/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ /***************************************************************************** * * $/Plasma20/Sources/Plasma/NucleusLib/pnNetCli/pnNcCli.cpp * ***/ #include "Pch.h" #pragma hdrstop #include "pnEncryption/plChallengeHash.h" #include "pnUUID/pnUUID.h" //#define NCCLI_DEBUGGING #ifdef NCCLI_DEBUGGING # pragma message("Compiling pnNetCli with debugging on") # define NCCLI_LOG LogMsg #else # define NCCLI_LOG LogMsg #endif #if !defined(PLASMA_EXTERNAL_RELEASE) && defined(HS_BUILD_FOR_WIN32) struct NetLogMessage_Header { unsigned m_protocol; int m_direction; unsigned m_time; unsigned m_size; }; #define HURU_PIPE_NAME "\\\\.\\pipe\\H-Uru_NetLog" static CRITICAL_SECTION s_pipeCritical; static HANDLE s_netlog = 0; static ULARGE_INTEGER s_timeOffset; static unsigned GetAdjustedTimer() { FILETIME time; ULARGE_INTEGER maths; GetSystemTimeAsFileTime(&time); maths.HighPart = time.dwHighDateTime; maths.LowPart = time.dwLowDateTime; maths.QuadPart -= s_timeOffset.QuadPart; return maths.LowPart % 864000000; } #endif // PLASMA_EXTERNAL_RELEASE namespace pnNetCli { /***************************************************************************** * * Private types and constants * ***/ enum ENetCliMode { kNetCliModeServerStart, kNetCliModeClientStart, kNetCliModeEncrypted, kNumNetCliModes }; } using namespace pnNetCli; /***************************************************************************** * * Opaque types * ***/ // connection structure attached to each socket struct NetCli { // communication channel AsyncSocket sock; ENetProtocol protocol; NetMsgChannel * channel; bool server; // message queue LINK(NetCli) link; NetCliQueue * queue; // message send/recv const NetMsgInitRecv * recvMsg; const NetMsgField * recvField; unsigned recvFieldBytes; bool recvDispatch; uint8_t * sendCurr; // points into sendBuffer CInputAccumulator input; // Message encryption ENetCliMode mode; FNetCliEncrypt encryptFcn; uint8_t seed[kNetMaxSymmetricSeedBytes]; CryptKey * cryptIn; // nil if encrytpion is disabled CryptKey * cryptOut; // nil if encrytpion is disabled void * encryptParam; // Message buffers uint8_t sendBuffer[kAsyncSocketBufferSize]; ARRAY(uint8_t) recvBuffer; NetCli() : sock(nil), protocol((ENetProtocol)0), channel(nil), server(false) , queue(nil), recvMsg(nil), recvField(nil), recvFieldBytes(0) , recvDispatch(false), sendCurr(nil), mode((ENetCliMode)0) , encryptFcn(nil), cryptIn(nil), cryptOut(nil), encryptParam(nil) { memset(seed, 0, sizeof(seed)); memset(sendBuffer, 0, sizeof(sendBuffer)); } }; struct NetCliQueue { LISTDECL(NetCli, link) list; unsigned lastSendMs; unsigned flushTimeMs; }; namespace pnNetCli { /***************************************************************************** * * Private data * ***/ /***************************************************************************** * * Internal functions * ***/ //============================================================================ static void PutBufferOnWire (NetCli * cli, void * data, unsigned bytes) { uint8_t * temp = NULL; #if !defined(PLASMA_EXTERNAL_RELEASE) && defined(HS_BUILD_FOR_WIN32) // Write to the netlog if (s_netlog) { NetLogMessage_Header header; header.m_protocol = cli->protocol; header.m_direction = 0; // kCli2Srv header.m_time = GetAdjustedTimer(); header.m_size = bytes; EnterCriticalSection(&s_pipeCritical); DWORD bytesWritten; WriteFile(s_netlog, &header, sizeof(header), &bytesWritten, NULL); WriteFile(s_netlog, data, bytes, &bytesWritten, NULL); LeaveCriticalSection(&s_pipeCritical); } #endif // PLASMA_EXTERNAL_RELEASE if (cli->mode == kNetCliModeEncrypted && cli->cryptOut) { temp = (uint8_t *)malloc(bytes); memcpy(temp, data, bytes); CryptEncrypt(cli->cryptOut, bytes, temp); data = temp; } if (cli->sock) AsyncSocketSend(cli->sock, data, bytes); // free heap buffer (if any) free(temp); } //============================================================================ static void FlushSendBuffer (NetCli * cli) { const unsigned bytes = cli->sendCurr - cli->sendBuffer; ASSERT(bytes <= arrsize(cli->sendBuffer)); PutBufferOnWire(cli, cli->sendBuffer, bytes); cli->sendCurr = cli->sendBuffer; } //=========================================================================== static void AddToSendBuffer ( NetCli * cli, unsigned bytes, void const * const data ) { uint8_t const * src = (uint8_t const *) data; if (bytes > arrsize(cli->sendBuffer)) { // Let the OS fragment oversize buffers FlushSendBuffer(cli); void * heap = malloc(bytes); memcpy(heap, data, bytes); PutBufferOnWire(cli, heap, bytes); free(heap); } else { for (;;) { // calculate the space left in the output buffer and use it // to determine the maximum number of bytes that will fit unsigned const left = &cli->sendBuffer[arrsize(cli->sendBuffer)] - cli->sendCurr; unsigned const copy = std::min(bytes, left); // copy the data into the buffer for (unsigned i = 0; i < copy; ++i) cli->sendCurr[i] = src[i]; cli->sendCurr += copy; ASSERT(cli->sendCurr - cli->sendBuffer <= sizeof(cli->sendBuffer)); // if we copied all the data then bail if (copy < left) break; src += copy; bytes -= copy; FlushSendBuffer(cli); } } } //============================================================================ static void BufferedSendData ( NetCli * cli, const uintptr_t msg[], unsigned fieldCount ) { #define ASSERT_MSG_VALID(expr) \ ASSERTMSG(expr, "Invalid message definition"); ASSERT(cli); ASSERT(msg); ASSERT(fieldCount); if (!cli->sock) return; uintptr_t const * const msgEnd = msg + fieldCount; const NetMsgInitSend * sendMsg = NetMsgChannelFindSendMessage(cli->channel, msg[0]); ASSERT(msg[0] == sendMsg->msg.messageId); ASSERT(fieldCount-1 == sendMsg->msg.count); // insert messageId into command stream const uint16_t msgId = hsToLE16((uint16_t)msg[0]); AddToSendBuffer(cli, sizeof(uint16_t), (const void*)&msgId); ++msg; ASSERT_MSG_VALID(msg < msgEnd); // insert fields into command stream uint32_t varCount = 0; uint32_t varSize = 0; const NetMsgField * cmd = sendMsg->msg.fields; const NetMsgField * cmdEnd = cmd + sendMsg->msg.count; for (; cmd < cmdEnd; ++msg, ++cmd) { switch (cmd->type) { case kNetMsgFieldInteger: { const unsigned count = cmd->count ? cmd->count : 1; const unsigned bytes = cmd->size * count; void * temp = malloc(bytes); if (count == 1) { // Single values are passed by value if (cmd->size == sizeof(uint8_t)) { *(uint8_t*)temp = *(uint8_t*)msg; } else if (cmd->size == sizeof(uint16_t)) { *(uint16_t*)temp = hsToLE16(*(uint16_t*)msg); } else if (cmd->size == sizeof(uint32_t)) { *(uint32_t*)temp = hsToLE32(*(uint32_t*)msg); } else if (cmd->size == sizeof(uint64_t)) { *(uint64_t*)temp = hsToLE64(*(uint64_t*)msg); } } else { // Value arrays are passed in by ptr for (size_t i = 0; i < count; i++) { if (cmd->size == sizeof(uint8_t)) { ((uint8_t*)temp)[i] = ((uint8_t*)*msg)[i]; } else if (cmd->size == sizeof(uint16_t)) { ((uint16_t*)temp)[i] = hsToLE16(((uint16_t*)*msg)[i]); } else if (cmd->size == sizeof(uint32_t)) { ((uint32_t*)temp)[i] = hsToLE32(((uint32_t*)*msg)[i]); } else if (cmd->size == sizeof(uint64_t)) { ((uint64_t*)temp)[i] = hsToLE64(((uint64_t*)*msg)[i]); } } } // Write values to send buffer AddToSendBuffer(cli, bytes, temp); free(temp); } break; case kNetMsgFieldReal: { const unsigned count = cmd->count ? cmd->count : 1; const unsigned bytes = cmd->size * count; if (count == 1) // Single values are passed in by value AddToSendBuffer(cli, bytes, (const void *) msg); else // Value arrays are passed in by ptr AddToSendBuffer(cli, bytes, (const void *) *msg); } break; case kNetMsgFieldString: { // Use less-than instead of less-or-equal because // we reserve one space for the NULL terminator const uint16_t length = (uint16_t) StrLen((const wchar_t *) *msg); ASSERT_MSG_VALID(length < cmd->count); // Write actual string length uint16_t size = hsToLE16(length); AddToSendBuffer(cli, sizeof(uint16_t), (const void*)&size); // Write string data AddToSendBuffer(cli, length * sizeof(wchar_t), (const void *) *msg); } break; case kNetMsgFieldData: case kNetMsgFieldRawData: { // write values to send buffer AddToSendBuffer(cli, cmd->count * cmd->size, (const void *) *msg); } break; case kNetMsgFieldVarCount: { ASSERT(!varCount); ASSERT(!varSize); // remember the element size varSize = cmd->size; // write the actual element count varCount = hsToLE32((uint32_t)*msg); AddToSendBuffer(cli, sizeof(uint32_t), (const void*)&varCount); } break; case kNetMsgFieldVarPtr: case kNetMsgFieldRawVarPtr: { ASSERT(varSize); // write var sized array AddToSendBuffer(cli, varCount * varSize, (const void *) *msg); varCount = 0; varSize = 0; } break; case kNetMsgFieldPtr: case kNetMsgFieldRawPtr: { // write values AddToSendBuffer(cli, cmd->count * cmd->size, (const void *) *msg); } break; DEFAULT_FATAL(cmd->type); } } // prepare to flush this connection if (cli->queue) cli->queue->list.Link(cli); } //=========================================================================== static bool DispatchData (NetCli * cli, void * param) { uint16_t msgId = 0; while (!cli->input.Eof()) { // if we're not already decompressing a message, start new message if (!cli->recvMsg) { // get next message id if (!cli->input.Get(sizeof(msgId), &msgId)) goto NEED_MORE_DATA; msgId = hsToLE16(msgId); if (nil == (cli->recvMsg = NetMsgChannelFindRecvMessage(cli->channel, msgId))) goto ERR_NO_HANDLER; // prepare to start decompressing new fields ASSERT(!cli->recvField); ASSERT(!cli->recvFieldBytes); cli->recvField = cli->recvMsg->msg.fields; cli->recvBuffer.ZeroCount(); cli->recvBuffer.Reserve(kAsyncSocketBufferSize); // store the message id as uint32_t into the destination buffer uint32_t * recvMsgId = (uint32_t *) cli->recvBuffer.New(sizeof(uint32_t)); *recvMsgId = msgId; } for ( const NetMsgField * end = cli->recvMsg->msg.fields + cli->recvMsg->msg.count; cli->recvField < end; ++cli->recvField ) { switch (cli->recvField->type) { case kNetMsgFieldInteger: { const unsigned count = cli->recvField->count ? cli->recvField->count : 1; // Get integer values const unsigned bytes = count * cli->recvField->size; uint8_t * data = cli->recvBuffer.New(bytes); if (!cli->input.Get(bytes, data)) { cli->recvBuffer.ShrinkBy(bytes); goto NEED_MORE_DATA; } // byte-swap integers // This is so screwed up >.< for (size_t i = 0; i < count; i++) { if (cli->recvField->size == sizeof(uint16_t)) { ((uint16_t*)data)[i] = hsToLE16(((uint16_t*)data)[i]); } else if (cli->recvField->size == sizeof(uint32_t)) { ((uint32_t*)data)[i] = hsToLE32(((uint32_t*)data)[i]); } else if (cli->recvField->size == sizeof(uint64_t)) { ((uint64_t*)data)[i] = hsToLE64(((uint64_t*)data)[i]); } } // Field complete } break; case kNetMsgFieldReal: { const unsigned count = cli->recvField->count ? cli->recvField->count : 1; // Get float values const unsigned bytes = count * cli->recvField->size; uint8_t * data = cli->recvBuffer.New(bytes); if (!cli->input.Get(bytes, data)) { cli->recvBuffer.ShrinkBy(bytes); goto NEED_MORE_DATA; } // Field complete } break; case kNetMsgFieldData: case kNetMsgFieldRawData: { // Read fixed-length data into destination buffer const unsigned bytes = cli->recvField->count * cli->recvField->size; uint8_t * data = cli->recvBuffer.New(bytes); if (!cli->input.Get(bytes, data)) { cli->recvBuffer.ShrinkBy(bytes); goto NEED_MORE_DATA; } // Field complete } break; case kNetMsgFieldVarCount: { // Read var count field into destination buffer const unsigned bytes = sizeof(uint32_t); uint8_t * data = cli->recvBuffer.New(bytes); if (!cli->input.Get(bytes, data)) { cli->recvBuffer.ShrinkBy(bytes); goto NEED_MORE_DATA; } // byte-swap value uint32_t val = hsToLE32(*(uint32_t*)data); // Prepare to read var-length field cli->recvFieldBytes = val * cli->recvField->size; // Field complete } break; case kNetMsgFieldVarPtr: case kNetMsgFieldRawVarPtr: { // Read var-length data into destination buffer const unsigned bytes = cli->recvFieldBytes; uint8_t * data = cli->recvBuffer.New(bytes); if (!cli->input.Get(bytes, data)) { cli->recvBuffer.ShrinkBy(bytes); goto NEED_MORE_DATA; } // Field complete cli->recvFieldBytes = 0; } break; case kNetMsgFieldString: { if (!cli->recvFieldBytes) { // Read string length uint16_t length; if (!cli->input.Get(sizeof(uint16_t), &length)) goto NEED_MORE_DATA; cli->recvFieldBytes = hsToLE16(length) * sizeof(wchar_t); // Validate size. Use >= instead of > to leave room for the NULL terminator. if (cli->recvFieldBytes >= cli->recvField->count * cli->recvField->size) goto ERR_BAD_COUNT; } const unsigned bytes = cli->recvField->count * cli->recvField->size; uint8_t * data = cli->recvBuffer.New(bytes); // Read compressed string data (less than full field length) if (!cli->input.Get(cli->recvFieldBytes, data)) { cli->recvBuffer.ShrinkBy(bytes); goto NEED_MORE_DATA; } // Insert NULL terminator * (wchar_t *)(data + cli->recvFieldBytes) = 0; // IDEA: fill the remainder with a freaky uint8_t pattern // Field complete cli->recvFieldBytes = 0; } break; } } // dispatch message to handler function NCCLI_LOG(kLogPerf, L"pnNetCli: Dispatching. msg: %S. cli: %p", cli->recvMsg ? cli->recvMsg->msg.name : "(unknown)", cli); if (!cli->recvMsg->recv(cli->recvBuffer.Ptr(), cli->recvBuffer.Count(), param)) goto ERR_DISPATCH_FAILED; // prepare to start next message cli->recvMsg = nil; cli->recvField = 0; cli->recvFieldBytes = 0; // Release oversize message buffer if (cli->recvBuffer.Count() > kAsyncSocketBufferSize) cli->recvBuffer.Clear(); } return true; // these are used for convenience in setting breakpoints NEED_MORE_DATA: NCCLI_LOG(kLogPerf, L"pnNetCli: NEED_MORE_DATA. msg: %S (%u). cli: %p", cli->recvMsg ? cli->recvMsg->msg.name : "(unknown)", msgId, cli); return true; ERR_BAD_COUNT: LogMsg(kLogError, L"pnNetCli: ERR_BAD_COUNT. msg: %S (%u). cli: %p", cli->recvMsg ? cli->recvMsg->msg.name : "(unknown)", msgId, cli); return false; ERR_NO_HANDLER: LogMsg(kLogError, L"pnNetCli: ERR_NO_HANDLER. msg: %S (%u). cli: %p", cli->recvMsg ? cli->recvMsg->msg.name : "(unknown)", msgId, cli); return false; ERR_DISPATCH_FAILED: LogMsg(kLogError, L"pnNetCli: ERR_DISPATCH_FAILED. msg: %S (%u). cli: %p", cli->recvMsg ? cli->recvMsg->msg.name : "(unknown)", msgId, cli); return false; } namespace Connect { /***************************************************************************** * * NetCli connect protocol * ***/ #pragma pack(push,1) enum { kNetCliCli2SrvConnect, kNetCliSrv2CliEncrypt, kNetCliSrv2CliError, kNumNetCliMsgs }; struct NetCli_PacketHeader { uint8_t message; uint8_t length; }; struct NetCli_Cli2Srv_Connect : NetCli_PacketHeader { uint8_t dh_y_data[kNetDiffieHellmanKeyBits / 8]; }; struct NetCli_Srv2Cli_Encrypt : NetCli_PacketHeader { uint8_t serverSeed[kNetMaxSymmetricSeedBytes]; }; struct NetCli_Srv2Cli_Error : NetCli_PacketHeader { uint32_t error; // ENetError }; #pragma pack(pop) //=========================================================================== static void CreateSymmetricKey ( unsigned serverBytes, const uint8_t * serverSeed, unsigned clientBytes, const uint8_t * clientSeed, unsigned outputBytes, uint8_t * outputSeed ) { ASSERT(clientBytes == kNetMaxSymmetricSeedBytes); ASSERT(serverBytes == kNetMaxSymmetricSeedBytes); ASSERT(outputBytes == kNetMaxSymmetricSeedBytes); for (unsigned i = 0; i < outputBytes; ++i) outputSeed[i] = (uint8_t) (clientSeed[i] ^ serverSeed[i]); } //============================================================================ static void ClientConnect (NetCli * cli) { // Initiate diffie-hellman for client plBigNum clientSeed; plBigNum serverSeed; NetMsgCryptClientStart( cli->channel, sizeof(cli->seed), cli->seed, &clientSeed, &serverSeed ); // Save client seed { memset(&cli->seed, 0, sizeof(cli->seed)); unsigned bytes; unsigned char * data = clientSeed.GetData_LE(&bytes); memcpy(cli->seed, data, std::min(bytes, sizeof(cli->seed))); delete [] data; } // Send server seed if (cli->sock) { unsigned bytes; NetCli_Cli2Srv_Connect msg; unsigned char * data = serverSeed.GetData_LE(&bytes); // will be 0 if encryption is disabled, and thereby send an empty seed ASSERTMSG(bytes <= sizeof(msg.dh_y_data), "4"); msg.message = kNetCliCli2SrvConnect; msg.length = (uint8_t) (sizeof(msg) - sizeof(msg.dh_y_data) + bytes); memcpy(msg.dh_y_data, data, bytes); AsyncSocketSend(cli->sock, &msg, msg.length); delete [] data; } } //============================================================================ static bool ServerRecvConnect ( NetCli * cli, const NetCli_PacketHeader & pkt ) { // Validate connection state if (cli->mode != kNetCliModeServerStart) return false; // Validate message size const NetCli_Cli2Srv_Connect & msg = * (const NetCli_Cli2Srv_Connect *) &pkt; if (pkt.length < sizeof(msg)) return false; int seedLength = msg.length - sizeof(pkt); // Send the server seed to the client (unencrypted) if (cli->sock) { NetCli_Srv2Cli_Encrypt reply; reply.message = kNetCliSrv2CliEncrypt; reply.length = seedLength == 0 ? 0 : sizeof(reply); // reply with empty seed if we got empty seed (this means: no encryption) memcpy(reply.serverSeed, cli->seed, sizeof(reply.serverSeed)); AsyncSocketSend(cli->sock, &reply, reply.length); } if (seedLength == 0) { // client wishes no encryption (that's okay, nobody else can "fake" us as nobody has the private key, so if the client actually wants encryption it will only work with the correct peer) cli->cryptIn = nil; cli->cryptOut = nil; } else { // Compute client seed uint8_t clientSeed[kNetMaxSymmetricSeedBytes]; plBigNum clientSeedValue; { NetMsgCryptServerConnect( cli->channel, seedLength, msg.dh_y_data, &clientSeedValue ); memset(&clientSeed, 0, sizeof(clientSeed)); unsigned bytes; unsigned char * data = clientSeedValue.GetData_LE(&bytes); memcpy(clientSeed, data, std::min(bytes, sizeof(clientSeed))); delete [] data; } // Create the symmetric key from a combination // of the client seed and the server seed uint8_t sharedSeed[kNetMaxSymmetricSeedBytes]; CreateSymmetricKey( sizeof(cli->seed), cli->seed, // server seed sizeof(clientSeed), clientSeed, // client seed sizeof(sharedSeed), sharedSeed // combined seed ); // Switch to encrypted mode cli->cryptIn = CryptKeyCreate(kCryptRc4, sizeof(sharedSeed), sharedSeed); cli->cryptOut = CryptKeyCreate(kCryptRc4, sizeof(sharedSeed), sharedSeed); } cli->mode = kNetCliModeEncrypted; // should rather be called "established", but whatever return cli->encryptFcn(kNetSuccess, cli->encryptParam); } //============================================================================ static bool ClientRecvEncrypt ( NetCli * cli, const NetCli_PacketHeader & pkt ) { // Validate connection state if (cli->mode != kNetCliModeClientStart) return false; // find out if we want encryption const plBigNum* DH_N; NetMsgChannelGetDhConstants(cli->channel, nil, nil, &DH_N); bool encrypt = !DH_N->isZero(); // Process message const NetCli_Srv2Cli_Encrypt & msg = * (const NetCli_Srv2Cli_Encrypt *) &pkt; if (encrypt) { // we insist on encryption, don't let some MitM decide for us! if (pkt.length != sizeof(msg)) return false; // Create the symmetric key from a combination // of the client seed and the server seed uint8_t sharedSeed[kNetMaxSymmetricSeedBytes]; CreateSymmetricKey( sizeof(msg.serverSeed), msg.serverSeed, // server seed sizeof(cli->seed), cli->seed, // client seed sizeof(sharedSeed), sharedSeed // combined seed ); // Switch to encrypted mode cli->cryptIn = CryptKeyCreate(kCryptRc4, sizeof(sharedSeed), sharedSeed); cli->cryptOut = CryptKeyCreate(kCryptRc4, sizeof(sharedSeed), sharedSeed); } else { // honestly we do not care what the other side sends, we will send plaintext if (pkt.length != sizeof(pkt)) return false; cli->cryptIn = nil; cli->cryptOut = nil; } cli->mode = kNetCliModeEncrypted; // should rather be called "established", but whatever return cli->encryptFcn(kNetSuccess, cli->encryptParam); } //============================================================================ static bool ClientRecvError ( NetCli * cli, const NetCli_PacketHeader & pkt ) { // Validate connection state if (cli->mode != kNetCliModeClientStart) return false; // Validate message size const NetCli_Srv2Cli_Error & msg = * (const NetCli_Srv2Cli_Error *) &pkt; if (pkt.length < sizeof(msg)) return false; cli->encryptFcn((ENetError) msg.error, cli->encryptParam); return false; } //============================================================================ typedef bool (* FNetCliPacket)( NetCli * cli, const NetCli_PacketHeader & pkt ); #if 0 #ifdef SERVER static const FNetCliPacket s_recvTbl[kNumNetCliMsgs] = { ServerRecvConnect, nil, nil, }; #endif #ifdef CLIENT static const FNetCliPacket s_recvTbl[kNumNetCliMsgs] = { nil, ClientRecvEncrypt, ClientRecvError, }; #endif #else // 0 static const FNetCliPacket s_recvTbl[kNumNetCliMsgs] = { ServerRecvConnect, ClientRecvEncrypt, ClientRecvError, }; #endif // 0 //=========================================================================== static unsigned DispatchPacket ( NetCli * cli, unsigned bytes, const uint8_t data[] ) { for (;;) { const NetCli_PacketHeader & pkt = * (const NetCli_PacketHeader *) data; if (bytes < sizeof(pkt)) break; if (pkt.length > bytes) break; if (pkt.message >= kNumNetCliMsgs) break; if (!s_recvTbl[pkt.message]) break; if (!s_recvTbl[pkt.message](cli, pkt)) break; // Success! return pkt.length; } // Failure! return 0; } } // namespace Connect /***************************************************************************** * * NetCli implementation * ***/ //=========================================================================== static void ResetSendRecv (NetCli * cli) { cli->recvMsg = nil; cli->recvField = nil; cli->recvFieldBytes = 0; cli->recvDispatch = true; cli->sendCurr = cli->sendBuffer; cli->recvBuffer.Clear(); cli->input.Clear(); } //=========================================================================== static NetCli * ConnCreate ( AsyncSocket sock, unsigned protocol, ENetCliMode mode ) { // find channel unsigned largestRecv; NetMsgChannel * channel = NetMsgChannelLock( protocol, mode == kNetCliModeServerStart, &largestRecv ); if (!channel) return nil; NetCli * const cli = new NetCli; cli->sock = sock; cli->protocol = (ENetProtocol) protocol; cli->channel = channel; cli->mode = mode; #if !defined(PLASMA_EXTERNAL_RELEASE) && defined(HS_BUILD_FOR_WIN32) // Network debug pipe if (!s_netlog) { InitializeCriticalSection(&s_pipeCritical); WaitNamedPipe(HURU_PIPE_NAME, NMPWAIT_WAIT_FOREVER); s_netlog = CreateFileA( HURU_PIPE_NAME, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL ); // Not exactly the start, but close enough ;) FILETIME timeBase; GetSystemTimeAsFileTime(&timeBase); s_timeOffset.HighPart = timeBase.dwHighDateTime; s_timeOffset.LowPart = timeBase.dwLowDateTime; } #endif // PLASMA_EXTERNAL_RELEASE ResetSendRecv(cli); return cli; } //=========================================================================== static void SetConnSeed ( NetCli * cli, unsigned seedBytes, const uint8_t seedData[] ) { if (seedBytes) memcpy(cli->seed, seedData, std::min(sizeof(cli->seed), seedBytes)); else CryptCreateRandomSeed(sizeof(cli->seed), cli->seed); } } using namespace pnNetCli; /***************************************************************************** * * Exports * ***/ //============================================================================ NetCli * NetCliConnectAccept ( AsyncSocket sock, unsigned protocol, bool unbuffered, FNetCliEncrypt encryptFcn, unsigned seedBytes, const uint8_t seedData[], void * encryptParam ) { // Create connection NetCli * cli = ConnCreate(sock, protocol, kNetCliModeClientStart); if (cli) { AsyncSocketEnableNagling(sock, !unbuffered); cli->encryptFcn = encryptFcn; cli->encryptParam = encryptParam; SetConnSeed(cli, seedBytes, seedData); Connect::ClientConnect(cli); } return cli; } //============================================================================ #ifdef SERVER NetCli * NetCliListenAccept ( AsyncSocket sock, unsigned protocol, bool unbuffered, FNetCliEncrypt encryptFcn, unsigned seedBytes, const uint8_t seedData[], void * encryptParam ) { // Create connection NetCli * cli = ConnCreate(sock, protocol, kNetCliModeServerStart); if (cli) { AsyncSocketEnableNagling(sock, !unbuffered); cli->encryptFcn = encryptFcn; cli->encryptParam = encryptParam; SetConnSeed(cli, seedBytes, seedData); } return cli; } #endif //============================================================================ #ifdef SERVER void NetCliListenReject ( AsyncSocket sock, ENetError error ) { if (sock) { Connect::NetCli_Srv2Cli_Error response; response.message = Connect::kNetCliSrv2CliError; response.length = sizeof(response); response.error = error; AsyncSocketSend(sock, &response, sizeof(response)); } } #endif //============================================================================ void NetCliClearSocket (NetCli * cli) { cli->sock = nil; } //============================================================================ void NetCliSetQueue ( NetCli * cli, NetCliQueue * queue ) { cli->queue = queue; } //============================================================================ void NetCliDisconnect ( NetCli * cli, bool hardClose ) { // send any existing messages and allow // the socket layer to complete sending data if (!hardClose) NetCliFlush(cli); if (cli->sock) AsyncSocketDisconnect(cli->sock, hardClose); // don't allow any more messages to be received cli->recvDispatch = false; } //============================================================================ void NetCliDelete ( NetCli * cli, bool deleteSocket ) { NetMsgChannelUnlock(cli->channel); if (cli->sock && deleteSocket) AsyncSocketDelete(cli->sock); if (cli->cryptIn) CryptKeyClose(cli->cryptIn); if (cli->cryptOut) CryptKeyClose(cli->cryptOut); cli->input.Clear(); cli->recvBuffer.Clear(); delete cli; } //============================================================================ void NetCliFlush ( NetCli * cli ) { if (cli->sendCurr != cli->sendBuffer) FlushSendBuffer(cli); } //============================================================================ void NetCliSend ( NetCli * cli, const uintptr_t msg[], unsigned count ) { BufferedSendData(cli, msg, count); } //============================================================================ bool NetCliDispatch ( NetCli * cli, const uint8_t data[], unsigned bytes, void * param ) { if (!cli->recvDispatch) return false; do { if (cli->mode == kNetCliModeEncrypted) { // Decrypt data... uint8_t * temp = NULL; if (cli->cryptIn) { temp = (uint8_t *)malloc(bytes); memcpy(temp, data, bytes); CryptDecrypt(cli->cryptIn, bytes, temp); data = temp; } // Add data to accumulator and dispatch cli->input.Add(bytes, data); bool result = DispatchData(cli, param); #if !defined(PLASMA_EXTERNAL_RELEASE) && defined(HS_BUILD_FOR_WIN32) // Write to the netlog if (s_netlog) { NetLogMessage_Header header; header.m_protocol = cli->protocol; header.m_direction = 1; // kSrv2Cli header.m_time = GetAdjustedTimer(); header.m_size = bytes; EnterCriticalSection(&s_pipeCritical); DWORD bytesWritten; WriteFile(s_netlog, &header, sizeof(header), &bytesWritten, NULL); WriteFile(s_netlog, data, bytes, &bytesWritten, NULL); LeaveCriticalSection(&s_pipeCritical); } #endif // PLASMA_EXTERNAL_RELEASE #ifdef SERVER cli->recvDispatch = result; #endif // free heap buffer (if any) free(temp); cli->input.Compact(); return cli->recvDispatch; } // Dispatch connect packets until encryption starts unsigned used = Connect::DispatchPacket(cli, bytes, data); if (!used) return false; data += used; bytes -= used; } while (bytes); return true; }