/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ #include "hsTypes.h" #include "plVertCoder.h" #include "hsStream.h" #include "plGBufferGroup.h" const hsScalar kPosQuantum = 1.f / hsScalar(1 << 10); const hsScalar kWeightQuantum = 1.f / hsScalar(1 << 15); const hsScalar kUVWQuantum = 1.f / hsScalar(1 << 16); UInt32 plVertCoder::fCodedVerts = 0; UInt32 plVertCoder::fCodedBytes = 0; UInt32 plVertCoder::fRawBytes = 0; UInt32 plVertCoder::fSkippedBytes = 0; static const hsScalar kQuanta[plVertCoder::kNumFloatFields] = { kPosQuantum, kWeightQuantum, kUVWQuantum, kUVWQuantum, kUVWQuantum, kUVWQuantum, kUVWQuantum, kUVWQuantum, kUVWQuantum, kUVWQuantum, }; inline void plVertCoder::ICountFloats(const UInt8* src, UInt16 maxCnt, const hsScalar quant, const UInt32 stride, hsScalar& lo, hsBool &allSame, UInt16& count) { lo = *(hsScalar*)src; lo = floor(lo / quant + 0.5f) * quant; allSame = false; hsScalar hi = lo; count = 1; const hsScalar maxRange = hsScalar(UInt16(0xffff)) * quant; src += stride; maxCnt--; while( maxCnt-- ) { hsScalar val = *(hsScalar*)src; val = floor(val / quant + 0.5f) * quant; if( val < lo ) { if( hi - val > maxRange ) return; lo = val; } else if( val > hi ) { if( val - lo > maxRange ) return; hi = val; } count++; src += stride; } allSame = (lo == hi); } static inline void IWriteFloat(hsStream* s, const UInt8*& src, const hsScalar offset, const hsScalar quantum) { float fval = *(float*)src; fval -= offset; fval /= quantum; // hsAssert(fval < hsScalar(UInt16(0xffff)), "Bad offset?"); const UInt16 ival = UInt16(floor(fval + 0.5f)); s->WriteSwap16(ival); src += 4; } static inline void IReadFloat(hsStream* s, UInt8*& dst, const hsScalar offset, const hsScalar quantum) { const UInt16 ival = s->ReadSwap16(); float fval = float(ival) * quantum; fval += offset; hsScalar* val = (hsScalar*)dst; *val = fval; dst += 4; } inline void plVertCoder::IEncodeFloat(hsStream* s, const UInt32 vertsLeft, const int field, const int chan, const UInt8*& src, const UInt32 stride) { if( !fFloats[field][chan].fCount ) { ICountFloats(src, (UInt16)vertsLeft, kQuanta[field], stride, fFloats[field][chan].fOffset, fFloats[field][chan].fAllSame, fFloats[field][chan].fCount); s->WriteSwapScalar(fFloats[field][chan].fOffset); s->WriteBool(fFloats[field][chan].fAllSame); s->WriteSwap16(fFloats[field][chan].fCount); } if (!fFloats[field][chan].fAllSame) IWriteFloat(s, src, fFloats[field][chan].fOffset, kQuanta[field]); else src += 4; fFloats[field][chan].fCount--; } inline void plVertCoder::IDecodeFloat(hsStream* s, const int field, const int chan, UInt8*& dst, const UInt32 stride) { if( !fFloats[field][chan].fCount ) { fFloats[field][chan].fOffset = s->ReadSwapScalar(); fFloats[field][chan].fAllSame = s->ReadBool(); fFloats[field][chan].fCount = s->ReadSwap16(); } if (!fFloats[field][chan].fAllSame) IReadFloat(s, dst, fFloats[field][chan].fOffset, kQuanta[field]); else { *((hsScalar*)dst) = fFloats[field][chan].fOffset; dst += 4; } fFloats[field][chan].fCount--; } static inline int INumWeights(const UInt8 format) { return (format & plGBufferGroup::kSkinWeightMask) >> 4; } static const hsScalar kNormalScale(Int16(0x7fff)); static const hsScalar kInvNormalScale(1.f / kNormalScale); inline void plVertCoder::IEncodeNormal(hsStream* s, const UInt8*& src, const UInt32 stride) { hsScalar x = *(hsScalar*)src; s->WriteByte((UInt8)((x / 2.f + .5f) * 255.9f)); src += 4; x = *(hsScalar*)src; s->WriteByte((UInt8)((x / 2.f + .5f) * 255.9f)); src += 4; x = *(hsScalar*)src; s->WriteByte((UInt8)((x / 2.f + .5f) * 255.9f)); src += 4; } inline void plVertCoder::IDecodeNormal(hsStream* s, UInt8*& dst, const UInt32 stride) { UInt8 ix = s->ReadByte(); hsScalar* x = (hsScalar*)dst; *x = (ix / 255.9f - .5f) * 2.f; dst += 4; ix = s->ReadByte(); x = (hsScalar*)dst; *x = (ix / 255.9f - .5f) * 2.f; dst += 4; ix = s->ReadByte(); x = (hsScalar*)dst; *x = (ix / 255.9f - .5f) * 2.f; dst += 4; } inline void plVertCoder::ICountBytes(const UInt32 vertsLeft, const UInt8* src, const UInt32 stride, UInt16& len, UInt8& same) { // We want to run length encode this. So we're looking here for either // the number of consecutive bytes of the same value, // or the number of consective bytes of different values. // The latter is so we don't wind up getting larger when there aren't any // runs of the same value (count=1 and val=c1, count=1 and val=c2, etc.). // The break-even point is a run of 3, so we'll look for a minimum run of 4. if( vertsLeft < 4 ) { len = (UInt16)vertsLeft; same = false; return; } // First, count how many values are the same as the first one int i; for( i = 0; i < vertsLeft; i++ ) { if( src[i * stride] != src[0] ) break; } if( i >= 4 ) { // Found a good run. len = i; same = true; return; } // Okay, we're in a section of varying values. How far to the next // section of sameness? same = false; for( ; i < vertsLeft-4; i++ ) { if( (src[i*stride] == src[(i+1)*stride]) &&(src[i*stride] == src[(i+2)*stride]) &&(src[i*stride] == src[(i+3)*stride]) ) break; } if( i < vertsLeft-4 ) { len = i; return; } len = (UInt16)vertsLeft; return; } static const UInt16 kSameMask(0x8000); inline void plVertCoder::IEncodeByte(hsStream* s, const int chan, const UInt32 vertsLeft, const UInt8*& src, const UInt32 stride) { if( !fColors[chan].fCount ) { ICountBytes(vertsLeft, src, stride, fColors[chan].fCount, fColors[chan].fSame); UInt16 cnt = fColors[chan].fCount; if( fColors[chan].fSame ) cnt |= kSameMask; s->WriteSwap16(cnt); if( fColors[chan].fSame ) s->WriteByte(*src); } if( !fColors[chan].fSame ) s->WriteByte(*src); src++; fColors[chan].fCount--; } inline void plVertCoder::IDecodeByte(hsStream* s, const int chan, UInt8*& dst, const UInt32 stride) { if( !fColors[chan].fCount ) { UInt16 cnt = s->ReadSwap16(); if( cnt & kSameMask ) { fColors[chan].fSame = true; fColors[chan].fVal = s->ReadByte(); cnt &= ~kSameMask; } else { fColors[chan].fSame = false; } fColors[chan].fCount = cnt; } if( !fColors[chan].fSame ) *dst = s->ReadByte(); else *dst = fColors[chan].fVal; dst++; fColors[chan].fCount--; } inline void plVertCoder::IEncodeColor(hsStream* s, const UInt32 vertsLeft, const UInt8*& src, const UInt32 stride) { IEncodeByte(s, 0, vertsLeft, src, stride); IEncodeByte(s, 1, vertsLeft, src, stride); IEncodeByte(s, 2, vertsLeft, src, stride); IEncodeByte(s, 3, vertsLeft, src, stride); } inline void plVertCoder::IDecodeColor(hsStream* s, UInt8*& dst, const UInt32 stride) { IDecodeByte(s, 0, dst, stride); IDecodeByte(s, 1, dst, stride); IDecodeByte(s, 2, dst, stride); IDecodeByte(s, 3, dst, stride); } inline void plVertCoder::IEncode(hsStream* s, const UInt32 vertsLeft, const UInt8*& src, const UInt32 stride, const UInt8 format) { IEncodeFloat(s, vertsLeft, kPosition, 0, src, stride); IEncodeFloat(s, vertsLeft, kPosition, 1, src, stride); IEncodeFloat(s, vertsLeft, kPosition, 2, src, stride); // Weights and indices? const int numWeights = INumWeights(format); if( numWeights ) { int j; for( j = 0; j < numWeights; j++ ) IEncodeFloat(s, vertsLeft, kWeight, j, src, stride); if( format & plGBufferGroup::kSkinIndices ) { const UInt32 idx = *(UInt32*)src; s->WriteSwap32(idx); src += 4; } } IEncodeNormal(s, src, stride); IEncodeColor(s, vertsLeft, src, stride); // COLOR2 src += 4; const int numUVWs = format & plGBufferGroup::kUVCountMask; int i; for( i = 0; i < numUVWs; i++ ) { IEncodeFloat(s, vertsLeft, kUVW + i, 0, src, stride); IEncodeFloat(s, vertsLeft, kUVW + i, 1, src, stride); IEncodeFloat(s, vertsLeft, kUVW + i, 2, src, stride); } } inline void plVertCoder::IDecode(hsStream* s, UInt8*& dst, const UInt32 stride, const UInt8 format) { IDecodeFloat(s, kPosition, 0, dst, stride); IDecodeFloat(s, kPosition, 1, dst, stride); IDecodeFloat(s, kPosition, 2, dst, stride); // Weights and indices? const int numWeights = INumWeights(format); if( numWeights ) { int j; for( j = 0; j < numWeights; j++ ) IDecodeFloat(s, kWeight, j, dst, stride); if( format & plGBufferGroup::kSkinIndices ) { UInt32* idx = (UInt32*)dst; *idx = s->ReadSwap32(); dst += 4; } } IDecodeNormal(s, dst, stride); IDecodeColor(s, dst, stride); // COLOR2 UInt32* trash = (UInt32*)dst; *trash = 0; dst += 4; const int numUVWs = format & plGBufferGroup::kUVCountMask; int i; for( i = 0; i < numUVWs; i++ ) { IDecodeFloat(s, kUVW + i, 0, dst, stride); IDecodeFloat(s, kUVW + i, 1, dst, stride); IDecodeFloat(s, kUVW + i, 2, dst, stride); } } void plVertCoder::Read(hsStream* s, UInt8* dst, const UInt8 format, const UInt32 stride, const UInt16 numVerts) { Clear(); int i = numVerts; for( i = 0; i < numVerts; i++ ) IDecode(s, dst, stride, format); } void plVertCoder::Write(hsStream* s, const UInt8* src, const UInt8 format, const UInt32 stride, const UInt16 numVerts) { Clear(); UInt32 streamStart = s->GetPosition(); int numLeft = numVerts; while( numLeft ) { IEncode(s, numLeft, src, stride, format); numLeft--; } fCodedVerts += numVerts; fCodedBytes += (s->GetPosition() - streamStart); fRawBytes += numVerts * stride; } plVertCoder::plVertCoder() { Clear(); } plVertCoder::~plVertCoder() { } void plVertCoder::Clear() { memset(this, 0, sizeof(*this)); }