/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ /***************************************************************************** * * $/Plasma20/Sources/Plasma/NucleusLib/pnUtils/Private/pnUtPriQ.h * ***/ #ifndef PLASMA20_SOURCES_PLASMA_NUCLEUSLIB_PNUTILS_PRIVATE_PNUTPRIQ_H #define PLASMA20_SOURCES_PLASMA_NUCLEUSLIB_PNUTILS_PRIVATE_PNUTPRIQ_H #include "Pch.h" /**************************************************************************** * * Macros * ***/ #define PRIORITY_TIME(class) TPriorityTime< class > #define PRIQ(class,priority) TPriorityQueue< class,priority > #define PRIQDECL(class,priority,field) TPriorityQueueDecl< class,priority,offsetof(class,field) > /**************************************************************************** * * class TPriorityQueue * ***/ template<class C, class P> class TBasePriority; template<class C, class P> class TPriorityQueue { public: TPriorityQueue (); ~TPriorityQueue (); C * const & operator[] (unsigned index) const; void Clear (); unsigned Count () const; C * Delete (C * object); C * Dequeue (); void Enqueue (C * object); C * const * Ptr () const; C * Root () const; C * const * Term () const; void UnlinkAll (); public: // Intentionally unimplemented TPriorityQueue (TPriorityQueue const &); TPriorityQueue const & operator= (TPriorityQueue const &); protected: void SetLinkOffset (int offset); private: unsigned IndexChild (unsigned index) const; unsigned IndexParent (unsigned index) const; void Link (unsigned index); P * Priority (C * object); P const * Priority (C const * object) const; void Remove (unsigned index); void Unlink (unsigned index); enum { LINK_OFFSET_UNINIT = 0xdddddddd }; int m_linkOffset; ARRAY(C *) m_array; friend class TBasePriority<C,P>; }; //=========================================================================== template<class C, class P> inline C * const & TPriorityQueue<C,P>::operator[] (unsigned index) const { return m_array[index]; } //=========================================================================== template<class C, class P> inline TPriorityQueue<C,P>::TPriorityQueue () : m_linkOffset(LINK_OFFSET_UNINIT) { } //=========================================================================== template<class C, class P> inline TPriorityQueue<C,P>::~TPriorityQueue () { UnlinkAll(); } //=========================================================================== template<class C, class P> inline void TPriorityQueue<C,P>::Clear () { // Deleting an object could cause other objects in the queue to be deleted // so we can't make any assumptions about indices or counts of items in the array while (C * head = Dequeue()) delete head; m_array.Clear(); } //=========================================================================== template<class C, class P> inline unsigned TPriorityQueue<C,P>::Count () const { return m_array.Count(); } //=========================================================================== template<class C, class P> C * TPriorityQueue<C,P>::Delete (C * object) { // get the object's priority queue and position P * priority = Priority(object); const TPriorityQueue<C,P> * queue = priority->GetLink(); unsigned index = priority->GetIndex(); // delete the object delete object; // return the next object in that queue if (queue && (index < queue->Count())) return (*queue)[index]; else return nil; } //=========================================================================== template<class C, class P> C * TPriorityQueue<C,P>::Dequeue () { if (!m_array.Count()) return nil; C * value = m_array[0]; Remove(0); return value; } //=========================================================================== template<class C, class P> void TPriorityQueue<C,P>::Enqueue (C * object) { P * priority = Priority(object); // Verify that the object is not already linked into a priority queue. // The original implementation of this function silently refused to // enqueue at a new priority if the object was already in this queue. // Since this behavior requires callers to check whether the object is // already enqueued, we now simply assert that. ASSERT(!priority->IsLinked()); unsigned index = m_array.Add(object); unsigned parent = IndexParent(index); // shift value toward root while (index && priority->IsPriorityHigher(*Priority(m_array[parent]))) { m_array[index] = m_array[parent]; Link(index); index = parent; parent = IndexParent(index); } // assign and link the new value m_array[index] = object; Link(index); } //=========================================================================== template<class C, class P> inline unsigned TPriorityQueue<C,P>::IndexChild (unsigned index) const { return (index << 1) + 1; } //=========================================================================== template<class C, class P> inline unsigned TPriorityQueue<C,P>::IndexParent (unsigned index) const { return (index - 1) >> 1; } //=========================================================================== template<class C, class P> inline void TPriorityQueue<C,P>::Link (unsigned index) { Priority(m_array[index])->Link(this, index); } //=========================================================================== template<class C, class P> inline P * TPriorityQueue<C,P>::Priority (C * object) { ASSERT(m_linkOffset != LINK_OFFSET_UNINIT); return (P *)((uint8_t *)object + m_linkOffset); } //=========================================================================== template<class C, class P> inline P const * TPriorityQueue<C,P>::Priority (C const * object) const { ASSERT(m_linkOffset != LINK_OFFSET_UNINIT); return (P const *)((uint8_t const *)object + m_linkOffset); } //=========================================================================== template<class C, class P> inline C * const * TPriorityQueue<C,P>::Ptr () const { return m_array.Ptr(); } //=========================================================================== template<class C, class P> void TPriorityQueue<C,P>::Remove (unsigned index) { // reset the priority link fields Unlink(index); // save the terminal leaf node C * value = m_array.Pop(); P * priority = Priority(value); const unsigned count = m_array.Count(); if (count == index) return; // rebalance upwards from the position of the deleted entry unsigned parent; unsigned entry = index; if (entry && priority->IsPriorityHigher(*Priority(m_array[parent = IndexParent(entry)]))) { do { m_array[entry] = m_array[parent]; Link(entry); entry = parent; } while (entry && priority->IsPriorityHigher(*Priority(m_array[parent = IndexParent(entry)]))); m_array[entry] = value; Link(entry); entry = index; value = m_array[index]; priority = Priority(value); } // rebalance downwards from the position of the deleted entry for (;;) { unsigned child = IndexChild(entry); if (child >= count) break; unsigned sibling = child + 1; if ( (sibling < count) && (Priority(m_array[sibling])->IsPriorityHigher(*Priority(m_array[child]))) ) child = sibling; if (priority->IsPriorityHigher(*Priority(m_array[child]))) break; m_array[entry] = m_array[child]; Link(entry); entry = child; } m_array[entry] = value; Link(entry); } //=========================================================================== template<class C, class P> inline C * TPriorityQueue<C,P>::Root () const { return m_array.Count() ? m_array[0] : nil; } //=========================================================================== template<class C, class P> inline void TPriorityQueue<C,P>::SetLinkOffset (int offset) { ASSERT(m_linkOffset == LINK_OFFSET_UNINIT); m_linkOffset = offset; } //=========================================================================== template<class C, class P> inline C * const * TPriorityQueue<C,P>::Term () const { return m_array.Term(); } //=========================================================================== template<class C, class P> inline void TPriorityQueue<C,P>::Unlink (unsigned index) { Priority(m_array[index])->Link(nil, 0); } //=========================================================================== template<class C, class P> inline void TPriorityQueue<C,P>::UnlinkAll () { for (unsigned loop = m_array.Count(); loop--; ) Unlink(loop); m_array.ZeroCount(); } /**************************************************************************** * * TPriorityQueueDecl * ***/ template<class C, class P, int linkOffset> class TPriorityQueueDecl : public TPriorityQueue<C,P> { public: TPriorityQueueDecl () { this->SetLinkOffset(linkOffset); } }; /**************************************************************************** * * class TBasePriority * ***/ template<class C, class P> class TBasePriority { public: TBasePriority () : m_queue(nil), m_index(0) { } virtual ~TBasePriority () { Unlink(); } void Unlink () { if (m_queue) m_queue->Remove(m_index); } bool IsLinked () const { return m_queue != nil; } public: TBasePriority (const TBasePriority &); const TBasePriority & operator= (const TBasePriority &); protected: void Relink (); private: void Link (TPriorityQueue<C,P> * queue, unsigned index); const TPriorityQueue<C,P> * GetLink () const { return m_queue; } unsigned GetIndex () const { return m_index; } private: TPriorityQueue<C,P> * m_queue; unsigned m_index; friend class TPriorityQueue<C,P>; }; //=========================================================================== template<class C, class P> inline void TBasePriority<C,P>::Link (TPriorityQueue<C,P> * queue, unsigned index) { m_queue = queue; m_index = index; } //=========================================================================== template<class C, class P> void TBasePriority<C,P>::Relink () { // cache m_queue, since m_queue->Remove() will set it to nil TPriorityQueue<C,P> * queue = m_queue; if (!queue) return; C * object = (*queue)[m_index]; queue->Remove(m_index); queue->Enqueue(object); } /**************************************************************************** * * class TPriorityTime * ***/ template<class C> class TPriorityTime : public TBasePriority< C, TPriorityTime<C> > { public: TPriorityTime () : m_time(0) { } TPriorityTime (unsigned time) : m_time(time) { } void Set (unsigned time) { if (m_time == time) return; m_time = time; this->Relink(); } unsigned Get () const { return m_time; } bool IsPriorityHigher (const TPriorityTime<C> & source) const { return (int)(m_time - source.m_time) < 0; } bool IsPriorityHigher (unsigned time) const { return (int)(m_time - time) < 0; } private: unsigned m_time; }; #endif