/*==LICENSE==*

CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Additional permissions under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.

You can contact Cyan Worlds, Inc. by email legal@cyan.com
 or by snail mail at:
      Cyan Worlds, Inc.
      14617 N Newport Hwy
      Mead, WA   99021

*==LICENSE==*/
//////////////////////////////////////////////////////////////////////////////
//																			//
//	plGeometrySpan Header													//
//																			//
//	plGeometrySpans are abstract reprentations of Plasma 2.0 geometry data.	//
//	They consist of a material, a transform, bounds and an abstract vertex	//
//	and index buffer pair. plGeometrySpans is what is fed to plDrawableIce	//
//	to convert into its own internal data structures; the format for the	//
//	vertex and index data is (or should be) identical. More or less, they   //
//	are identical to Ice's plIcicle, but this is more abstract (read: not	//
//	internal to Ice).														//
//																			//
//	Also included is a temporary hacked triMesh-to-geometrySpan[] converter //
//	for everyone's convenience until triMeshes disappear.					//
//																			//
//// Version History /////////////////////////////////////////////////////////
//																			//
//	Created 3.8.2001 mcn													//
//																			//
//////////////////////////////////////////////////////////////////////////////

#ifndef _plGeometrySpan_h
#define _plGeometrySpan_h


#include "hsTemplates.h"
#include "hsBounds.h"
#include "hsMatrix44.h"
#include "hsColorRGBA.h"
#include "hsBitVector.h"

class hsGMaterial;
class plFogEnvironment;


//// plGeometrySpan Class Definition /////////////////////////////////////////

class plGeometrySpan
{
	public:
		enum 
		{
			kMaxNumUVChannels	= 8
		};

		/// Duplication of the formats from plGBufferGroup; theoretically, they
		/// could be different, but they're identical for now
		enum Formats
		{
			kUVCountMask	= 0x0f,	// Problem is, we need enough bits to store the max #, which means
									// we really want ( max # << 1 ) - 1

			kSkinNoWeights  = 0x00,	// 0000000
			kSkin1Weight	= 0x10,	// 0010000
			kSkin2Weights	= 0x20,	// 0100000
			kSkin3Weights	= 0x30,	// 0110000
			kSkinWeightMask	= 0x30,	// 0110000

			kSkinIndices	= 0x40, // 1000000
		};

		enum Properties
		{
			kPropRunTimeLight		= 0x01,
			kPropNoPreShade			= 0x02,
			kLiteMaterial			= 0x00,
			kLiteVtxPreshaded		= 0x04,
			kLiteVtxNonPreshaded	= 0x08,
			kLiteMask				= 0x0c,
			kRequiresBlending		= 0x10,
			kInstanced				= 0x20,
			kUserOwned				= 0x40,
			kPropNoShadow			= 0x80,
			kPropForceShadow		= 0x100,
			kDiffuseFoldedIn		= 0x200,		// Sometimes we want to fold the diffuse color of the material into the vertex color (but only once).
			kPropReverseSort		= 0x400,
			kWaterHeight			= 0x800,
			kFirstInstance			= 0x1000,
			kPartialSort			= 0x2000,
			kVisLOS					= 0x4000,
			kPropNoShadowCast		= 0x8000
		};

		enum
		{
			kNoGroupID = 0
		};

		// Note: these are public because this is really just a glorified
		// struct; no data hiding here
		hsGMaterial			*fMaterial;
		hsMatrix44			fLocalToWorld;
		hsMatrix44			fWorldToLocal;
		hsBounds3Ext		fLocalBounds;
		hsBounds3Ext		fWorldBounds;
		plFogEnvironment	*fFogEnviron;

		UInt32			fBaseMatrix;
		UInt8			fNumMatrices;
		UInt16			fLocalUVWChans;
		UInt16			fMaxBoneIdx;
		UInt32			fPenBoneIdx;

		hsScalar		fMinDist;
		hsScalar		fMaxDist;

		hsScalar		fWaterHeight;

		UInt8			fFormat;
		UInt32			fProps;
		UInt32			fNumVerts, fNumIndices;

		/// Current vertex format:
		///		float	position[ 3 ];
		///		float	normal[ 3 ];
		///		float	uvCoords[ ][ 3 ];
		///		float	weights[];				// 0-3 blending weights
		///		UInt32	weightIndices;			// Only if there are >= 1 blending weights

		UInt8*			fVertexData;
		UInt16*			fIndexData;
		UInt32			fDecalLevel;

		hsColorRGBA*	fMultColor;
		hsColorRGBA*	fAddColor;

		UInt32*			fDiffuseRGBA;
		UInt32*			fSpecularRGBA;

		mutable hsTArray<plGeometrySpan *>*	fInstanceRefs;
		mutable UInt32						fInstanceGroupID;		// For writing out/reading in instance refs

		// The following is only used for logging during export. It is never set
		// at runtime. Don't even think about using it for anything.
		const char*							fMaxOwner; 

		// The following is ONLY used during pack; it's so we can do a reverse lookup
		// from the instanceRefs list to the correct span in the drawable
		UInt32		fSpanRefIndex;

		// These two matrices are inverses of each other (duh). They are only used on computing the local
		// bounds. fLocalBounds is always the bounds in the space defined by fWorldToLocal, but the bounds
		// are an OBB, and the orientation of the OBB isn't necessarily the same as fLocalToWorld's axes.
		// For now, it is the orientation of the pivot point in max (but might be further optimized).
		hsMatrix44		fLocalToOBB;
		hsMatrix44		fOBBToLocal;

		plGeometrySpan();
		plGeometrySpan( const plGeometrySpan *instance );
		~plGeometrySpan();

		/// UV stuff
		UInt8	GetNumUVs( void ) const { return ( fFormat & kUVCountMask ); }
		void	SetNumUVs( UInt8 numUVs ) 
		{
			hsAssert( numUVs < kMaxNumUVChannels, "Invalid UV count to plGeometrySpan" );
			fFormat = ( fFormat & ~kUVCountMask ) | numUVs; 
		}

		static UInt8 CalcNumUVs( UInt8 format ) { return ( format & kUVCountMask ); }
		static UInt8 UVCountToFormat( UInt8 numUVs ) { return numUVs & kUVCountMask; }
 
 		/// Creation functions
		void	BeginCreate( hsGMaterial *material, const hsMatrix44 &l2wMatrix, UInt8 format );

		// Phasing these in...
		// Note: uvArray should be a fixed array with enough pointers for the max # of uv channels.
		// Any unused UVs should be nil
		UInt16	AddVertex( hsPoint3 *position, hsPoint3 *normal, hsColorRGBA& multColor, hsColorRGBA& addColor,
							hsPoint3 **uvPtrArray, float weight1 = -1.0f, float weight2 = -1.0f, float weight3 = -1.0f, UInt32 weightIndices = 0 );
		UInt16	AddVertex( hsPoint3 *position, hsPoint3 *normal, UInt32 hexColor, UInt32 specularColor = 0,
							hsPoint3 **uvPtrArray = nil, float weight1 = -1.0f, float weight2 = -1.0f, float weight3 = -1.0f, UInt32 weightIndices = 0 );

		void	AddIndex( UInt16 index );
		void	AddTriIndices( UInt16 index1, UInt16 index2, UInt16 index3 );
		void	AddTriangle( hsPoint3 *vert1, hsPoint3 *vert2, hsPoint3 *vert3, UInt32 color );

		// uvws is an array count*uvwsPerVtx long in order [uvw(s) for vtx0, uvw(s) for vtx1, ...], or is nil
		void	AddVertexArray( UInt32 count, hsPoint3 *positions, hsVector3 *normals, UInt32 *colors, hsPoint3 *uvws=nil, int uvwsPerVtx=0 );
		void	AddIndexArray( UInt32 count, UInt16 *indices );

		void	EndCreate( void );


		/// Manipulation--currently only used for applying static lighting, which of course needs individual vertices
		// Wrong. Also used for the interleaving of the multiple vertex data streams here into single vertex
		//		stream within the plGBufferGroups. mf.
		void	ExtractInitColor( UInt32 index, hsColorRGBA *multColor, hsColorRGBA *addColor) const;
		void	ExtractVertex( UInt32 index, hsPoint3 *pos, hsVector3 *normal, hsColorRGBA *color, hsColorRGBA *specColor = nil );
		void	ExtractVertex( UInt32 index, hsPoint3 *pos, hsVector3 *normal, UInt32 *color, UInt32 *specColor = nil );
		void	ExtractUv( UInt32 vIdx, UInt8 uvIdx, hsPoint3* uv );
		void	ExtractWeights( UInt32 vIdx, float *weightArray, UInt32 *indices );
		void	StuffVertex( UInt32 index, hsPoint3 *pos, hsPoint3 *normal, hsColorRGBA *color, hsColorRGBA *specColor = nil );
		void	StuffVertex( UInt32 index, hsColorRGBA *color, hsColorRGBA *specColor = nil );

		// Clear out the buffers
		void			ClearBuffers( void );

		// Duplicate this span from a given span
		void			CopyFrom( const plGeometrySpan *source );

		// Make this span an instance of the given span. Handles the instance ref array as well as copying over pointers
		void			MakeInstanceOf( const plGeometrySpan *instance );

		// Get the size of one vertex in a span, based on a format
		static UInt32	GetVertexSize( UInt8 format );

		void	Read( hsStream *stream );
		void	Write( hsStream *stream );

		static UInt32	AllocateNewGroupID() { return IAllocateNewGroupID(); }

		void		BreakInstance();
		void		ChangeInstance(plGeometrySpan* newInstance);
		void		UnInstance();

		void		AdjustBounds(hsBounds3Ext& bnd) const;

	protected:

		struct TempVertex 
		{
			hsPoint3	fPosition;
			hsPoint3	fNormal;
			UInt32		fColor, fSpecularColor;
			hsColorRGBA	fMultColor, fAddColor;
			hsPoint3	fUVs[ kMaxNumUVChannels ];
			float		fWeights[ 3 ];
			UInt32		fIndices;
		};

		hsBool					fCreating;
		hsTArray<TempVertex>	fVertAccum;
		hsTArray<UInt16>		fIndexAccum;

		void		IUnShareData();
		void		IDuplicateUniqueData( const plGeometrySpan *source );
		void		IClearMembers( void );

		// Please don't yell at me. We can't write out the instanceRef pointers, and we can't write
		// out keys because we're not keyed objects, and we can't be keyed objects because we need
		// to be deleted eventually. So instead, we assign each geoSpan a instanceGroupID, unique
		// for each instance group but identical among all geoSpans in a given group (i.e. all
		// members of the instanceRef list). We write these IDs out, then on read, we rebuild the
		// instanceRef arrays by using a hash table to find insert new hsTArrays at the given groupID,
		// and looking up in that hash table to get pointers for each geoSpan's instanceRef array.
		// THIS is because we need a way of assigning unique, unused groupIDs to each geoSpan instance
		// group, and since we only need to know if the ID has been used yet, we can just use a bitVector.
		// NOTE: Group IDs start at 1, not 0, because 0 is reserved for "no instance group". So subtract
		// 1 from the group ID when accessing this array...
		// ....Please don't yell at me :(
		static hsBitVector		fInstanceGroupIDFlags;

		// The following is for rebuilding the said groups on read. The sad thing is that we also
		// have to write out the instanceRef array count for each geoSpan, so that when we read in
		// to do the lookup here, we know that we've read everything and can dump the entry in this
		// table.
		static hsTArray<hsTArray<plGeometrySpan *> *>	fInstanceGroups;

		// THIS is so we can clear fInstanceGroups as early and as efficiently as possible; see
		// the notes on IGetInstanceGroup().
		static UInt32	fHighestReadInstanceGroup;

		static UInt32	IAllocateNewGroupID( void );
		static void		IClearGroupID( UInt32 groupID );

		static hsTArray<plGeometrySpan *>	*IGetInstanceGroup( UInt32 groupID, UInt32 expectedCount );
};


#endif // _plGeometrySpan_h