vs.1.1 dcl_position v0 dcl_color v5 dcl_texcoord0 v7 // Store our input position in world space in r6 m4x3 r6, v0, c18; // v0 * l2w // Fill out our w (m4x3 doesn't touch w). mov r6.w, c13.z; // // Input diffuse v5 color is: // v5.r = overall transparency // v5.g = illumination // v5.b = overall wave scaling // // v5.a is: // v5.w = 1/(2.f * edge length) // So per wave filtering is: // min(max( (waveLen * v5.wwww) - 1), 0), 1.f); // So a wave effect starts dying out when the wave is 4 times the sampling frequency, // and is completely filtered at 2 times sampling frequency. // We'd like to make this autocalculated based on the depth of the water. // The frequency filtering (v5.w) still needs to be calculated offline, because // it's dependent on edge length, but the first 3 filterings can be calculated // based on this vertex. // Basically, we want the transparency, reflection strength, and wave scaling // to go to zero as the water depth goes to zero. Linear falloffs are as good // a place to start as any. // // depth = waterlevel - r6.z => depth in feet (may be negative) // depthNorm = depth / depthFalloff => zero at watertable, one at depthFalloff beneath // atten = minAtten + depthNorm * (maxAtten - minAtten); // These are all vector ops. // This provides separate ramp ups for each of the channels (they reach full unfiltered // values at different depths), but doesn't provide separate controls for where they // go to zero (they all go to zero at zero depth). For that we need an offset. An offset // in feet (depth) is probably the most intuitive. So that changes the first calculation // of depth to: // depth = waterlevel - r6.z + offset // = (waterlevel + offset) - r6.z // And since we only need offsets for 3 channels, we can make the waterlevel constant // waterlevel[chan] = watertableheight + offset[chan], // with waterlevel.w = watertableheight. // // So: // c22 = waterlevel + offset // c23 = (maxAtten - minAtten) / depthFalloff // c24 = minAtten. // And in particular: // c22.w = waterlevel // c23.w = 1.f; // c24.w = 0; // So r4.w is the depth of this vertex in feet. // Dot our position with our direction vectors. mul r0, c7, r6.xxxx; mad r0, c8, r6.yyyy, r0; // // dist = mad( dist, kFreq.xyzw, kPhase.xyzw); mul r0, r0, c4; add r0, r0, c5; // // // Now we need dist mod'd into range [-Pi..Pi] // dist *= rcp(kTwoPi); rcp r4, c12.wwww; add r0, r0, c12.zzzz; mul r0, r0, r4; // dist = frac(dist); expp r1.y, r0.xxxx mov r1.x, r1.yyyy expp r1.y, r0.zzzz mov r1.z, r1.yyyy expp r1.y, r0.wwww mov r1.w, r1.yyyy expp r1.y, r0.yyyy // dist *= kTwoPi; mul r0, r1, c12.wwww; // dist += -kPi; sub r0, r0, c12.zzzz; // // sincos(dist, sinDist, cosDist); // sin = r0 + r0^3 * vSin.y + r0^5 * vSin.z // cos = 1 + r0^2 * vCos.y + r0^4 * vCos.z mul r1, r0, r0; // r0^2 mul r2, r1, r0; // r0^3 - probably stall mul r3, r1, r1; // r0^4 mul r4, r1, r2; // r0^5 mul r5, r2, r3; // r0^7 mul r1, r1, c11.yyyy; // r1 = r0^2 * vCos.y mad r2, r2, c10.yyyy, r0; // r2 = r0 + r0^3 * vSin.y add r1, r1, c11.xxxx; // r1 = 1 + r0^2 * vCos.y mad r2, r4, c10.zzzz, r2; // r2 = r0 + r0^3 * vSin.y + r0^5 * vSin.z mad r1, r3, c11.zzzz, r1; // r1 = 1 + r0^2 * vCos.y + r0^4 * vCos.z // r0^7 & r0^6 terms mul r4, r4, r0; // r0^6 mad r2, r5, c10.wwww, r2; mad r1, r4, c11.wwww, r1; // Calc our depth based filtering here into r4 (because we don't use it again // after here, and we need our filtering shortly). sub r4, c22, r6.zzzz; mul r4, r4, c23; add r4, r4, c24; // Clamp .xyz to range [0..1] min r4.xyz, r4, c13.zzzz; max r4.xyz, r4, c13.xxxx; //mov r4.xyz, c13.xxx; // HACKTEST // Calc our filter (see above). mul r11, v5.wwww, c21; max r11, r11, c13.xxxx; min r11, r11, c13.zzzz; //mov r2, r1; // r2 == sinDist // r1 == cosDist // sinDist *= filter; mul r2, r2, r11; // sinDist *= kAmplitude.xyzw mul r2, r2, c6; // height = dp4(sinDist, kOne); // accumPos.z += height; (but accumPos.z is currently 0). dp4 r8.x, r2, c13.zzzz; mul r8.y, r8.x, r4.z; add r8.z, r8.y, c22.w; max r6.z, r6.z, r8.z; // r8.x == wave height relative to 0 // r8.y == dampened wave relative to 0 // r8.z == dampened wave height in world space // r6.z == wave height clamped to never go beneath ground level // // cosDist *= filter; mul r1, r1, r11; // Pos = (in.x + S, in.y + R, r6.z) // S = sum(k Dir.x A cos()) // R = sum(k Dir.y A cos()) // c30 = k Dir.x A // c31 = k Dir.y A // S = sum(cosDist * c30); dp4 r7.x, r1, c30; // R = sum(cosDist * c31); dp4 r7.y, r1, c31; add r6.xy, r6.xy, r7.xy; // Bias our vert up a bit to compensate for precision errors. // In particular, our filter coefficients are coming in as // interpolated bytes, so there's bound to be a lot of slop // from that. We've got a free slot in c25.x, so we'll use that. // A better implementation would be to bias and scale our screen // vert, effectively pushing the vert toward the camera without // actually moving it, but this is easier and might work just // as well. add r6.z, r6.z, c25.x; // // // Transform position to screen // // //m4x3 r6, v0, c18; // HACKAGE //mov r6.w, c13.z; // HACKAGE //m4x4 oPos, r6, c0; // ADDFOG m4x4 r9, r6, c0; add r10.x, r9.w, c29.x; mul oFog, r10.x, c29.y; mov oPos, r9; // Output color is vertex green // Output alpha is vertex red (vtx alpha is used for wave filtering) // Whole thing modulated by material color/opacity. mul oD0, v5.yyyx, c26; // Usual texture transform mov r11.zw, c13.zzzz; dp4 r11.x, v7, c14; dp4 r11.y, v7, c15; mov oT0, r11;