/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ #include "HeadSpin.h" #include "hsInterp.h" #include "plTransform/hsAffineParts.h" #include "hsColorRGBA.h" #include "hsPoint2.h" // /////////////////////////////////////////////////////// // linear interpolation /////////////////////////////////////////////////////// // void hsInterp::LinInterp(float k1, float k2, float t, float* result) { *result = k1 + t * (k2 - k1); } void hsInterp::LinInterp(const hsScalarTriple* k1, const hsScalarTriple* k2, float t, hsScalarTriple* result) { if (t==0.0) *result = *k1; else if (t==1.0) *result = *k2; else { LinInterp(k1->fX, k2->fX, t, &result->fX); LinInterp(k1->fY, k2->fY, t, &result->fY); LinInterp(k1->fZ, k2->fZ, t, &result->fZ); } } void hsInterp::LinInterp(const hsColorRGBA* k1, const hsColorRGBA* k2, float t, hsColorRGBA* result, uint32_t flags) { if (t==0.0) { // copy result->r = k1->r; result->g = k1->g; result->b = k1->b; if (!(flags & kIgnoreAlpha)) result->a = k1->a; return; } if (t==1.0) { result->r = k2->r; result->g = k2->g; result->b = k2->b; if (!(flags & kIgnoreAlpha)) result->a = k2->a; return; } LinInterp(k1->r, k2->r, t, &result->r); LinInterp(k1->g, k2->g, t, &result->g); LinInterp(k1->b, k2->b, t, &result->b); if (!(flags & kIgnoreAlpha)) LinInterp(k1->a, k2->a, t, &result->a); } void hsInterp::LinInterp(const hsMatrix33* k1, const hsMatrix33* k2, float t, hsMatrix33* result, uint32_t flags) { if (t==0.0) { // copy result->fMap[0][0] = k1->fMap[0][0]; result->fMap[0][1] = k1->fMap[0][1]; result->fMap[0][2] = k1->fMap[0][2]; result->fMap[1][0] = k1->fMap[1][0]; result->fMap[1][1] = k1->fMap[1][1]; result->fMap[1][2] = k1->fMap[1][2]; if (!(flags & kIgnoreLastMatRow)) { result->fMap[2][0] = k1->fMap[2][0]; result->fMap[2][1] = k1->fMap[2][1]; result->fMap[2][2] = k1->fMap[2][2]; } return; } if (t==1.0) { // copy result->fMap[0][0] = k2->fMap[0][0]; result->fMap[0][1] = k2->fMap[0][1]; result->fMap[0][2] = k2->fMap[0][2]; result->fMap[1][0] = k2->fMap[1][0]; result->fMap[1][1] = k2->fMap[1][1]; result->fMap[1][2] = k2->fMap[1][2]; if (!(flags & kIgnoreLastMatRow)) { result->fMap[2][0] = k2->fMap[2][0]; result->fMap[2][1] = k2->fMap[2][1]; result->fMap[2][2] = k2->fMap[2][2]; } return; } LinInterp(k1->fMap[0][0], k2->fMap[0][0], t, &result->fMap[0][0]); LinInterp(k1->fMap[0][1], k2->fMap[0][1], t, &result->fMap[0][1]); LinInterp(k1->fMap[0][2], k2->fMap[0][2], t, &result->fMap[0][2]); LinInterp(k1->fMap[1][0], k2->fMap[1][0], t, &result->fMap[1][0]); LinInterp(k1->fMap[1][1], k2->fMap[1][1], t, &result->fMap[1][1]); LinInterp(k1->fMap[1][2], k2->fMap[1][2], t, &result->fMap[1][2]); if (!(flags & kIgnoreLastMatRow)) { LinInterp(k1->fMap[2][0], k2->fMap[2][0], t, &result->fMap[2][0]); LinInterp(k1->fMap[2][1], k2->fMap[2][1], t, &result->fMap[2][1]); LinInterp(k1->fMap[2][2], k2->fMap[2][2], t, &result->fMap[2][2]); } } // // void hsInterp::LinInterp(const hsMatrix44* mat1, const hsMatrix44* mat2, float t, hsMatrix44* out, uint32_t flags) { if (flags == 0) { if( 0 == t ) { *out = *mat1; return; } if( 1.f == t ) { *out = *mat2; return; } } if( flags & kIgnorePartsScale ) { if (!(flags & kIgnorePartsRot)) { // interp rotation with quats hsQuat q1, q2, qOut; q1.SetFromMatrix(mat1); q2.SetFromMatrix(mat2); LinInterp(&q1, &q2, t, &qOut); qOut.Normalize(); qOut.MakeMatrix(out); } else out->Reset(); #if 1 hsAssert(mat2->fMap[3][0]==0 && mat2->fMap[3][1]==0 && mat2->fMap[3][2]==0 && mat2->fMap[3][3]==1, "matrix prob?"); #else // copy for(int i=0; i<3; i++) out->fMap[3][i] = mat2->fMap[3][i]; #endif if (!(flags & kIgnorePartsPos)) { // interp translation hsPoint3 p1,p2,pOut; mat1->GetTranslate(&p1); mat2->GetTranslate(&p2); LinInterp(&p1, &p2, t, &pOut); out->SetTranslate(&pOut); out->NotIdentity(); // in case no rot } } else { // Complete decomp and parts interp gemAffineParts gemParts1, gemParts2; hsAffineParts parts1, parts2, partsOut; decomp_affine(mat1->fMap, &gemParts1); AP_SET(parts1, gemParts1); decomp_affine(mat2->fMap, &gemParts2); AP_SET(parts2, gemParts2); LinInterp(&parts1, &parts2, t, &partsOut, flags); // flags will be parsed here partsOut.ComposeMatrix(out); } } void hsInterp::LinInterp(const hsQuat* k1, const hsQuat* k2, float t, hsQuat* result) { if (t==0.0) *result = *k1; else if (t==1.0) *result = *k2; else { result->SetFromSlerp(*k1, *k2, t); } } void hsInterp::LinInterp(const hsScaleValue* k1, const hsScaleValue* k2, float t, hsScaleValue* result) { LinInterp(&k1->fS, &k2->fS, t, &result->fS); // Stretch rotation LinInterp(&k1->fQ, &k2->fQ, t, &result->fQ); // Stretch factor } void hsInterp::LinInterp(const hsAffineParts* k1, const hsAffineParts* k2, float t, hsAffineParts* result, uint32_t flags) { if (t==0.0) { // copy if (!(flags & kIgnorePartsPos)) result->fT = k1->fT; if (!(flags & kIgnorePartsRot)) result->fQ = k1->fQ; if (!(flags & kIgnorePartsScale)) { // same as preserveScale result->fU = k1->fU; result->fK = k1->fK; } result->fF = k1->fF; return; } if (flags & kPreservePartsScale) { result->fU = k1->fU; // just copy scale from 1st key result->fK = k1->fK; } if (t==1.0) { // copy if (!(flags & kIgnorePartsPos)) result->fT = k2->fT; if (!(flags & kIgnorePartsRot)) result->fQ = k2->fQ; if (!(flags & (kIgnorePartsScale | kPreservePartsScale))) { result->fU = k2->fU; result->fK = k2->fK; } result->fF = k2->fF; return; } if(k1->fF!=k2->fF) hsStatusMessageF("WARNING: Inequality in affine parts flip value."); // hsAssert(k1->fF==k2->fF, "inequality in affine parts flip value"); if (!(flags & kIgnorePartsPos)) LinInterp(&k1->fT, &k2->fT, t, &result->fT); // Translation if (!(flags & kIgnorePartsRot)) { LinInterp(&k1->fQ, &k2->fQ, t, &result->fQ); // Essential rotation } if (!(flags & (kIgnorePartsScale | kPreservePartsScale))) { LinInterp(&k1->fU, &k2->fU, t, &result->fU); // Stretch rotation LinInterp(&k1->fK, &k2->fK, t, &result->fK); // Stretch factor } #if 0 if (!(flags & kIgnorePartsDet)) LinInterp(k1->fF, k2->fF, t, &result->fF); // Flip rot var #else result->fF = k1->fF; #endif } // /////////////////////////////////////////////////////// // Key interpolation /////////////////////////////////////////////////////// // void hsInterp::BezScalarEval(const float value1, const float outTan, const float value2, const float inTan, const float t, const float tanScale, float *result) { #if 0 // If the tangents were what you'd expect them to be... Hermite splines, than this code // would make sense. But no, Max likes to store them in a scaled form based on the // time of each frame. If we ever optimize this further, we could do the scaling on export, // but I need this to work right now before all the artists hate me too much. const float t2 = t * t; const float t3 = t2 * t; const float term1 = 2 * t3 - 3 * t2; *result = ((term1 + 1) * value1) + (-term1 * value2) + ((t3 - 2 * t2 + 1) * outTan) + ((t3 - t2) * inTan); #else const float oneMinusT = (1.0f - t); const float tSq = t * t; const float oneMinusTSq = oneMinusT * oneMinusT; *result = (oneMinusT * oneMinusTSq * value1) + (3.f * t * oneMinusTSq * (value1 + outTan * tanScale)) + (3.f * tSq * oneMinusT * (value2 + inTan * tanScale)) + (tSq * t * value2); #endif } void hsInterp::BezInterp(const hsBezPoint3Key* k1, const hsBezPoint3Key* k2, const float t, hsScalarTriple* result) { float scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f; BezScalarEval(k1->fValue.fX, k1->fOutTan.fX, k2->fValue.fX, k2->fInTan.fX, t, scale, &result->fX); BezScalarEval(k1->fValue.fY, k1->fOutTan.fY, k2->fValue.fY, k2->fInTan.fY, t, scale, &result->fY); BezScalarEval(k1->fValue.fZ, k1->fOutTan.fZ, k2->fValue.fZ, k2->fInTan.fZ, t, scale, &result->fZ); } void hsInterp::BezInterp(const hsBezScalarKey* k1, const hsBezScalarKey* k2, const float t, float* result) { float scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f; BezScalarEval(k1->fValue, k1->fOutTan, k2->fValue, k2->fInTan, t, scale, result); } void hsInterp::BezInterp(const hsBezScaleKey* k1, const hsBezScaleKey* k2, const float t, hsScaleValue* result) { float scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f; BezScalarEval(k1->fValue.fS.fX, k1->fOutTan.fX, k2->fValue.fS.fX, k2->fInTan.fX, t, scale, &result->fS.fX); BezScalarEval(k1->fValue.fS.fY, k1->fOutTan.fY, k2->fValue.fS.fY, k2->fInTan.fY, t, scale, &result->fS.fY); BezScalarEval(k1->fValue.fS.fZ, k1->fOutTan.fZ, k2->fValue.fS.fZ, k2->fInTan.fZ, t, scale, &result->fS.fZ); // Slerp scale axis LinInterp(&k1->fValue.fQ, &k2->fValue.fQ, t, &result->fQ); } // // Get an element from an array of unknown type // static inline hsKeyFrame* GetKey(int32_t i, void *keys, int32_t size) { return (hsKeyFrame*) ((char*)keys + size * i); } // // STATIC // Given a list of keys, and a time, fills in the 2 boundary keys and // a fraction (p=0-1) indicating where the time falls between them. // Returns the index of the first key which can be passed in as a hint (lastKeyIdx) // for the next search. // void hsInterp::GetBoundaryKeyFrames(float time, uint32_t numKeys, void *keys, uint32_t size, hsKeyFrame **kF1, hsKeyFrame **kF2, uint32_t *lastKeyIdx, float *p, bool forwards) { hsAssert(numKeys>1, "Must have more than 1 keyframe"); int k1, k2; float frame = time * MAX_FRAMES_PER_SEC; // boundary case, past end if (frame > GetKey(numKeys-1, keys, size)->fFrame) { k1=k2=numKeys-1; (*kF2) = GetKey(k1, keys, size); (*kF1) = (*kF2); *p = 0.0; goto ret; } hsKeyFrame *key1, *key2; // boundary case, before start if (frame < (key1=GetKey(0, keys, size))->fFrame) { k1=k2=0; (*kF1) = GetKey(k1, keys, size); (*kF2) = (*kF1); *p = 0.0; goto ret; } // prime loop int i; i = 1; if (*lastKeyIdx > 0 && *lastKeyIdx < numKeys - 1) { // new starting point for search if (forwards) key1 = GetKey(*lastKeyIdx, keys, size); else key2 = GetKey(*lastKeyIdx + 1, keys, size); i = *lastKeyIdx + 1; } else if (!forwards) { key2 = GetKey(1, keys, size); } // search pairs of keys int count; if (forwards) { for (count = 1; count <= numKeys; count++, i++) { if (i >= numKeys) { key1 = GetKey(0, keys, size); i = 1; count++; } key2 = GetKey(i, keys, size); if (frame <= key2->fFrame && frame >= key1->fFrame) { k2=i; k1=i-1; (*kF2) = key2; (*kF1) = key1; *p = (time - (*kF1)->fFrame / MAX_FRAMES_PER_SEC) / (((*kF2)->fFrame - (*kF1)->fFrame) / MAX_FRAMES_PER_SEC); goto ret; } key1=key2; } } else { for (count = 1; count <= numKeys; count++, i--) { if (i < 1) { i = numKeys - 1; key2 = GetKey(i, keys, size); count++; } key1 = GetKey(i - 1, keys, size); if (frame <= key2->fFrame && frame >= key1->fFrame) { k2 = i; k1 = i - 1; (*kF2) = key2; (*kF1) = key1; *p = (time - (*kF1)->fFrame / MAX_FRAMES_PER_SEC) / (((*kF2)->fFrame - (*kF1)->fFrame) / MAX_FRAMES_PER_SEC); goto ret; } key2=key1; } } ret: ; #if 0 char str[128]; sprintf(str, "k1=%d, k2=%d, p=%f\n", k1, k2, *p); OutputDebugString(str); #endif *lastKeyIdx = k1; }