/*==LICENSE==*

CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Additional permissions under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.

You can contact Cyan Worlds, Inc. by email legal@cyan.com
 or by snail mail at:
      Cyan Worlds, Inc.
      14617 N Newport Hwy
      Mead, WA   99021

*==LICENSE==*/
#include "hsWide.h"

/////////////////////////////////////////////////////////////////////////

inline hsBool OverflowAdd(UInt32* sum, UInt32 a, UInt32 b)
{
	*sum = a + b;

	return (a | b) > *sum;	// true if overflow
}

/*
	Return the overflow from adding the three longs into a signed-wide
	
	wide = (high << 32) + (middle << 16) + low
*/
inline hsBool SetWide3(hsWide* target, Int32 high, UInt32 middle, UInt32 low)
{
	hsAssert(high >= 0, "high is neg");

	target->fLo = low + (middle << 16);
	target->fHi = high + (middle >> 16) + (((low >> 16) + (UInt16)middle) >> 16);

	return target->fHi < 0;	// true if overflow
}

/////////////////////////////////////////////////////////////////////////

hsWide* hsWide::Mul(Int32 src1, Int32 src2)
{
	int neg = 0;
	
	if (src1 < 0)
	{	src1 = -src1;
		neg = ~0;
	}
	if (src2 < 0)
	{	src2 = -src2;
		neg = ~neg;
	}
	
	UInt32	a = src1 >> 16;
	UInt32	b = (UInt16)src1;
	UInt32	c = src2 >> 16;
	UInt32	d = (UInt16)src2;
	
	(void)SetWide3(this, a * c, a * d + c * b, b * d);

	if (neg)
		this->Negate();
	return this;
}

hsWide* hsWide::Mul(Int32 A)
{
	int		neg = 0;
	UInt32	B = fLo;
	Int32	C = fHi;
	Int32	tmp;
	UInt32	clo,blo,bhi,alo;

	if (A < 0)
	{	A = -A;
		neg = ~0;
	}
	if (WIDE_ISNEG(C, B))
	{	WIDE_NEGATE(C, B);
		neg = ~neg;
	}

	UInt32	ahi = A >> 16;
	UInt32	chi = C >> 16;
	if (ahi != 0 && chi != 0)
		goto OVER_FLOW;

	alo = (UInt16)A;
	bhi = B >> 16;
	blo = (UInt16)B;
	clo = (UInt16)C;

	tmp = alo * clo;
	if (tmp < 0 || SetWide3(this, tmp, alo * bhi, alo * blo))
		goto OVER_FLOW;

	if (chi != 0)
	{	UInt32	Vh = alo * chi;
		if (Vh >> 15)
			goto OVER_FLOW;
		if (((this->fHi >> 16) + (UInt16)Vh) >> 15)
			goto OVER_FLOW;
		this->fHi += Vh << 16;
	}
	else							// ahi != 0 && chi == 0
	{	hsWide	w;
		UInt32	Vh = ahi * clo;
		if (Vh >> 16)
			goto OVER_FLOW;
		tmp = ahi * bhi;
		if (tmp < 0 || SetWide3(&w, tmp, ahi * blo, 0))
			goto OVER_FLOW;
		if (((w.fHi >> 16) + (UInt16)Vh) >> 15)
			goto OVER_FLOW;
		w.fHi += Vh << 16;
		this->Add(&w);
	}
	
	if (neg)
		this->Negate();
	return this;

OVER_FLOW:
	*this = neg ? kNegInfinity64 : kPosInfinity64;
	return this;
}

hsWide* hsWide::Div(Int32 denom)
{
	if (denom == 0)
	{	if (this->IsNeg())
		{	hsSignalMathUnderflow();
			*this = kNegInfinity64;
		}
		else
		{	hsSignalMathOverflow();
			*this = kPosInfinity64;
		}
		return this;
	}

	int		neg = 0;
	Int32	resultH = 0;
	UInt32	resultL = 0;
	Int32	numerH = this->fHi;
	UInt32	numerL = this->fLo;

	if (denom < 0)
	{	denom = -denom;
		neg = ~0;
	}
	if (WIDE_ISNEG(numerH, numerL))
	{	WIDE_NEGATE(numerH, numerL);
		neg = ~neg;
	}
	
	WIDE_ADDPOS(numerH, numerL, denom >> 1);	// add denom/2 to get a round result

	UInt32	curr = (UInt32)numerH >> 31;

	for (int i = 0; i < 64; i++)
	{
		WIDE_SHIFTLEFT(resultH, resultL, resultH, resultL, 1);
		if (UInt32(denom) <= curr)
		{
			resultL |= 1;
			curr -= denom;
		}
		WIDE_SHIFTLEFT(numerH, numerL, numerH, numerL, 1);
		curr = (curr << 1) | ((UInt32)numerH >> 31);
	}

	if (neg)
		WIDE_NEGATE(resultH, resultL);
	return this->Set(resultH, resultL);
}

hsWide* hsWide::Div(const hsWide* denom)
{
	hsWide	d = *denom;
	int		shift = 0;
	
	while (d.IsWide())
	{	(void)d.ShiftRight(1);
		shift += 1;
	}
	if (shift)
	{	d = *denom;
		(void)this->RoundRight(shift);
		(void)d.RoundRight(shift);
	}
	return this->Div(d.AsLong());
}

inline int MaxLeftShift(const hsWide* w)
{
	Int32 hi = w->fHi;

	if (hi == 0)
		return 31;
	else
	{	int shift = -1;

		if (hi < 0) hi = -hi;

		do {
			hi <<= 1;
			shift += 1;
		} while (hi > 0);
		return shift;
	}
}

hsFixed hsWide::FixDiv(const hsWide* denom) const
{
	hsWide	num = *this;
	hsWide	den = *denom;
	int		maxShift = MaxLeftShift(this);

	if (maxShift >= 16)	// easy case
		(void)num.ShiftLeft(16);
	else
	{	(void)num.ShiftLeft(maxShift);
		(void)den.RoundRight(16 - maxShift);
	}
	
	return num.Div(&den)->AsLong();
}

hsFract hsWide::FracDiv(const hsWide* denom) const
{
	hsWide	num = *this;
	hsWide	den = *denom;
	int		maxShift = MaxLeftShift(this);

	if (maxShift >= 30)	// easy case
		(void)num.ShiftLeft(30);
	else
	{	(void)num.ShiftLeft(maxShift);
		(void)den.RoundRight(30 - maxShift);
	}
	
	return num.Div(&den)->AsLong();
}

////////////////////////////////////////////////////////////////////////////////////

Int32 hsWide::Sqrt() const
{
	int		bits = 32;
	UInt32	root = 0;
	UInt32	valueH = (UInt32)fHi;
	UInt32	valueL = fLo;
	UInt32	currH = 0;
	UInt32	currL = 0;
	UInt32	guessH, guessL;
	
	do {
		WIDE_SHIFTLEFT(currH, currL, currH, currL, 2);
		currL |= TOP2BITS(valueH);
		WIDE_SHIFTLEFT(valueH, valueL, valueH, valueL, 2);		
		WIDE_SHIFTLEFT(guessH, guessL, 0, root, 2);
		root <<= 1;
		if (WIDE_LESSTHAN(guessH, guessL, currH, currL))
		{	WIDE_ADDPOS(guessH, guessL, 1);
			WIDE_SUBWIDE(currH, currL, guessH, guessL);
			root |= 1;
		}
	} while (--bits);

#if HS_PIN_MATH_OVERFLOW
	if ((Int32)root < 0)
		return kPosInfinity32;
#endif
	return (Int32)root;
}

Int32 hsWide::CubeRoot() const
{
	int		bits = 21;
	UInt32	root = 0;
	UInt32	valueH = (UInt32)fHi;
	UInt32	valueL = fLo;
	UInt32	currH, currL;
	UInt32	guessH, guessL;
	hsBool	neg = false;

	if (WIDE_ISNEG(valueH, valueL))
	{	neg = true;
		WIDE_NEGATE(valueH, valueL);
	}

	currH = currL = 0;
	WIDE_SHIFTLEFT(valueH, valueL, valueH, valueL, 1);	
	do {
		WIDE_SHIFTLEFT(currH, currL, currH, currL, 3);
		currL |= TOP3BITS(valueH);
		WIDE_SHIFTLEFT(valueH, valueL, valueH, valueL, 3);		

		root <<= 1;

		hsWide w;
		w.Mul(root, root)->Add(root);
	#if 0
		w.Mul(3);
	#else
		hsWide w2 = w;
		w.ShiftLeft(1)->Add(&w2);
	#endif
		guessH = (UInt32)w.fHi;
		guessL = w.fLo;

		if (WIDE_LESSTHAN(guessH, guessL, currH, currL))
		{	WIDE_ADDPOS(guessH, guessL, 1);
			WIDE_SUBWIDE(currH, currL, guessH, guessL);
			root |= 1;
		}
	} while (--bits);

	if (neg)
		root = -Int32(root);
	return (Int32)root;
}