0.y, r1.zzzz
MOV r0.z, r0.y
EXPP r0.y, r1.wwww
MOV r0.w, r0.y
EXPP r0.y, r1.yyyy
*/
/*
// Constants for sin and cos. 3 term approximation seems plenty
// (it's what i used for software sim, and had no visibly different
// results than the math library functions).
// When doing sin/cos together, some speedup might be obtained
// with good pairing of ops doing them simultaneously. Also save
// an instruction calculating r0^3.
D3DXVECTOR4 vSin( 1.0f, -1.0f/6.0f, 1.0f/120.0f, -1.0f/5040.0f );
D3DXVECTOR4 vCos( 1.0f, -1.0f/2.0f, 1.0f/ 24.0f, -1.0f/ 720.0f );
*/
/*
Cos():
r1 = mul(r0, r0); // r0^2
r2 = mul(r1, r1); // r0^4
//cos
r3 = mad( r1, vCos.yyyy, vCos.xxxx );
r3 = mad( r2, vCos.zzzz, r3 );
*/
/*
Sin();
r1 = mul(r0, r0); // r0^3
r1 = mul(r0, r1);
r2 = mul(r1, r1); // r0^6
r3 = mad( r1, vSin.yyyy, r0 );
r3 = mad( r2, vSin.zzzz, r3 );
*/
/*
SinCos():
r1 = mul(r0, r0); // r0^2
r2 = mul(r1, r0); // r0^3 // probably stall
r3 = mul(r1, r1); // r0^4
r4 = mul(r2, r2); // r0^6
r5 = mad( r1, vCos.yyyy, vCos.xxxx );
r6 = mad( r2, vSin.yyyy, r0 );
r5 = mad( r3, vCos.zzzz, r5 );
r6 = mad( r4, vSin.zzzz, r6 );
*/
/*
consts
kOneOverEightNsqPi = 1.f / ( 8.f * Pi * 4.f * 4.f );
kPiOverTwo = Pi / 2.f;
kTwoPi = Pi * 2.f;
kPi = Pi;
*/
/*
CONSTANT REGISTERS
VOLATILE CONSTS - change per invocation
C0-C3 local2proj matrix
C4 color
C5 freq vector
C6 phase vector
C7 amplitude vector
C8 center0
C9 center1
C10 center2
C11 center3
C12 scrunch = (scrunch, -scrunch, 0, 1);
CONSTANT CONSTS - forever more
C13 SinConsts = (1.0f, -1.0f/6.0f, 1.0f/120.0f, -1.0f/5040.0f);
C14 CosConsts = (1.0f, -1.0f/2.0f, 1.0f/ 24.0f, -1.0f/ 720.0f);
C15 PiConsts = (1.f / 8*Pi*N^2, Pi/2, Pi, 2*Pi);
C16 numberConsts = (0.f, 0.5f, 1.f, 2.f);
//=====================================
TEMP REGISTERS
r6 accumPos
r7 accumCos
r8 toCenter_Y
r9 toCenter_X
r11 filter
r10 tempFloat
*/
// const float4 kCosConsts = float4(1.0f, -1.0f/2.0f, 1.0f/ 24.0f, -1.0f/ 720.0f);
// const float4 kSinConsts = float4(1.0f, -1.0f/6.0f, 1.0f/120.0f, -1.0f/5040.0f);
// const float4 kPiConsts = float4(1.f / (8.f * 3.1415f * 16f), 3.1415f*0.5f, 3.1415f, 3.1515f*2.f);
// const float4 k0512 = float4(0.f, 0.5f, 1.f, 2.f);
// accumPos = inPos;
mov r6, v0;
//
// For each wave
// {
// // First, we want to filter out waves based on distance from the local origin
// dist = dp3(inPos, inPos);
dp3 r0, r6, r6;
// dist *= kFreqSq.xyzw;
mul r0, r0, c5;
mul r0, r0, c5;
// dist *= kOneOverEightNsqPi; // combine this into kFreqSq?
mul r0, r0, c15.xxxx;
// dist = min(dist, kPiOverTwo);
min r0, r0, c15.yyyy;
// filter = cos(dist);
mul r1, r0, r0; // r0^2
mul r2, r1, r1; // r1^2
mul r1, r1, c14.yyyy;
add r11, r1, c14.xxxx;
mad r11, r2, c14.zzzz, r11;
// filter *= kAmplitude.xyzw;
// mul r11, r11, c7;
// // Notice that if dist is a 4vec, all this can be simultaneously done for 4 waves at a time.
//
// Find the x/y distances and stuff them into r9(x) and r8(y) respectively
// toCenter_X.x = dir0.x * pos.x;
// toCenter_Y.x = dir0.y * pos.y;
mul r0, c8, r6.xxxx;
mad r0, c9, r6.yyyy, r0;
//
// dist = mad( dist, kFreq.xyzw, kPhase.xyzw);
mul r0, r0, c5;
add r0, r0, c6;
//
// // Now we need dist mod'd into range [-Pi..Pi]
// dist *= rcp(kTwoPi);
rcp r4, c15.wwww;
add r0, r0, c15.zzzz;
mul r0, r0, r4;
// dist = frac(dist);
expp r1.y, r0.xxxx
mov r1.x, r1.yyyy
expp r1.y, r0.zzzz
mov r1.z, r1.yyyy
expp r1.y, r0.wwww
mov r1.w, r1.yyyy
expp r1.y, r0.yyyy
// dist *= kTwoPi;
mul r0, r1, c15.wwww;
// dist += -kPi;
sub r0, r0, c15.zzzz;
//
// sincos(dist, sinDist, cosDist);
// sin = r0 + r0^3 * vSin.y + r0^5 * vSin.z
// cos = 1 + r0^2 * vCos.y + r0^4 * vCos.z
mul r1, r0, r0; // r0^2
mul r2, r1, r0; // r0^3 - probably stall
mul r3, r1, r1; // r0^4
mul r4, r1, r2; // r0^5
mul r5, r2, r3; // r0^7
mul r1, r1, c14.yyyy; // r1 = r0^2 * vCos.y
mad r2, r2, c13.yyyy, r0; // r2 = r0 + r0^3 * vSin.y
add r1, r1, c14.xxxx; // r1 = 1 + r0^2 * vCos.y
mad r2, r4, c13.zzzz, r2; // r2 = r0 + r0^3 * vSin.y + r0^5 * vSin.z
mad r1, r3, c14.zzzz, r1; // r1 = 1 + r0^2 * vCos.y + r0^4 * vCos.z
// r0^7 & r0^6 terms
mul r4, r4, r0; // r0^6
mad r2, r5, c13.wwww, r2;
mad r1, r4, c14.wwww, r1;
//mov r2, r1;
// r2 == sinDist
// r1 == cosDist
// sinDist *= filter;
mul r2, r2, r11;
// sinDist *= kAmplitude.xyzw
mul r2, r2, c7;
// height = dp4(sinDist, kOne);
// accumPos.z += height; (but accumPos.z is currently 0).
dp4 r6.z, r2, c16.zzzz;
//
// cosDist *= kFreq.xyzw;
mul r1, r1, c5;
// cosDist *= kAmplitude.xyzw; // Combine?
mul r1, r1, c7;
// cosDist *= filter;
mul r1, r1, r11;
//
// accumCos = (0, 0, 0, 0);
mov r7, c16.xxxx;
// temp = dp4( cosDist, toCenter_X );
// accumCos.x += temp.xxxx; (but accumCos = (0,0,0,0)
dp4 r7.x, r1, -c8
//
// temp = dp4( cosDist, toCenter_Y );
// accumCos.y += temp.xxxx;
dp4 r7.y, r1, -c9
//
// }
//
// accumBin = (1, 0, -accumCos.x);
// accumTan = (0, 1, -accumCos.y);
// accumNorm = (accumCos.x, accumCos.y, 1);
mov r11, c16.xxzx;
add r11, r11, r7;
dp3 r10.x, r11, r11;
rsq r10.x, r10.x;
mul r11, r11, r10.xxxx;
//
// // Scrunch in based on computed (normalized) normal
// temp = mul( accumNorm, kNegScrunchScale ); // kNegScrunchScale = (-scrunchScale, -scrunchScale, 0, 0);
// accumPos += temp;
dp3 r10.x, r11, c18.zxw; // winddir.x, winddir.y, 0, 0
// r10.x tells us whether our normal is opposed to the wind.
// If opposed, r10.x = 0, else r10.x = 1.f;
// We'll use this to kill the Scrunch on the back sides of waves.
// We use it for position right here, and then again for the
// normal just down a bit further.
slt r10.x, r10.x, c16.x;
mul r9, r10.xxxx, r11;
mad r6, r9, c12.yyzz, r6;
// mul r6.z, r6.z, r10.xxxx; DEBUG
// mad r6, r11, c12.yyzz, r6;
// accumNorm = mul (accumNorm, kScrunchScale ); // kScrunchScale = (scrunchScale, scrunchScale, 1, 1);
// accumCos *= (scrunchScale, scrunchScale, 0, 0);
mul r2.x, r6.z, c12.x;
mul r2.x, r2.x, r10.x; // ???
add r2.x, r2.x, c16.z;
// mul r7, r7, c12.xxzz;
mul r7.xy, r7.xy, r2.xx;
// This is actually wrong, but useful right now for visualizing the generated coords.
// See below for correct version.
sub r3, c16.xxzx, r7.xyzz;
// Normalize?
// We can either calculate an orthonormal basis from the
// computed normal, with Binormal = (0,1,0) X Normal, Tangent = Normal X (1,0,0),
// or compute our basis directly from the partial derivatives, with
// Binormal = (1, 0, -cosX), Tangent = (0, 1, -cosY), Normal = (cosX, cosY, 1)
//
// These work out to identically the same result, so we'll compute directly
// from the partials because it takes 2 fewer instructions.
//
// Note that our basis is NOT orthonormal. The Normal is equal to
// Binormal X Tangent, but Dot(Binormal, Tangent) != 0. The Binormal and Tangents
// are both correct tangents to the surface, and their projections on the XY plane
// are 90 degrees apart, but in 3-space, they are not orthogonal. Practical implications?
// Not really. I'm actually not really sure which is more "proper" for bump mapping.
//
// Note also that we add when we should subtract and subtract when we should
// add, so that r1, r2, r3 aren't Binormal, Tangent, Normal, but the rows
// of our transform, (Bx, Tx, Nx), (By, Ty, Ny), (Bz, Tz, Nz). See below for
// explanation.
//
// Binormal = Y % Normal
// Cross product3 is:
// mul res.xyz, a.yzx, b.zxy
// mad res.xyz, -a.zxy, b.yzx, res.xyz
// mul r1.xyz, c16.zxx, r3.zxy;
// mad r1.xyz, -c16.xxz, r3.yzx, r1.xyz;
// Tangent = Normal % X
// mul r2.xyz, r3.yzx, c16.xzx;
// mad r2.xyz, -r3.zxy, c16.xxz, r2;
add r1, c16.zxxx, r7.zzxz;
add r2, c16.xzxx, r7.zzyz;
// Note that we're swapping z and y to match our environment map tools in max.
// We do this through our normal map transform (oT1, oT2, oT3), making it
// a concatenation of:
//
// rotate about Z (blue) to turn our map into the wind
// windRot = | dirY -dirX 0 |
// | dirX dirY 0 |
// | 0 0 1 |
//
// swap our Y and Z axes to match our environment map
// swapYZ = | 1 0 0 |
// | 0 0 1 |
// | 0 1 0 |
//
// rotate the normal into the surface's tangent space basis
// basis = | Bx Tx Nx |
// | By Ty Ny |
// | Bz Tz Nz |
//
// Note that we've constucted the basis by taking advantage of the
// matrix being a pure rotation, as noted below, so r1, r2 and r3
// are actually constructed as:
// basis = | Bx -By -Bz |
// | -Tx Ty -Tz |
// | -Nx -Ny -Nz |
//
// Then the final normal map transform is:
//
// basis * swapYZ * windRot [ * normal ]
// sub r1.w, c17.x, r6.x;
// sub r2.w, c17.z, r6.z;
// sub r3.w, c17.y, r6.y;
// Big note here. All this math can blow up if the camera position
// is outside the environment sphere. It's assumed that's dealt
// with in the app setting up the constants. For that reason, the
// camera position used here might not be the real local camera position,
// which is needed for the angular attenuation, so we burn another constant
// with our pseudo-camera position. To restrain the pseudo-camera from
// leaving the sphere, we make:
// pseudoPos = envCenter + (realPos - envCenter) * dist * R / (dist + R)
// where dist = |realPos - envCenter|
// So, our "finitized" eyeray is:
// camPos + D * t - envCenter = D * t - (envCenter - camPos)
// with
// D = (pos - camPos) / |pos - camPos| // normalized usual eyeray
// and
// t = D dot F + sqrt( (D dot F)^2 - G )
// with
// F = (envCenter - camPos) => c19.xyz
// G = F^2 - R^2 => c19.w
// R = environment radius. => unused
//
// This all derives from the positive root of equation
// (camPos + (pos - camPos) * t - envCenter)^2 = R^2,
// In other words, where on a sphere of radius R centered about envCenter
// does the ray from the real camera position through this point hit.
//
// Note that F, G, and R are all constants (one point, two scalars).
//
// So first we calculate D into r0,
// then D dot F into r10.x,
// then (D dot F)^2 - G into r10.y
// then rsq( (D dot F)^2 - G ) into r9.x;
// then t = r10.z = r10.x + r10.y * r9.x;
// and
// r0 = D * t - (envCenter - camPos)
// = r0 * r10.zzzz - F;
//
sub r0, r6, c17;
dp3 r10.x, r0, r0;
rsq r10.x, r10.x;
mul r0, r0, r10.xxxx;
dp3 r10.x, r0, c19;
mad r10.y, r10.x, r10.x, -c19.w;
rsq r9.x, r10.y;
mad r10.z, r10.y, r9.x, r10.x;
mad r0.xyz, r0, r10.zzz, -c19.xyz;
mov r1.w, -r0.x;
mov r2.w, -r0.y;
mov r3.w, -r0.z;
// Now rotate our basis vectors into the wind
dp3 r0.x, r1, c18.xyww;
dp3 r0.y, r1, c18.zxww;
mov r1.xy, r0;
dp3 r0.x, r2, c18.xyww;
dp3 r0.y, r2, c18.zxww;
mov r2.xy, r0;
dp3 r0.x, r3, c18.xyww;
dp3 r0.y, r3, c18.zxww;
mov r3.xy, r0;
mov r0.w, c16.zzzz;
dp3 r0.x, r1, r1;
rsq r0.x, r0.x;
mul oT1, r1.xyzw, r0.xxxw;
// mul r8, r1.xyzw, r0.xxxw; // VISUAL
dp3 r0.x, r2, r2;
rsq r0.x, r0.x;
mul oT3, r2.xyzw, r0.xxxw;
// mul r9, r2.xyzw, r0.xxxw; // VISUAL
dp3 r0.x, r3, r3;
rsq r0.x, r0.x;
mul oT2, r3.xyzw, r0.xxxw;
// mul r9, r3.xyzw, r0.xxxw; // VISUAL
// mul r3, r3.xzyw, r0.xxxw;
// mul r3.xy, r3, -c16.zzzz;
/*
// Want:
// oT1 = (BIN.x, TAN.x, NORM.x, view2pos.x)
// oT2 = (BIN.y, TAN.y, NORM.y, view2pos.y)
// ot3 = (BIN.z, TAN.z, NORM.z, view2pos.z)
// with BIN, TAN, and NORM normalized.
// Unnormalized, we have
// BIN = (1, 0, -r7.x) where r7 == accumCos
// TAN = (0, 1, -r7.y)
// NORM= (r7.x, r7.y, 1)
// So, unnormalized, we have
// oT1 = (1, 0, r7.x, view2pos.x)
// oT2 = (0, 1, r7.y, view2pos.y)
// oT3 = (-r7.x, -r7.y, 1, view2pos.z)
// which is just reversing the signs on the accumCos
// terms above. So the normalized version is just
// reversing the signs on the normalized version above.
*/
//mov oT3, r4;
//
// // Transform position to screen
//
//
m4x4 oPos, r6, c0;
// Still need to attenuate based on position
mov oD0, c4;
// This should be in local space after xforming v0
dp4 r0.x, v0, c10;
dp4 r0.y, v0, c11;
mov r0.zw, c16.xxxz;
mov oT0, r0
// mov oT0, v7;
// Questionble attenuation follows
// Find vector from this point to camera and normalize
sub r0, c17, r6;
dp3 r1.x, r0, r0;
rsq r1.x, r1.x;
mul r0, r0, r1.xxxx;
// Dot that with the computed normal
dp3 r1.x, r0, r11;
// dp3 r1.x, r0, r3; // if you want the adjusted normal, you'll need to normalize/swizzle r3
// Map dot=1 => 0, dot=0 => 1
sub r1.xyzw, c16.zzzz, r1.xxxx;
add r1.w, r1.wwww, c16.zzzz;
mul r1.w, r1.wwww, c16.yyyy;
// No need to clamp, since the destination register (in the pixel shader)
// will saturate [0..1] anyway.
mul oD1, r1, c20;
// mov oD1, r9;
// mov oD1, r8.xzyw;