You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
736 lines
25 KiB
736 lines
25 KiB
/* |
|
* jdcoefct.c |
|
* |
|
* Copyright (C) 1994-1997, Thomas G. Lane. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains the coefficient buffer controller for decompression. |
|
* This controller is the top level of the JPEG decompressor proper. |
|
* The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
|
* |
|
* In buffered-image mode, this controller is the interface between |
|
* input-oriented processing and output-oriented processing. |
|
* Also, the input side (only) is used when reading a file for transcoding. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
|
|
/* Block smoothing is only applicable for progressive JPEG, so: */ |
|
#ifndef D_PROGRESSIVE_SUPPORTED |
|
#undef BLOCK_SMOOTHING_SUPPORTED |
|
#endif |
|
|
|
/* Private buffer controller object */ |
|
|
|
typedef struct { |
|
struct jpeg_d_coef_controller pub; /* public fields */ |
|
|
|
/* These variables keep track of the current location of the input side. */ |
|
/* cinfo->input_iMCU_row is also used for this. */ |
|
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
|
int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
|
int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
|
|
|
/* The output side's location is represented by cinfo->output_iMCU_row. */ |
|
|
|
/* In single-pass modes, it's sufficient to buffer just one MCU. |
|
* We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, |
|
* and let the entropy decoder write into that workspace each time. |
|
* (On 80x86, the workspace is FAR even though it's not really very big; |
|
* this is to keep the module interfaces unchanged when a large coefficient |
|
* buffer is necessary.) |
|
* In multi-pass modes, this array points to the current MCU's blocks |
|
* within the virtual arrays; it is used only by the input side. |
|
*/ |
|
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; |
|
|
|
#ifdef D_MULTISCAN_FILES_SUPPORTED |
|
/* In multi-pass modes, we need a virtual block array for each component. */ |
|
jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
|
#endif |
|
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
|
/* When doing block smoothing, we latch coefficient Al values here */ |
|
int * coef_bits_latch; |
|
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */ |
|
#endif |
|
} my_coef_controller; |
|
|
|
typedef my_coef_controller * my_coef_ptr; |
|
|
|
/* Forward declarations */ |
|
METHODDEF(int) decompress_onepass |
|
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
|
#ifdef D_MULTISCAN_FILES_SUPPORTED |
|
METHODDEF(int) decompress_data |
|
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
|
#endif |
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
|
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); |
|
METHODDEF(int) decompress_smooth_data |
|
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
|
#endif |
|
|
|
|
|
LOCAL(void) |
|
start_iMCU_row (j_decompress_ptr cinfo) |
|
/* Reset within-iMCU-row counters for a new row (input side) */ |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
|
|
/* In an interleaved scan, an MCU row is the same as an iMCU row. |
|
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
|
* But at the bottom of the image, process only what's left. |
|
*/ |
|
if (cinfo->comps_in_scan > 1) { |
|
coef->MCU_rows_per_iMCU_row = 1; |
|
} else { |
|
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) |
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
|
else |
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
|
} |
|
|
|
coef->MCU_ctr = 0; |
|
coef->MCU_vert_offset = 0; |
|
} |
|
|
|
|
|
/* |
|
* Initialize for an input processing pass. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_input_pass (j_decompress_ptr cinfo) |
|
{ |
|
cinfo->input_iMCU_row = 0; |
|
start_iMCU_row(cinfo); |
|
} |
|
|
|
|
|
/* |
|
* Initialize for an output processing pass. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_output_pass (j_decompress_ptr cinfo) |
|
{ |
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
|
|
/* If multipass, check to see whether to use block smoothing on this pass */ |
|
if (coef->pub.coef_arrays != NULL) { |
|
if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
|
coef->pub.decompress_data = decompress_smooth_data; |
|
else |
|
coef->pub.decompress_data = decompress_data; |
|
} |
|
#endif |
|
cinfo->output_iMCU_row = 0; |
|
} |
|
|
|
|
|
/* |
|
* Decompress and return some data in the single-pass case. |
|
* Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
|
* Input and output must run in lockstep since we have only a one-MCU buffer. |
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
|
* |
|
* NB: output_buf contains a plane for each component in image, |
|
* which we index according to the component's SOF position. |
|
*/ |
|
|
|
METHODDEF(int) |
|
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
|
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
|
int blkn, ci, xindex, yindex, yoffset, useful_width; |
|
JSAMPARRAY output_ptr; |
|
JDIMENSION start_col, output_col; |
|
jpeg_component_info *compptr; |
|
inverse_DCT_method_ptr inverse_DCT; |
|
|
|
/* Loop to process as much as one whole iMCU row */ |
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
|
yoffset++) { |
|
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
|
MCU_col_num++) { |
|
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
|
jzero_far((void FAR *) coef->MCU_buffer[0], |
|
(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); |
|
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
|
/* Suspension forced; update state counters and exit */ |
|
coef->MCU_vert_offset = yoffset; |
|
coef->MCU_ctr = MCU_col_num; |
|
return JPEG_SUSPENDED; |
|
} |
|
/* Determine where data should go in output_buf and do the IDCT thing. |
|
* We skip dummy blocks at the right and bottom edges (but blkn gets |
|
* incremented past them!). Note the inner loop relies on having |
|
* allocated the MCU_buffer[] blocks sequentially. |
|
*/ |
|
blkn = 0; /* index of current DCT block within MCU */ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
/* Don't bother to IDCT an uninteresting component. */ |
|
if (! compptr->component_needed) { |
|
blkn += compptr->MCU_blocks; |
|
continue; |
|
} |
|
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
|
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
|
: compptr->last_col_width; |
|
output_ptr = output_buf[compptr->component_index] + |
|
yoffset * compptr->DCT_v_scaled_size; |
|
start_col = MCU_col_num * compptr->MCU_sample_width; |
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
|
if (cinfo->input_iMCU_row < last_iMCU_row || |
|
yoffset+yindex < compptr->last_row_height) { |
|
output_col = start_col; |
|
for (xindex = 0; xindex < useful_width; xindex++) { |
|
(*inverse_DCT) (cinfo, compptr, |
|
(JCOEFPTR) coef->MCU_buffer[blkn+xindex], |
|
output_ptr, output_col); |
|
output_col += compptr->DCT_h_scaled_size; |
|
} |
|
} |
|
blkn += compptr->MCU_width; |
|
output_ptr += compptr->DCT_v_scaled_size; |
|
} |
|
} |
|
} |
|
/* Completed an MCU row, but perhaps not an iMCU row */ |
|
coef->MCU_ctr = 0; |
|
} |
|
/* Completed the iMCU row, advance counters for next one */ |
|
cinfo->output_iMCU_row++; |
|
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
|
start_iMCU_row(cinfo); |
|
return JPEG_ROW_COMPLETED; |
|
} |
|
/* Completed the scan */ |
|
(*cinfo->inputctl->finish_input_pass) (cinfo); |
|
return JPEG_SCAN_COMPLETED; |
|
} |
|
|
|
|
|
/* |
|
* Dummy consume-input routine for single-pass operation. |
|
*/ |
|
|
|
METHODDEF(int) |
|
dummy_consume_data (j_decompress_ptr cinfo) |
|
{ |
|
return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
|
} |
|
|
|
|
|
#ifdef D_MULTISCAN_FILES_SUPPORTED |
|
|
|
/* |
|
* Consume input data and store it in the full-image coefficient buffer. |
|
* We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
|
* ie, v_samp_factor block rows for each component in the scan. |
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
|
*/ |
|
|
|
METHODDEF(int) |
|
consume_data (j_decompress_ptr cinfo) |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
|
int blkn, ci, xindex, yindex, yoffset; |
|
JDIMENSION start_col; |
|
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
|
JBLOCKROW buffer_ptr; |
|
jpeg_component_info *compptr; |
|
|
|
/* Align the virtual buffers for the components used in this scan. */ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
buffer[ci] = (*cinfo->mem->access_virt_barray) |
|
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
|
cinfo->input_iMCU_row * compptr->v_samp_factor, |
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
|
/* Note: entropy decoder expects buffer to be zeroed, |
|
* but this is handled automatically by the memory manager |
|
* because we requested a pre-zeroed array. |
|
*/ |
|
} |
|
|
|
/* Loop to process one whole iMCU row */ |
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
|
yoffset++) { |
|
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
|
MCU_col_num++) { |
|
/* Construct list of pointers to DCT blocks belonging to this MCU */ |
|
blkn = 0; /* index of current DCT block within MCU */ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
start_col = MCU_col_num * compptr->MCU_width; |
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
|
buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
|
for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
|
coef->MCU_buffer[blkn++] = buffer_ptr++; |
|
} |
|
} |
|
} |
|
/* Try to fetch the MCU. */ |
|
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
|
/* Suspension forced; update state counters and exit */ |
|
coef->MCU_vert_offset = yoffset; |
|
coef->MCU_ctr = MCU_col_num; |
|
return JPEG_SUSPENDED; |
|
} |
|
} |
|
/* Completed an MCU row, but perhaps not an iMCU row */ |
|
coef->MCU_ctr = 0; |
|
} |
|
/* Completed the iMCU row, advance counters for next one */ |
|
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
|
start_iMCU_row(cinfo); |
|
return JPEG_ROW_COMPLETED; |
|
} |
|
/* Completed the scan */ |
|
(*cinfo->inputctl->finish_input_pass) (cinfo); |
|
return JPEG_SCAN_COMPLETED; |
|
} |
|
|
|
|
|
/* |
|
* Decompress and return some data in the multi-pass case. |
|
* Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
|
* |
|
* NB: output_buf contains a plane for each component in image. |
|
*/ |
|
|
|
METHODDEF(int) |
|
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
|
JDIMENSION block_num; |
|
int ci, block_row, block_rows; |
|
JBLOCKARRAY buffer; |
|
JBLOCKROW buffer_ptr; |
|
JSAMPARRAY output_ptr; |
|
JDIMENSION output_col; |
|
jpeg_component_info *compptr; |
|
inverse_DCT_method_ptr inverse_DCT; |
|
|
|
/* Force some input to be done if we are getting ahead of the input. */ |
|
while (cinfo->input_scan_number < cinfo->output_scan_number || |
|
(cinfo->input_scan_number == cinfo->output_scan_number && |
|
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
|
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
|
return JPEG_SUSPENDED; |
|
} |
|
|
|
/* OK, output from the virtual arrays. */ |
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
/* Don't bother to IDCT an uninteresting component. */ |
|
if (! compptr->component_needed) |
|
continue; |
|
/* Align the virtual buffer for this component. */ |
|
buffer = (*cinfo->mem->access_virt_barray) |
|
((j_common_ptr) cinfo, coef->whole_image[ci], |
|
cinfo->output_iMCU_row * compptr->v_samp_factor, |
|
(JDIMENSION) compptr->v_samp_factor, FALSE); |
|
/* Count non-dummy DCT block rows in this iMCU row. */ |
|
if (cinfo->output_iMCU_row < last_iMCU_row) |
|
block_rows = compptr->v_samp_factor; |
|
else { |
|
/* NB: can't use last_row_height here; it is input-side-dependent! */ |
|
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
|
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
|
} |
|
inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
|
output_ptr = output_buf[ci]; |
|
/* Loop over all DCT blocks to be processed. */ |
|
for (block_row = 0; block_row < block_rows; block_row++) { |
|
buffer_ptr = buffer[block_row]; |
|
output_col = 0; |
|
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { |
|
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, |
|
output_ptr, output_col); |
|
buffer_ptr++; |
|
output_col += compptr->DCT_h_scaled_size; |
|
} |
|
output_ptr += compptr->DCT_v_scaled_size; |
|
} |
|
} |
|
|
|
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
|
return JPEG_ROW_COMPLETED; |
|
return JPEG_SCAN_COMPLETED; |
|
} |
|
|
|
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
|
|
|
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
|
|
|
/* |
|
* This code applies interblock smoothing as described by section K.8 |
|
* of the JPEG standard: the first 5 AC coefficients are estimated from |
|
* the DC values of a DCT block and its 8 neighboring blocks. |
|
* We apply smoothing only for progressive JPEG decoding, and only if |
|
* the coefficients it can estimate are not yet known to full precision. |
|
*/ |
|
|
|
/* Natural-order array positions of the first 5 zigzag-order coefficients */ |
|
#define Q01_POS 1 |
|
#define Q10_POS 8 |
|
#define Q20_POS 16 |
|
#define Q11_POS 9 |
|
#define Q02_POS 2 |
|
|
|
/* |
|
* Determine whether block smoothing is applicable and safe. |
|
* We also latch the current states of the coef_bits[] entries for the |
|
* AC coefficients; otherwise, if the input side of the decompressor |
|
* advances into a new scan, we might think the coefficients are known |
|
* more accurately than they really are. |
|
*/ |
|
|
|
LOCAL(boolean) |
|
smoothing_ok (j_decompress_ptr cinfo) |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
boolean smoothing_useful = FALSE; |
|
int ci, coefi; |
|
jpeg_component_info *compptr; |
|
JQUANT_TBL * qtable; |
|
int * coef_bits; |
|
int * coef_bits_latch; |
|
|
|
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) |
|
return FALSE; |
|
|
|
/* Allocate latch area if not already done */ |
|
if (coef->coef_bits_latch == NULL) |
|
coef->coef_bits_latch = (int *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
cinfo->num_components * |
|
(SAVED_COEFS * SIZEOF(int))); |
|
coef_bits_latch = coef->coef_bits_latch; |
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
/* All components' quantization values must already be latched. */ |
|
if ((qtable = compptr->quant_table) == NULL) |
|
return FALSE; |
|
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ |
|
if (qtable->quantval[0] == 0 || |
|
qtable->quantval[Q01_POS] == 0 || |
|
qtable->quantval[Q10_POS] == 0 || |
|
qtable->quantval[Q20_POS] == 0 || |
|
qtable->quantval[Q11_POS] == 0 || |
|
qtable->quantval[Q02_POS] == 0) |
|
return FALSE; |
|
/* DC values must be at least partly known for all components. */ |
|
coef_bits = cinfo->coef_bits[ci]; |
|
if (coef_bits[0] < 0) |
|
return FALSE; |
|
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
|
for (coefi = 1; coefi <= 5; coefi++) { |
|
coef_bits_latch[coefi] = coef_bits[coefi]; |
|
if (coef_bits[coefi] != 0) |
|
smoothing_useful = TRUE; |
|
} |
|
coef_bits_latch += SAVED_COEFS; |
|
} |
|
|
|
return smoothing_useful; |
|
} |
|
|
|
|
|
/* |
|
* Variant of decompress_data for use when doing block smoothing. |
|
*/ |
|
|
|
METHODDEF(int) |
|
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
|
{ |
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
|
JDIMENSION block_num, last_block_column; |
|
int ci, block_row, block_rows, access_rows; |
|
JBLOCKARRAY buffer; |
|
JBLOCKROW buffer_ptr, prev_block_row, next_block_row; |
|
JSAMPARRAY output_ptr; |
|
JDIMENSION output_col; |
|
jpeg_component_info *compptr; |
|
inverse_DCT_method_ptr inverse_DCT; |
|
boolean first_row, last_row; |
|
JBLOCK workspace; |
|
int *coef_bits; |
|
JQUANT_TBL *quanttbl; |
|
INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; |
|
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; |
|
int Al, pred; |
|
|
|
/* Force some input to be done if we are getting ahead of the input. */ |
|
while (cinfo->input_scan_number <= cinfo->output_scan_number && |
|
! cinfo->inputctl->eoi_reached) { |
|
if (cinfo->input_scan_number == cinfo->output_scan_number) { |
|
/* If input is working on current scan, we ordinarily want it to |
|
* have completed the current row. But if input scan is DC, |
|
* we want it to keep one row ahead so that next block row's DC |
|
* values are up to date. |
|
*/ |
|
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; |
|
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) |
|
break; |
|
} |
|
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
|
return JPEG_SUSPENDED; |
|
} |
|
|
|
/* OK, output from the virtual arrays. */ |
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
/* Don't bother to IDCT an uninteresting component. */ |
|
if (! compptr->component_needed) |
|
continue; |
|
/* Count non-dummy DCT block rows in this iMCU row. */ |
|
if (cinfo->output_iMCU_row < last_iMCU_row) { |
|
block_rows = compptr->v_samp_factor; |
|
access_rows = block_rows * 2; /* this and next iMCU row */ |
|
last_row = FALSE; |
|
} else { |
|
/* NB: can't use last_row_height here; it is input-side-dependent! */ |
|
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
|
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
|
access_rows = block_rows; /* this iMCU row only */ |
|
last_row = TRUE; |
|
} |
|
/* Align the virtual buffer for this component. */ |
|
if (cinfo->output_iMCU_row > 0) { |
|
access_rows += compptr->v_samp_factor; /* prior iMCU row too */ |
|
buffer = (*cinfo->mem->access_virt_barray) |
|
((j_common_ptr) cinfo, coef->whole_image[ci], |
|
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
|
(JDIMENSION) access_rows, FALSE); |
|
buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
|
first_row = FALSE; |
|
} else { |
|
buffer = (*cinfo->mem->access_virt_barray) |
|
((j_common_ptr) cinfo, coef->whole_image[ci], |
|
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); |
|
first_row = TRUE; |
|
} |
|
/* Fetch component-dependent info */ |
|
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
|
quanttbl = compptr->quant_table; |
|
Q00 = quanttbl->quantval[0]; |
|
Q01 = quanttbl->quantval[Q01_POS]; |
|
Q10 = quanttbl->quantval[Q10_POS]; |
|
Q20 = quanttbl->quantval[Q20_POS]; |
|
Q11 = quanttbl->quantval[Q11_POS]; |
|
Q02 = quanttbl->quantval[Q02_POS]; |
|
inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
|
output_ptr = output_buf[ci]; |
|
/* Loop over all DCT blocks to be processed. */ |
|
for (block_row = 0; block_row < block_rows; block_row++) { |
|
buffer_ptr = buffer[block_row]; |
|
if (first_row && block_row == 0) |
|
prev_block_row = buffer_ptr; |
|
else |
|
prev_block_row = buffer[block_row-1]; |
|
if (last_row && block_row == block_rows-1) |
|
next_block_row = buffer_ptr; |
|
else |
|
next_block_row = buffer[block_row+1]; |
|
/* We fetch the surrounding DC values using a sliding-register approach. |
|
* Initialize all nine here so as to do the right thing on narrow pics. |
|
*/ |
|
DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; |
|
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; |
|
DC7 = DC8 = DC9 = (int) next_block_row[0][0]; |
|
output_col = 0; |
|
last_block_column = compptr->width_in_blocks - 1; |
|
for (block_num = 0; block_num <= last_block_column; block_num++) { |
|
/* Fetch current DCT block into workspace so we can modify it. */ |
|
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); |
|
/* Update DC values */ |
|
if (block_num < last_block_column) { |
|
DC3 = (int) prev_block_row[1][0]; |
|
DC6 = (int) buffer_ptr[1][0]; |
|
DC9 = (int) next_block_row[1][0]; |
|
} |
|
/* Compute coefficient estimates per K.8. |
|
* An estimate is applied only if coefficient is still zero, |
|
* and is not known to be fully accurate. |
|
*/ |
|
/* AC01 */ |
|
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { |
|
num = 36 * Q00 * (DC4 - DC6); |
|
if (num >= 0) { |
|
pred = (int) (((Q01<<7) + num) / (Q01<<8)); |
|
if (Al > 0 && pred >= (1<<Al)) |
|
pred = (1<<Al)-1; |
|
} else { |
|
pred = (int) (((Q01<<7) - num) / (Q01<<8)); |
|
if (Al > 0 && pred >= (1<<Al)) |
|
pred = (1<<Al)-1; |
|
pred = -pred; |
|
} |
|
workspace[1] = (JCOEF) pred; |
|
} |
|
/* AC10 */ |
|
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { |
|
num = 36 * Q00 * (DC2 - DC8); |
|
if (num >= 0) { |
|
pred = (int) (((Q10<<7) + num) / (Q10<<8)); |
|
if (Al > 0 && pred >= (1<<Al)) |
|
pred = (1<<Al)-1; |
|
} else { |
|
pred = (int) (((Q10<<7) - num) / (Q10<<8)); |
|
if (Al > 0 && pred >= (1<<Al)) |
|
pred = (1<<Al)-1; |
|
pred = -pred; |
|
} |
|
workspace[8] = (JCOEF) pred; |
|
} |
|
/* AC20 */ |
|
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { |
|
num = 9 * Q00 * (DC2 + DC8 - 2*DC5); |
|
if (num >= 0) { |
|
pred = (int) (((Q20<<7) + num) / (Q20<<8)); |
|
if (Al > 0 && pred >= (1<<Al)) |
|
pred = (1<<Al)-1; |
|
} else { |
|
pred = (int) (((Q20<<7) - num) / (Q20<<8)); |
|
if (Al > 0 && pred >= (1<<Al)) |
|
pred = (1<<Al)-1; |
|
pred = -pred; |
|
} |
|
workspace[16] = (JCOEF) pred; |
|
} |
|
/* AC11 */ |
|
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { |
|
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); |
|
if (num >= 0) { |
|
pred = (int) (((Q11<<7) + num) / (Q11<<8)); |
|
if (Al > 0 && pred >= (1<<Al)) |
|
pred = (1<<Al)-1; |
|
} else { |
|
pred = (int) (((Q11<<7) - num) / (Q11<<8)); |
|
if (Al > 0 && pred >= (1<<Al)) |
|
pred = (1<<Al)-1; |
|
pred = -pred; |
|
} |
|
workspace[9] = (JCOEF) pred; |
|
} |
|
/* AC02 */ |
|
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { |
|
num = 9 * Q00 * (DC4 + DC6 - 2*DC5); |
|
if (num >= 0) { |
|
pred = (int) (((Q02<<7) + num) / (Q02<<8)); |
|
if (Al > 0 && pred >= (1<<Al)) |
|
pred = (1<<Al)-1; |
|
} else { |
|
pred = (int) (((Q02<<7) - num) / (Q02<<8)); |
|
if (Al > 0 && pred >= (1<<Al)) |
|
pred = (1<<Al)-1; |
|
pred = -pred; |
|
} |
|
workspace[2] = (JCOEF) pred; |
|
} |
|
/* OK, do the IDCT */ |
|
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, |
|
output_ptr, output_col); |
|
/* Advance for next column */ |
|
DC1 = DC2; DC2 = DC3; |
|
DC4 = DC5; DC5 = DC6; |
|
DC7 = DC8; DC8 = DC9; |
|
buffer_ptr++, prev_block_row++, next_block_row++; |
|
output_col += compptr->DCT_h_scaled_size; |
|
} |
|
output_ptr += compptr->DCT_v_scaled_size; |
|
} |
|
} |
|
|
|
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
|
return JPEG_ROW_COMPLETED; |
|
return JPEG_SCAN_COMPLETED; |
|
} |
|
|
|
#endif /* BLOCK_SMOOTHING_SUPPORTED */ |
|
|
|
|
|
/* |
|
* Initialize coefficient buffer controller. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
|
{ |
|
my_coef_ptr coef; |
|
|
|
coef = (my_coef_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
SIZEOF(my_coef_controller)); |
|
cinfo->coef = (struct jpeg_d_coef_controller *) coef; |
|
coef->pub.start_input_pass = start_input_pass; |
|
coef->pub.start_output_pass = start_output_pass; |
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
|
coef->coef_bits_latch = NULL; |
|
#endif |
|
|
|
/* Create the coefficient buffer. */ |
|
if (need_full_buffer) { |
|
#ifdef D_MULTISCAN_FILES_SUPPORTED |
|
/* Allocate a full-image virtual array for each component, */ |
|
/* padded to a multiple of samp_factor DCT blocks in each direction. */ |
|
/* Note we ask for a pre-zeroed array. */ |
|
int ci, access_rows; |
|
jpeg_component_info *compptr; |
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
access_rows = compptr->v_samp_factor; |
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
|
/* If block smoothing could be used, need a bigger window */ |
|
if (cinfo->progressive_mode) |
|
access_rows *= 3; |
|
#endif |
|
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, |
|
(JDIMENSION) jround_up((long) compptr->width_in_blocks, |
|
(long) compptr->h_samp_factor), |
|
(JDIMENSION) jround_up((long) compptr->height_in_blocks, |
|
(long) compptr->v_samp_factor), |
|
(JDIMENSION) access_rows); |
|
} |
|
coef->pub.consume_data = consume_data; |
|
coef->pub.decompress_data = decompress_data; |
|
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
|
#else |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
#endif |
|
} else { |
|
/* We only need a single-MCU buffer. */ |
|
JBLOCKROW buffer; |
|
int i; |
|
|
|
buffer = (JBLOCKROW) |
|
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
|
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
|
coef->MCU_buffer[i] = buffer + i; |
|
} |
|
coef->pub.consume_data = dummy_consume_data; |
|
coef->pub.decompress_data = decompress_onepass; |
|
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
|
} |
|
}
|
|
|