/*==LICENSE==*

CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Additional permissions under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.

You can contact Cyan Worlds, Inc. by email legal@cyan.com
 or by snail mail at:
      Cyan Worlds, Inc.
      14617 N Newport Hwy
      Mead, WA   99021

*==LICENSE==*/
#include "pyMatrix44.h"

#include <python.h>

// glue functions
PYTHON_CLASS_DEFINITION(ptMatrix44, pyMatrix44);

PYTHON_DEFAULT_NEW_DEFINITION(ptMatrix44, pyMatrix44)
PYTHON_DEFAULT_DEALLOC_DEFINITION(ptMatrix44)

PYTHON_INIT_DEFINITION(ptMatrix44, args, keywords)
{
	PYTHON_RETURN_INIT_OK;
}

PYTHON_METHOD_DEFINITION_NOARGS(ptMatrix44, copy)
{
	return self->fThis->Copy();
}

PYTHON_METHOD_DEFINITION(ptMatrix44, translate, args)
{
	PyObject *vectorObj = NULL;
	if (!PyArg_ParseTuple(args, "O", &vectorObj))
	{
		PyErr_SetString(PyExc_TypeError, "translate expects a ptVector3");
		PYTHON_RETURN_ERROR;
	}
	if (!pyVector3::Check(vectorObj))
	{
		PyErr_SetString(PyExc_TypeError, "translate expects a ptVector3");
		PYTHON_RETURN_ERROR;
	}

	pyVector3 *vec = pyVector3::ConvertFrom(vectorObj);
	self->fThis->Translate(*vec);
	PYTHON_RETURN_NONE;
}

PYTHON_METHOD_DEFINITION(ptMatrix44, scale, args)
{
	PyObject *vectorObj = NULL;
	if (!PyArg_ParseTuple(args, "O", &vectorObj))
	{
		PyErr_SetString(PyExc_TypeError, "scale expects a ptVector3");
		PYTHON_RETURN_ERROR;
	}
	if (!pyVector3::Check(vectorObj))
	{
		PyErr_SetString(PyExc_TypeError, "scale expects a ptVector3");
		PYTHON_RETURN_ERROR;
	}

	pyVector3 *vec = pyVector3::ConvertFrom(vectorObj);
	self->fThis->Scale(*vec);
	PYTHON_RETURN_NONE;
}

PYTHON_METHOD_DEFINITION(ptMatrix44, rotate, args)
{
	int axis;
	float radians;
	if (!PyArg_ParseTuple(args, "if", &axis, &radians))
	{
		PyErr_SetString(PyExc_TypeError, "rotate expects an integer and a float");
		PYTHON_RETURN_ERROR;
	}
	self->fThis->Rotate(axis, radians);
	PYTHON_RETURN_NONE;
}

PYTHON_BASIC_METHOD_DEFINITION(ptMatrix44, reset, Reset)

PYTHON_METHOD_DEFINITION(ptMatrix44, makeTranslateMat, args)
{
	PyObject *vectorObj = NULL;
	if (!PyArg_ParseTuple(args, "O", &vectorObj))
	{
		PyErr_SetString(PyExc_TypeError, "makeTranslateMat expects a ptVector3");
		PYTHON_RETURN_ERROR;
	}
	if (!pyVector3::Check(vectorObj))
	{
		PyErr_SetString(PyExc_TypeError, "makeTranslateMat expects a ptVector3");
		PYTHON_RETURN_ERROR;
	}

	pyVector3 *vec = pyVector3::ConvertFrom(vectorObj);
	self->fThis->MakeTranslateMat(*vec);
	PYTHON_RETURN_NONE;
}

PYTHON_METHOD_DEFINITION(ptMatrix44, makeScaleMat, args)
{
	PyObject *vectorObj = NULL;
	if (!PyArg_ParseTuple(args, "O", &vectorObj))
	{
		PyErr_SetString(PyExc_TypeError, "makeScaleMat expects a ptVector3");
		PYTHON_RETURN_ERROR;
	}
	if (!pyVector3::Check(vectorObj))
	{
		PyErr_SetString(PyExc_TypeError, "makeScaleMat expects a ptVector3");
		PYTHON_RETURN_ERROR;
	}

	pyVector3 *vec = pyVector3::ConvertFrom(vectorObj);
	self->fThis->MakeScaleMat(*vec);
	PYTHON_RETURN_NONE;
}

PYTHON_METHOD_DEFINITION(ptMatrix44, makeRotateMat, args)
{
	int axis;
	float radians;
	if (!PyArg_ParseTuple(args, "if", &axis, &radians))
	{
		PyErr_SetString(PyExc_TypeError, "makeRotateMat expects an integer and a float");
		PYTHON_RETURN_ERROR;
	}
	self->fThis->MakeRotateMat(axis, radians);
	PYTHON_RETURN_NONE;
}

PYTHON_METHOD_DEFINITION(ptMatrix44, make, args)
{
	PyObject *fromPtObj = NULL;
	PyObject *atPtObj = NULL;
	PyObject *upVecObj = NULL;
	if (!PyArg_ParseTuple(args, "OOO", &fromPtObj, &atPtObj, &upVecObj))
	{
		PyErr_SetString(PyExc_TypeError, "make expects two ptPoint3 objects and a ptVector3");
		PYTHON_RETURN_ERROR;
	}
	if ((!pyPoint3::Check(fromPtObj))||(!pyPoint3::Check(atPtObj))||(!pyVector3::Check(upVecObj)))
	{
		PyErr_SetString(PyExc_TypeError, "make expects two ptPoint3 objects and a ptVector3");
		PYTHON_RETURN_ERROR;
	}

	pyPoint3 *fromPt = pyPoint3::ConvertFrom(fromPtObj);
	pyPoint3 *atPt = pyPoint3::ConvertFrom(atPtObj);
	pyVector3 *upVec = pyVector3::ConvertFrom(upVecObj);
	self->fThis->Make(*fromPt, *atPt, *upVec);
	PYTHON_RETURN_NONE;
}

PYTHON_METHOD_DEFINITION(ptMatrix44, makeUpPreserving, args)
{
	PyObject *fromPtObj = NULL;
	PyObject *atPtObj = NULL;
	PyObject *upVecObj = NULL;
	if (!PyArg_ParseTuple(args, "OOO", &fromPtObj, &atPtObj, &upVecObj))
	{
		PyErr_SetString(PyExc_TypeError, "makeUpPreserving expects two ptPoint3 objects and a ptVector3");
		PYTHON_RETURN_ERROR;
	}
	if ((!pyPoint3::Check(fromPtObj))||(!pyPoint3::Check(atPtObj))||(!pyVector3::Check(upVecObj)))
	{
		PyErr_SetString(PyExc_TypeError, "makeUpPreserving expects two ptPoint3 objects and a ptVector3");
		PYTHON_RETURN_ERROR;
	}

	pyPoint3 *fromPt = pyPoint3::ConvertFrom(fromPtObj);
	pyPoint3 *atPt = pyPoint3::ConvertFrom(atPtObj);
	pyVector3 *upVec = pyVector3::ConvertFrom(upVecObj);
	self->fThis->MakeUpPreserving(*fromPt, *atPt, *upVec);
	PYTHON_RETURN_NONE;
}

PYTHON_METHOD_DEFINITION_NOARGS(ptMatrix44, getParity)
{
	PYTHON_RETURN_BOOL(self->fThis->GetParity());
}

PYTHON_METHOD_DEFINITION_NOARGS(ptMatrix44, getDeterminant)
{
	return PyFloat_FromDouble((double)self->fThis->GetDeterminant());
}

PYTHON_METHOD_DEFINITION(ptMatrix44, getInverse, args)
{
	PyObject *inverseObj = NULL;
	if (!PyArg_ParseTuple(args, "O", &inverseObj))
	{
		PyErr_SetString(PyExc_TypeError, "getInverse expects a ptMatrix44");
		PYTHON_RETURN_ERROR;
	}
	if (!pyMatrix44::Check(inverseObj))
	{
		PyErr_SetString(PyExc_TypeError, "getInverse expects a ptMatrix44");
		PYTHON_RETURN_ERROR;
	}
	return self->fThis->GetInverse(inverseObj);
}

PYTHON_METHOD_DEFINITION(ptMatrix44, getTranspose, args)
{
	PyObject *transposeObj = NULL;
	if (!PyArg_ParseTuple(args, "O", &transposeObj))
	{
		PyErr_SetString(PyExc_TypeError, "getTranspose expects a ptMatrix44");
		PYTHON_RETURN_ERROR;
	}
	if (!pyMatrix44::Check(transposeObj))
	{
		PyErr_SetString(PyExc_TypeError, "getTranspose expects a ptMatrix44");
		PYTHON_RETURN_ERROR;
	}
	return self->fThis->GetTranspose(transposeObj);
}

PYTHON_METHOD_DEFINITION(ptMatrix44, getAdjoint, args)
{
	PyObject *adjointObj = NULL;
	if (!PyArg_ParseTuple(args, "O", &adjointObj))
	{
		PyErr_SetString(PyExc_TypeError, "getAdjoint expects a ptMatrix44");
		PYTHON_RETURN_ERROR;
	}
	if (!pyMatrix44::Check(adjointObj))
	{
		PyErr_SetString(PyExc_TypeError, "getAdjoint expects a ptMatrix44");
		PYTHON_RETURN_ERROR;
	}
	return self->fThis->GetAdjoint(adjointObj);
}

PYTHON_METHOD_DEFINITION(ptMatrix44, getTranslate, args)
{
	PyObject *translateObj = NULL;
	if (!PyArg_ParseTuple(args, "O", &translateObj))
	{
		PyErr_SetString(PyExc_TypeError, "translateObj expects a ptVector3");
		PYTHON_RETURN_ERROR;
	}
	if (!pyVector3::Check(translateObj))
	{
		PyErr_SetString(PyExc_TypeError, "translateObj expects a ptVector3");
		PYTHON_RETURN_ERROR;
	}
	return self->fThis->GetTranslate(translateObj);
}

PYTHON_METHOD_DEFINITION_NOARGS(ptMatrix44, view)
{
	return self->fThis->GetViewAxis();
}

PYTHON_METHOD_DEFINITION_NOARGS(ptMatrix44, up)
{
	return self->fThis->GetUpAxis();
}

PYTHON_METHOD_DEFINITION_NOARGS(ptMatrix44, right)
{
	return self->fThis->GetRightAxis();
}

PYTHON_METHOD_DEFINITION_NOARGS(ptMatrix44, getData)
{
	std::vector< std::vector<hsScalar> > mat = self->fThis->GetData();
	PyObject *retVal = PyTuple_New(4);
	for (int curRow = 0; curRow < mat.size(); curRow++)
	{
		PyObject *row = PyTuple_New(4);
		for (int curElement = 0; curElement < mat[curRow].size(); curElement++)
		{
			PyObject *item = PyInt_FromLong((long)mat[curRow][curElement]);
			PyTuple_SetItem(row, curElement, item); // steals the ref
		}
		PyTuple_SetItem(retVal, curRow, row); // steals the ref
	}
	return retVal;
}

PYTHON_METHOD_DEFINITION(ptMatrix44, setData, args)
{
	PyObject *matTuple = NULL;
	if (!PyArg_ParseTuple(args, "O", &matTuple))
	{
		PyErr_SetString(PyExc_TypeError, "setData expects a 4x4 tuple of floats");
		PYTHON_RETURN_ERROR;
	}
	if (!PyTuple_Check(matTuple))
	{
		PyErr_SetString(PyExc_TypeError, "setData expects a 4x4 tuple of floats");
		PYTHON_RETURN_ERROR;
	}

	std::vector< std::vector<hsScalar> > mat;
	int numRows = PyTuple_Size(matTuple);
	for (int curRow = 0; curRow < numRows; curRow++)
	{
		std::vector<hsScalar> vecRow;
		PyObject *row = PyTuple_GetItem(matTuple, curRow); // borrowed ref
		if (!PyTuple_Check(row))
		{
			PyErr_SetString(PyExc_TypeError, "setData expects a 4x4 tuple of floats");
			PYTHON_RETURN_ERROR;
		}
		int numElements = PyTuple_Size(row);
		for (int curElement = 0; curElement < numElements; curElement++)
		{
			PyObject *item = PyTuple_GetItem(row, curElement); // borrowed ref
			if (!PyFloat_Check(item))
			{
				PyErr_SetString(PyExc_TypeError, "setData expects a 4x4 tuple of floats");
				PYTHON_RETURN_ERROR;
			}
			vecRow.push_back((float)PyFloat_AsDouble(item));
		}
		mat.push_back(vecRow);
	}

	self->fThis->SetData(mat);
	if (PyErr_Occurred())
		PYTHON_RETURN_ERROR;
	PYTHON_RETURN_NONE;
}

PYTHON_START_METHODS_TABLE(ptMatrix44)
	PYTHON_METHOD_NOARGS(ptMatrix44, copy, "Copies the matrix and returns the copy"),
	PYTHON_METHOD(ptMatrix44, translate, "Params: vector\nTranslates the matrix by the vector"),
	PYTHON_METHOD(ptMatrix44, scale, "Params: scale\nScales the matrix by the vector"),
	PYTHON_METHOD(ptMatrix44, rotate, "Params: axis,radians\nRotates the matrix by radians around the axis"),
	PYTHON_BASIC_METHOD(ptMatrix44, reset, "Reset the matrix to identity"),
	PYTHON_METHOD(ptMatrix44, makeTranslateMat, "Params: trans\nMakes the matrix a translation matrix"),
	PYTHON_METHOD(ptMatrix44, makeScaleMat, "Params: scale\nMakes the matrix a scaling matrix"),
	PYTHON_METHOD(ptMatrix44, makeRotateMat, "Params: axis,radians\nMakes the matrix a rotation matrix"),
	PYTHON_METHOD(ptMatrix44, make, "Params: fromPt, atPt, upVec\nCreates the matrix from from and at points, and the up vector"),
	PYTHON_METHOD(ptMatrix44, makeUpPreserving, "Params: fromPt, atPt, upVec\nCreates the matrix from from and at points, and the up vector (perserving the up vector)"),
	PYTHON_METHOD_NOARGS(ptMatrix44, getParity, "Get the parity of the matrix"),
	PYTHON_METHOD_NOARGS(ptMatrix44, getDeterminant, "Get the matrix's determinant"),
	PYTHON_METHOD(ptMatrix44, getInverse, "Params: inverseMat\nReturns the inverse of the matrix"),
	PYTHON_METHOD(ptMatrix44, getTranspose, "Params: transposeMat\nReturns the transpose of the matrix"),
	PYTHON_METHOD(ptMatrix44, getAdjoint, "Params: adjointMat\nReturns the adjoint of the matrix"),
	PYTHON_METHOD(ptMatrix44, getTranslate, "Params: vector\nReturns the translate vector of the matrix (and sets vector to it as well)"),
	PYTHON_METHOD_NOARGS(ptMatrix44, view, "Returns the view vector of the matrix"),
	PYTHON_METHOD_NOARGS(ptMatrix44, up, "Returns the up vector of the matrix"),
	PYTHON_METHOD_NOARGS(ptMatrix44, right, "Returns the right vector of the matrix"),
	PYTHON_METHOD_NOARGS(ptMatrix44, getData, "Returns the matrix in tuple form"),
	PYTHON_METHOD(ptMatrix44, setData, "Params: mat\nSets the matrix using tuples"),
PYTHON_END_METHODS_TABLE;

PyObject *ptMatrix44_mul(PyObject *v, PyObject *w)
{
	if (pyMatrix44::Check(v))
	{
		pyMatrix44 *us = pyMatrix44::ConvertFrom(v);
		if (pyMatrix44::Check(w))
		{
			pyMatrix44 *them = pyMatrix44::ConvertFrom(w);
			return (*us) * (*them);
		}
		else if (pyVector3::Check(w))
		{
			pyVector3 *them = pyVector3::ConvertFrom(w);
			return (*us) * (*them);
		}
		else if (pyPoint3::Check(w))
		{
			pyPoint3 *them = pyPoint3::ConvertFrom(w);
			return (*us) * (*them);
		}
	}
	PyErr_SetString(PyExc_NotImplementedError, "can only multiply a ptMatrix44 by a ptVector3, or ptPoint3");
	PYTHON_RETURN_NOT_IMPLEMENTED;
}

// we support some of the number methods
PYTHON_START_AS_NUMBER_TABLE(ptMatrix44)
	0,							/*nb_add*/
	0,							/*nb_subtract*/
	(binaryfunc)ptMatrix44_mul,	/*nb_multiply*/
	0							/*nb_divide*/
	/* the rest can be null */
PYTHON_END_AS_NUMBER_TABLE;

// Type structure definition
#define ptMatrix44_COMPARE			PYTHON_NO_COMPARE
#define ptMatrix44_AS_NUMBER		PYTHON_DEFAULT_AS_NUMBER(ptMatrix44)
#define ptMatrix44_AS_SEQUENCE		PYTHON_NO_AS_SEQUENCE
#define ptMatrix44_AS_MAPPING		PYTHON_NO_AS_MAPPING
#define ptMatrix44_STR				PYTHON_NO_STR
#define ptMatrix44_RICH_COMPARE		PYTHON_NO_RICH_COMPARE
#define ptMatrix44_GETSET			PYTHON_NO_GETSET
#define ptMatrix44_BASE				PYTHON_NO_BASE
PLASMA_CUSTOM_TYPE(ptMatrix44, "Plasma Matrix44 class");

// required functions for PyObject interoperability
PYTHON_CLASS_NEW_IMPL(ptMatrix44, pyMatrix44)

PyObject *pyMatrix44::New(const hsMatrix44 &obj)
{
	ptMatrix44 *newObj = (ptMatrix44*)ptMatrix44_type.tp_new(&ptMatrix44_type, NULL, NULL);
	newObj->fThis->fMatrix = obj;
	return (PyObject*)newObj;
}

PYTHON_CLASS_CHECK_IMPL(ptMatrix44, pyMatrix44)
PYTHON_CLASS_CONVERT_FROM_IMPL(ptMatrix44, pyMatrix44)

///////////////////////////////////////////////////////////////////////////
//
// AddPlasmaClasses - the python module definitions
//
void pyMatrix44::AddPlasmaClasses(PyObject *m)
{
	PYTHON_CLASS_IMPORT_START(m);
	PYTHON_CLASS_IMPORT(m, ptMatrix44);
	PYTHON_CLASS_IMPORT_END(m);
}