/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ #include <Python.h> #include "pyGeometry3.h" #pragma hdrstop // glue functions PYTHON_CLASS_DEFINITION(ptPoint3, pyPoint3); PYTHON_DEFAULT_NEW_DEFINITION(ptPoint3, pyPoint3) PYTHON_DEFAULT_DEALLOC_DEFINITION(ptPoint3) PYTHON_INIT_DEFINITION(ptPoint3, args, keywords) { float x = 0.0f, y = 0.0f, z = 0.0f; if (!PyArg_ParseTuple(args, "|fff", &x, &y, &z)) { PyErr_SetString(PyExc_TypeError, "init optionally expects three floats"); PYTHON_RETURN_INIT_ERROR; } self->fThis->fPoint.fX = x; self->fThis->fPoint.fY = y; self->fThis->fPoint.fZ = z; PYTHON_RETURN_INIT_OK; } PYTHON_METHOD_DEFINITION_NOARGS(ptPoint3, getX) { return PyFloat_FromDouble((double)self->fThis->getX()); } PYTHON_METHOD_DEFINITION_NOARGS(ptPoint3, getY) { return PyFloat_FromDouble((double)self->fThis->getY()); } PYTHON_METHOD_DEFINITION_NOARGS(ptPoint3, getZ) { return PyFloat_FromDouble((double)self->fThis->getZ()); } PYTHON_METHOD_DEFINITION(ptPoint3, setX, args) { float x; if (!PyArg_ParseTuple(args, "f", &x)) { PyErr_SetString(PyExc_TypeError, "setX expects a float"); PYTHON_RETURN_ERROR; } self->fThis->setX(x); PYTHON_RETURN_NONE; } PYTHON_METHOD_DEFINITION(ptPoint3, setY, args) { float y; if (!PyArg_ParseTuple(args, "f", &y)) { PyErr_SetString(PyExc_TypeError, "setY expects a float"); PYTHON_RETURN_ERROR; } self->fThis->setY(y); PYTHON_RETURN_NONE; } PYTHON_METHOD_DEFINITION(ptPoint3, setZ, args) { float z; if (!PyArg_ParseTuple(args, "f", &z)) { PyErr_SetString(PyExc_TypeError, "setZ expects a float"); PYTHON_RETURN_ERROR; } self->fThis->setZ(z); PYTHON_RETURN_NONE; } PYTHON_BASIC_METHOD_DEFINITION(ptPoint3, zero, Zero) PYTHON_METHOD_DEFINITION_NOARGS(ptPoint3, copy) { return self->fThis->Copy(); } PYTHON_METHOD_DEFINITION(ptPoint3, distance, args) { PyObject *otherObject = NULL; if (!PyArg_ParseTuple(args, "O", &otherObject)) { PyErr_SetString(PyExc_TypeError, "distance expects a ptPoint3"); PYTHON_RETURN_ERROR; } if (!pyPoint3::Check(otherObject)) { PyErr_SetString(PyExc_TypeError, "distance expects a ptPoint3"); PYTHON_RETURN_ERROR; } pyPoint3 *other = pyPoint3::ConvertFrom(otherObject); return PyFloat_FromDouble((double)self->fThis->Distance(*other)); } PYTHON_METHOD_DEFINITION(ptPoint3, distanceSq, args) { PyObject *otherObject = NULL; if (!PyArg_ParseTuple(args, "O", &otherObject)) { PyErr_SetString(PyExc_TypeError, "distanceSq expects a ptPoint3"); PYTHON_RETURN_ERROR; } if (!pyPoint3::Check(otherObject)) { PyErr_SetString(PyExc_TypeError, "distanceSq expects a ptPoint3"); PYTHON_RETURN_ERROR; } pyPoint3 *other = pyPoint3::ConvertFrom(otherObject); return PyFloat_FromDouble((double)self->fThis->DistanceSquared(*other)); } PYTHON_START_METHODS_TABLE(ptPoint3) PYTHON_METHOD_NOARGS(ptPoint3, getX, "Returns the 'x' component of the point"), PYTHON_METHOD_NOARGS(ptPoint3, getY, "Returns the 'y' component of the point"), PYTHON_METHOD_NOARGS(ptPoint3, getZ, "Returns the 'z' component of the point"), PYTHON_METHOD(ptPoint3, setX, "Params: x\nSets the 'x' component of the point"), PYTHON_METHOD(ptPoint3, setY, "Params: y\nSets the 'y' component of the point"), PYTHON_METHOD(ptPoint3, setZ, "Params: z\nSets the 'z' component of the point"), PYTHON_BASIC_METHOD(ptPoint3, zero, "Sets the 'x','y' and the 'z' component to zero"), PYTHON_METHOD_NOARGS(ptPoint3, copy, "Returns a copy of the point in another ptPoint3 object"), PYTHON_METHOD(ptPoint3, distance, "Params: other\nComputes the distance from this point to 'other' point"), PYTHON_METHOD(ptPoint3, distanceSq, "Params: other\nComputes the distance squared from this point to 'other' point\n" "- this function is faster than distance(other)"), PYTHON_END_METHODS_TABLE; // Type structure definition PLASMA_DEFAULT_TYPE(ptPoint3, "Params: x=0, y=0, z=0\nPlasma Point class"); // required functions for PyObject interoperability PYTHON_CLASS_NEW_IMPL(ptPoint3, pyPoint3) PyObject *pyPoint3::New(const hsPoint3 &obj) { ptPoint3 *newObj = (ptPoint3*)ptPoint3_type.tp_new(&ptPoint3_type, NULL, NULL); newObj->fThis->fPoint.Set(&obj); return (PyObject*)newObj; } PYTHON_CLASS_CHECK_IMPL(ptPoint3, pyPoint3) PYTHON_CLASS_CONVERT_FROM_IMPL(ptPoint3, pyPoint3) /////////////////////////////////////////////////////////////////////////// // // AddPlasmaClasses - the python module definitions // void pyPoint3::AddPlasmaClasses(PyObject *m) { PYTHON_CLASS_IMPORT_START(m); PYTHON_CLASS_IMPORT(m, ptPoint3); PYTHON_CLASS_IMPORT_END(m); } // glue functions PYTHON_CLASS_DEFINITION(ptVector3, pyVector3); PYTHON_DEFAULT_NEW_DEFINITION(ptVector3, pyVector3) PYTHON_DEFAULT_DEALLOC_DEFINITION(ptVector3) PYTHON_INIT_DEFINITION(ptVector3, args, keywords) { float x = 0.0f, y = 0.0f, z = 0.0f; if (!PyArg_ParseTuple(args, "|fff", &x, &y, &z)) { PyErr_SetString(PyExc_TypeError, "init optionally expects three floats"); PYTHON_RETURN_INIT_ERROR; } self->fThis->fVector.fX = x; self->fThis->fVector.fY = y; self->fThis->fVector.fZ = z; PYTHON_RETURN_INIT_OK; } PYTHON_METHOD_DEFINITION_NOARGS(ptVector3, getX) { return PyFloat_FromDouble((double)self->fThis->getX()); } PYTHON_METHOD_DEFINITION_NOARGS(ptVector3, getY) { return PyFloat_FromDouble((double)self->fThis->getY()); } PYTHON_METHOD_DEFINITION_NOARGS(ptVector3, getZ) { return PyFloat_FromDouble((double)self->fThis->getZ()); } PYTHON_METHOD_DEFINITION(ptVector3, setX, args) { float x; if (!PyArg_ParseTuple(args, "f", &x)) { PyErr_SetString(PyExc_TypeError, "setX expects a float"); PYTHON_RETURN_ERROR; } self->fThis->setX(x); PYTHON_RETURN_NONE; } PYTHON_METHOD_DEFINITION(ptVector3, setY, args) { float y; if (!PyArg_ParseTuple(args, "f", &y)) { PyErr_SetString(PyExc_TypeError, "setY expects a float"); PYTHON_RETURN_ERROR; } self->fThis->setY(y); PYTHON_RETURN_NONE; } PYTHON_METHOD_DEFINITION(ptVector3, setZ, args) { float z; if (!PyArg_ParseTuple(args, "f", &z)) { PyErr_SetString(PyExc_TypeError, "setZ expects a float"); PYTHON_RETURN_ERROR; } self->fThis->setZ(z); PYTHON_RETURN_NONE; } PYTHON_BASIC_METHOD_DEFINITION(ptVector3, zero, Zero) PYTHON_METHOD_DEFINITION_NOARGS(ptVector3, copy) { return self->fThis->Copy(); } PYTHON_METHOD_DEFINITION(ptVector3, scale, args) { float scale; if (!PyArg_ParseTuple(args, "f", &scale)) { PyErr_SetString(PyExc_TypeError, "scale expects a float"); PYTHON_RETURN_ERROR; } return self->fThis->Scale(scale); } PYTHON_METHOD_DEFINITION(ptVector3, add, args) { PyObject *otherObject; if (!PyArg_ParseTuple(args, "O", &otherObject)) { PyErr_SetString(PyExc_TypeError, "add expects a ptVector3"); PYTHON_RETURN_ERROR; } if (!pyVector3::Check(otherObject)) { PyErr_SetString(PyExc_TypeError, "add expects a ptVector3"); PYTHON_RETURN_ERROR; } pyVector3 *other = pyVector3::ConvertFrom(otherObject); return self->fThis->Add(*other); } PYTHON_METHOD_DEFINITION(ptVector3, subtract, args) { PyObject *otherObject; if (!PyArg_ParseTuple(args, "O", &otherObject)) { PyErr_SetString(PyExc_TypeError, "subtract expects a ptVector3"); PYTHON_RETURN_ERROR; } if (!pyVector3::Check(otherObject)) { PyErr_SetString(PyExc_TypeError, "subtract expects a ptVector3"); PYTHON_RETURN_ERROR; } pyVector3 *other = pyVector3::ConvertFrom(otherObject); return self->fThis->Subtract(*other); } PYTHON_BASIC_METHOD_DEFINITION(ptVector3, normalize, Normalize) PYTHON_METHOD_DEFINITION(ptVector3, dotProduct, args) { PyObject *otherObject; if (!PyArg_ParseTuple(args, "O", &otherObject)) { PyErr_SetString(PyExc_TypeError, "dotProduct expects a ptVector3"); PYTHON_RETURN_ERROR; } if (!pyVector3::Check(otherObject)) { PyErr_SetString(PyExc_TypeError, "dotProduct expects a ptVector3"); PYTHON_RETURN_ERROR; } pyVector3 *other = pyVector3::ConvertFrom(otherObject); return PyFloat_FromDouble((double)self->fThis->Dot(*other)); } PYTHON_METHOD_DEFINITION(ptVector3, crossProduct, args) { PyObject *otherObject; if (!PyArg_ParseTuple(args, "O", &otherObject)) { PyErr_SetString(PyExc_TypeError, "crossProduct expects a ptVector3"); PYTHON_RETURN_ERROR; } if (!pyVector3::Check(otherObject)) { PyErr_SetString(PyExc_TypeError, "crossProduct expects a ptVector3"); PYTHON_RETURN_ERROR; } pyVector3 *other = pyVector3::ConvertFrom(otherObject); return self->fThis->Cross(*other); } PYTHON_METHOD_DEFINITION_NOARGS(ptVector3, length) { return PyFloat_FromDouble((double)self->fThis->Magnitude()); } PYTHON_METHOD_DEFINITION_NOARGS(ptVector3, lengthSq) { return PyFloat_FromDouble((double)self->fThis->MagnitudeSquared()); } PYTHON_START_METHODS_TABLE(ptVector3) PYTHON_METHOD_NOARGS(ptVector3, getX, "Returns the 'x' component of the vector"), PYTHON_METHOD_NOARGS(ptVector3, getY, "Returns the 'y' component of the vector"), PYTHON_METHOD_NOARGS(ptVector3, getZ, "Returns the 'z' component of the vector"), PYTHON_METHOD(ptVector3, setX, "Params: x\nSets the 'x' component of the vector"), PYTHON_METHOD(ptVector3, setY, "Params: y\nSets the 'y' component of the vector"), PYTHON_METHOD(ptVector3, setZ, "Params: z\nSets the 'z' component of the vector"), PYTHON_BASIC_METHOD(ptVector3, zero, "Zeros the vector's components"), PYTHON_METHOD_NOARGS(ptVector3, copy, "Copies the vector into another one (which it returns)"), PYTHON_METHOD(ptVector3, scale, "Params: scale\nScale the vector by scale"), PYTHON_METHOD(ptVector3, add, "Params: other\nAdds other to the current vector"), PYTHON_METHOD(ptVector3, subtract, "Params: other\nSubtracts other from the current vector"), PYTHON_BASIC_METHOD(ptVector3, normalize, "Normalizes the vector to length 1"), PYTHON_METHOD(ptVector3, dotProduct, "Params: other\nFinds the dot product between other and this vector"), PYTHON_METHOD(ptVector3, crossProduct, "Params: other\nFinds the cross product between other and this vector"), PYTHON_METHOD_NOARGS(ptVector3, length, "Returns the length of the vector"), PYTHON_METHOD_NOARGS(ptVector3, lengthSq, "Returns the length of the vector, squared\n" "- this function is faster then length(other)"), PYTHON_END_METHODS_TABLE; PyObject *ptVector3_sub(PyObject *v, PyObject *w) { if (pyVector3::Check(v)) { pyVector3 *me = pyVector3::ConvertFrom(v); if (pyVector3::Check(w)) { pyVector3 *other = pyVector3::ConvertFrom(w); return (*me) - (*other); } } PyErr_SetString(PyExc_NotImplementedError, "can only subtract a ptVector3 from a ptVector3"); PYTHON_RETURN_NOT_IMPLEMENTED; } PyObject *ptVector3_add(PyObject *v, PyObject *w) { if (pyVector3::Check(v)) { pyVector3 *me = pyVector3::ConvertFrom(v); if (pyVector3::Check(w)) { pyVector3 *other = pyVector3::ConvertFrom(w); return (*me) + (*other); } } PyErr_SetString(PyExc_NotImplementedError, "can only subtract a ptVector3 from a ptVector3"); PYTHON_RETURN_NOT_IMPLEMENTED; } PYTHON_START_AS_NUMBER_TABLE(ptVector3) (binaryfunc)ptVector3_add, /*nb_add*/ (binaryfunc)ptVector3_sub, /*nb_subtract*/ 0, /*nb_multiply*/ 0 /*nb_divide*/ /* the rest can be null */ PYTHON_END_AS_NUMBER_TABLE; // Type structure definition #define ptVector3_COMPARE PYTHON_NO_COMPARE #define ptVector3_AS_NUMBER PYTHON_DEFAULT_AS_NUMBER(ptVector3) #define ptVector3_AS_SEQUENCE PYTHON_NO_AS_SEQUENCE #define ptVector3_AS_MAPPING PYTHON_NO_AS_MAPPING #define ptVector3_STR PYTHON_NO_STR #define ptVector3_RICH_COMPARE PYTHON_NO_RICH_COMPARE #define ptVector3_GETSET PYTHON_NO_GETSET #define ptVector3_BASE PYTHON_NO_BASE PLASMA_CUSTOM_TYPE(ptVector3, "Params: x=0, y=0, z=0\nPlasma Point class"); // required functions for PyObject interoperability PYTHON_CLASS_NEW_IMPL(ptVector3, pyVector3) PyObject *pyVector3::New(const hsVector3 &obj) { ptVector3 *newObj = (ptVector3*)ptVector3_type.tp_new(&ptVector3_type, NULL, NULL); newObj->fThis->fVector.Set(&obj); return (PyObject*)newObj; } PYTHON_CLASS_CHECK_IMPL(ptVector3, pyVector3) PYTHON_CLASS_CONVERT_FROM_IMPL(ptVector3, pyVector3) /////////////////////////////////////////////////////////////////////////// // // AddPlasmaClasses - the python module definitions // void pyVector3::AddPlasmaClasses(PyObject *m) { PYTHON_CLASS_IMPORT_START(m); PYTHON_CLASS_IMPORT(m, ptVector3); PYTHON_CLASS_IMPORT_END(m); }