/*==LICENSE==*

CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Additional permissions under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.

You can contact Cyan Worlds, Inc. by email legal@cyan.com
 or by snail mail at:
      Cyan Worlds, Inc.
      14617 N Newport Hwy
      Mead, WA   99021

*==LICENSE==*/

#include "hsTypes.h"
#include "plMorphDelta.h"

#include "hsStream.h"
#include "hsMemory.h"

#include "plAccessGeometry.h"
#include "plAccessSpan.h"
#include "plAccessVtxSpan.h"
#include "plGeometrySpan.h"

#include "plTweak.h"

static const hsScalar kMinWeight = 1.e-2f;

plMorphSpan::plMorphSpan()
:	fUVWs(nil),
	fNumUVWChans(0)
{
}

plMorphSpan::~plMorphSpan()
{
	delete [] fUVWs;
}

plMorphDelta::plMorphDelta()
:	fWeight(0)
{
}

plMorphDelta::~plMorphDelta()
{
}

plMorphDelta::plMorphDelta(const plMorphDelta& src)
{
	*this = src;
}

plMorphDelta& plMorphDelta::operator=(const plMorphDelta& src)
{
	SetNumSpans(src.GetNumSpans());
	int i;
	for( i = 0; i < fSpans.GetCount(); i++ )
	{
		SetDeltas(i, src.fSpans[i].fDeltas, src.fSpans[i].fNumUVWChans, src.fSpans[i].fUVWs);
	}
	return *this;
}

void plMorphDelta::Apply(hsTArray<plAccessSpan>& dst, hsScalar weight /* = -1.f */) const
{
	if( weight == -1.f)
		weight = fWeight; // None passed in, use our stored value

	if( weight <= kMinWeight )
		return;

	// Easy
	// For each span
	int iSpan;
	for( iSpan = 0; iSpan < fSpans.GetCount(); iSpan++ )
	{
		plAccessVtxSpan& vtxDst = dst[iSpan].AccessVtx();

		plMorphSpan& span = fSpans[iSpan];

		// For each vertDelta
		const hsPoint3* uvwDel = span.fUVWs;
		int iDelta;
		for( iDelta = 0; iDelta < span.fDeltas.GetCount(); iDelta++ )
		{
			const plVertDelta& delta = span.fDeltas[iDelta];
			// Add delPos * wgt to position
			// Add delNorm * wgt to normal
			vtxDst.Position(delta.fIdx) += delta.fPos * weight;
			vtxDst.Normal(delta.fIdx) += delta.fNorm * weight;

			// Leave skin weights and indices alone?

			// Skip color for now, since diffuse and specular are
			// ignored on the avatar?
			// // Add delDiff * wgt to diffuse
			// // Add delSpec * wgt to specular

			// For each UVW
			hsPoint3* uvws = vtxDst.UVWs(delta.fIdx);
			int iUVW;
			for( iUVW = 0; iUVW < span.fNumUVWChans; iUVW++ )
			{
				// Add delUVW * wgt to uvw
				*uvws += *uvwDel * weight;
				uvws++;
				uvwDel++;
			}
		}
	}
}

// MorphDelta - ComputeDeltas
void plMorphDelta::ComputeDeltas(const hsTArray<plAccessSpan>& base, const hsTArray<plAccessSpan>& moved)
{
	SetNumSpans(base.GetCount());

	// For each span
	{
		// for( i = 0; i < numVerts; i++ )
		{
			// NOTE: we want to discard zero deltas, but a
			// delta in any channel forces us to save the whole thing.
			// But we don't want to compare to zero (because we'll end
			// up with a lot of near zero deltas), but the epsilon we
			// compare to needs to be different for comparing something
			// like a normal delta and a position delta.
			//
			// For position, normal, color and all uvws
			// Calc del and delLenSq
			// If any delLenSq big enough, set nonZero to true
			// If nonZero
			{
				// Append to deltas (i, del's)
			}
		}
	}
}

// MorphDelta - ComputeDeltas
void plMorphDelta::ComputeDeltas(const hsTArray<plGeometrySpan*>& base, const hsTArray<plGeometrySpan*>& moved, const hsMatrix44& d2b, const hsMatrix44& d2bTInv)
{
	SetNumSpans(base.GetCount());

	hsPoint3 delUVWs[8];

	// For each span
	int iSpan;
	for( iSpan = 0; iSpan < base.GetCount(); iSpan++ )
	{
		plAccessSpan baseAcc;
		plAccessGeometry::Instance()->AccessSpanFromGeometrySpan(baseAcc, base[iSpan]);
		plAccessSpan movedAcc;
		plAccessGeometry::Instance()->AccessSpanFromGeometrySpan(movedAcc, moved[iSpan]);

		plAccPosNormUVWIterator baseIter(&baseAcc.AccessVtx());
		plAccPosNormUVWIterator movedIter(&movedAcc.AccessVtx());


		plMorphSpan& dst = fSpans[iSpan];

		const UInt16 numUVWs = baseAcc.AccessVtx().NumUVWs();

		hsTArray<plVertDelta> deltas;
		hsTArray<hsPoint3> uvws;
		deltas.SetCount(0);
		uvws.SetCount(0);


		int iVert = 0;;
		for( baseIter.Begin(), movedIter.Begin(); baseIter.More(); baseIter.Advance(), movedIter.Advance() )
		{
			// NOTE: we want to discard zero deltas, but a
			// delta in any channel forces us to save the whole thing.
			// But we don't want to compare to zero (because we'll end
			// up with a lot of near zero deltas), but the epsilon we
			// compare to needs to be different for comparing something
			// like a normal delta and a position delta.
			//
			// For position, normal, color and all uvws
			// Calc del and delLenSq
			// If any delLenSq big enough, set nonZero to true
			hsBool nonZero = false;

			// These are actually min del SQUARED.
			plConst(hsScalar) kMinDelPos(1.e-4f); // From Budtpueller's Handbook of Constants
			plConst(hsScalar) kMinDelNorm(3.e-2f); // About 10 degrees
			plConst(hsScalar) kMinDelUVW(1.e-4f); // From BHC
			hsPoint3 mPos = d2b * *movedIter.Position();
			hsVector3 delPos( &mPos, baseIter.Position());
			hsScalar delPosSq = delPos.MagnitudeSquared();
			if( delPosSq > kMinDelPos )
				nonZero = true;
			else
				delPos.Set(0,0,0);


			hsVector3 delNorm = (d2bTInv * *movedIter.Normal()) - *baseIter.Normal();
			hsScalar delNormSq = delNorm.MagnitudeSquared();
			if( delNormSq > kMinDelNorm )
				nonZero = true;
			else
				delNorm.Set(0,0,0);

			int i;
			for( i = 0; i < numUVWs; i++ )
			{
				delUVWs[i] = *movedIter.UVW(i) - *baseIter.UVW(i);
				hsScalar delUVWSq = delUVWs[i].MagnitudeSquared();
				if( delUVWSq > kMinDelUVW )
					nonZero = true;
				else
					delUVWs[i].Set(0,0,0);
			}

			if( nonZero )
			{
				// Append to deltas (i, del's)
				plVertDelta del;
				del.fIdx = iVert;
				del.fPos = delPos;
				del.fNorm = delNorm;
				deltas.Append(del);

				for( i = 0; i < numUVWs; i++ )
					uvws.Append(delUVWs[i]);
			}
			else
			{
				nonZero = false; // Breakpoint.
			}

			iVert++;
		}
		SetDeltas(iSpan, deltas, numUVWs, uvws.AcquireArray());
	}
}

void plMorphDelta::SetNumSpans(int n)
{
	fSpans.Reset();
	fSpans.SetCount(n);
}


void plMorphDelta::AllocDeltas(int iSpan, int nDel, int nUVW)
{
	fSpans[iSpan].fDeltas.SetCount(nDel);
	fSpans[iSpan].fNumUVWChans = nUVW;

	delete [] fSpans[iSpan].fUVWs;

	int uvwCnt = nDel * nUVW;
	if( uvwCnt )
		fSpans[iSpan].fUVWs = TRACKED_NEW hsPoint3[uvwCnt];
	else
		fSpans[iSpan].fUVWs = nil;
}

void plMorphDelta::SetDeltas(int iSpan, const hsTArray<plVertDelta>& deltas, int numUVWChans, const hsPoint3* uvws)
{
	AllocDeltas(iSpan, deltas.GetCount(), numUVWChans);
	if( deltas.GetCount() )
	{
		HSMemory::BlockMove(&deltas[0], fSpans[iSpan].fDeltas.AcquireArray(), deltas.GetCount() * sizeof(plVertDelta));

		if( numUVWChans )
			HSMemory::BlockMove(uvws, fSpans[iSpan].fUVWs, deltas.GetCount() * numUVWChans * sizeof(*uvws));
	}
}

void plMorphDelta::Read(hsStream* s, hsResMgr* mgr)
{
	fWeight = s->ReadSwapScalar();

	int n = s->ReadSwap32();
	SetNumSpans(n);
	int iSpan;
	for( iSpan = 0; iSpan < n; iSpan++ )
	{
		int nDel = s->ReadSwap32();
		int nUVW = s->ReadSwap32();
		AllocDeltas(iSpan, nDel, nUVW);
		if( nDel )
		{
			s->Read(nDel * sizeof(plVertDelta), fSpans[iSpan].fDeltas.AcquireArray());
			if( nUVW )
				s->Read(nDel * nUVW * sizeof(hsPoint3), fSpans[iSpan].fUVWs);
		}
	}

}

void plMorphDelta::Write(hsStream* s, hsResMgr* mgr)
{
	s->WriteSwapScalar(fWeight);

	s->WriteSwap32(fSpans.GetCount());

	int iSpan;
	for( iSpan = 0; iSpan < fSpans.GetCount(); iSpan++ )
	{
		int nDel = fSpans[iSpan].fDeltas.GetCount();
		int nUVW = fSpans[iSpan].fNumUVWChans;
		s->WriteSwap32(nDel);
		s->WriteSwap32(nUVW);

		if( nDel )
		{
			// Initialize our padding here, so we don't write random data
			for (int i = 0; i < nDel; i++)
			{
				plVertDelta& delta = fSpans[iSpan].fDeltas[i];
				delta.fPadding = 0;
			}

			s->Write(nDel * sizeof(plVertDelta), fSpans[iSpan].fDeltas.AcquireArray());

			if( nUVW )
				s->Write(nDel * nUVW * sizeof(hsPoint3), fSpans[iSpan].fUVWs);
		}
	}
}