/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
///////////////////////////////////////////////////////////////////////////////
// //
// plDXPipeline Class Functions //
// plPipeline derivative for DirectX //
// Cyan, Inc. //
// //
//// Version History //////////////////////////////////////////////////////////
// //
// 2.23.2001 mcn - Created. //
// //
///////////////////////////////////////////////////////////////////////////////
#include "hsConfig.h"
#include "hsWindows.h"
#include
#include
#include
#include
#include "hsWinRef.h"
#include "hsTypes.h"
#include "plDXPipeline.h"
#include "plPipelineCreate.h"
#include "plDebugText.h"
#include "plDXEnumerate.h"
#include "hsG3DDeviceSelector.h"
#include "hsGDDrawDllLoad.h"
#include "hsResMgr.h"
#include "plStatusLogDrawer.h"
#include "plQuality.h"
#include "plPipeDebugFlags.h"
#include "hsTemplates.h"
//#include "hsGEnviron.h"
#include "plProfile.h"
#include "../plMessage/plDeviceRecreateMsg.h"
#include "../pnMessage/plSelfDestructMsg.h"
#include "../pnMessage/plClientMsg.h"
#include "../plSurface/hsGMaterial.h"
#include "../plSurface/plLayerInterface.h"
#include "../plSurface/plLayerShadowBase.h"
#include "../plGImage/plMipmap.h"
#include "../plGImage/plCubicEnvironmap.h"
#include "../plDrawable/plDrawableSpans.h"
#include "../plDrawable/plGeometrySpan.h"
#include "../plDrawable/plSpaceTree.h"
#include "../plDrawable/plDrawableGenerator.h"
#include "../plDrawable/plSpanTypes.h"
#include "../plDrawable/plAccessSpan.h"
#include "../plDrawable/plAuxSpan.h"
#include "../pnSceneObject/plSceneObject.h"
#include "../pnSceneObject/plDrawInterface.h"
#include "hsFastMath.h"
#include "../plGLight/plLightInfo.h"
#include "../plParticleSystem/plParticleEmitter.h"
#include "../plParticleSystem/plParticle.h"
#include "../plAvatar/plAvatarClothing.h"
#include "plDebugText.h"
#include "plFogEnvironment.h"
#include "plDXTextFont.h"
#include "plGBufferGroup.h"
#include "hsTimer.h"
#include "plgDispatch.h"
#include "../plScene/plRenderRequest.h"
#include "../plScene/plVisMgr.h"
#include "plRenderTarget.h"
#include "plCubicRenderTarget.h"
#include "plDynamicEnvMap.h"
#include "../../FeatureLib/pfCamera/plVirtualCamNeu.h"
#include "plDXBufferRefs.h"
#include "plDXTextureRef.h"
#include "plDXLightRef.h"
#include "plDXRenderTargetRef.h"
#include "plDXVertexShader.h"
#include "plDXPixelShader.h"
#include "../plGLight/plShadowSlave.h"
#include "../plGLight/plShadowCaster.h"
#include "hsGMatState.inl"
#include "../plSurface/plShader.h"
#include "plDXVertexShader.h"
#include "plDXPixelShader.h"
#include "../pnMessage/plPipeResMakeMsg.h"
#include "plPipeResReq.h"
#include "../pnNetCommon/plNetApp.h" // for dbg logging
#include "../../FeatureLib/pfCamera/plVirtualCamNeu.h"
#include "../../FeatureLib/pfCamera/plCameraModifier.h"
#include "../plResMgr/plLocalization.h"
// mf horse - test hack, nuke this later
#include "../plSurface/plLayerDepth.h"
#include "../plGImage/hsCodecManager.h"
//#include "../plGImage/hsDXTDirectXCodec.h"
#ifdef HS_DEBUGGING
// This is so VC++ will let us view the contents of plIcicle::fOwnerKey
#include "../pnKeyedObject/plKey.h"
#endif
#include "plCullTree.h"
#include "plTweak.h"
#include
//#define MF_TOSSER
int mfCurrentTest = 100;
PipelineParams plPipeline::fDefaultPipeParams;
PipelineParams plPipeline::fInitialPipeParams;
//#define MF_ENABLE_HACKOFF
#ifdef MF_ENABLE_HACKOFF
//WHITE
static hsTArray hackOffscreens;
UInt32 doHackPlate = UInt32(-1);
#endif // MF_ENABLE_HACKOFF
UInt32 fDbgSetupInitFlags; // HACK temp only
#ifdef HS_DEBUGGING
void plReleaseObject(IUnknown* x)
{
if( x )
{
int refs = x->Release();
if( refs )
refs = 0;
}
}
#else // HS_DEBUGGING
void plReleaseObject(IUnknown* x)
{
if( x )
x->Release();
}
#endif // HS_DEBUGGING
//// Local Static Stuff ///////////////////////////////////////////////////////
/// Macros for getting/setting data in a D3D vertex buffer
inline UInt8* inlStuffPoint( UInt8* ptr, const hsScalarTriple& point )
{
register float* dst = (float*)ptr;
register const float* src = (float*)&point.fX;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
return (UInt8*)dst;
}
inline UInt8* inlStuffUInt32( UInt8* ptr, const UInt32 uint )
{
*(UInt32*)ptr = uint;
return ptr + sizeof(uint);
}
inline UInt8* inlExtractPoint( const UInt8* ptr, const hsScalarTriple& pt )
{
register const float* src = (float*)ptr;
register float* dst = (float*)&pt.fX;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
return (UInt8*)src;
}
inline UInt8* inlExtractFloat( const UInt8*& ptr, float& f )
{
register const float* src = (float*)ptr;
f = *src++;
return (UInt8*)src;
}
inline UInt8* inlExtractUInt32( const UInt8*& ptr, UInt32& uint )
{
const UInt32* src = (UInt32*)ptr;
uint = *src++;
return (UInt8*)src;
}
inline DWORD F2DW( FLOAT f )
{
return *((DWORD*)&f);
}
//// Macros for D3D error handling
#define INIT_ERROR_CHECK( cond, errMsg ) if( FAILED( fSettings.fDXError = cond ) ) { return ICreateFail( errMsg ); }
#if 1 // DEBUG
#define STRONG_ERROR_CHECK( cond ) if( FAILED( fSettings.fDXError = cond ) ) { IGetD3DError(); IShowErrorMessage(); }
#define WEAK_ERROR_CHECK( cond ) STRONG_ERROR_CHECK( cond )
#else
#define STRONG_ERROR_CHECK( cond ) if( FAILED( fSettings.fDXError = cond ) ) { IGetD3DError(); }
#define WEAK_ERROR_CHECK( cond ) cond
#endif
static D3DXMATRIX d3dIdentityMatrix( 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f );
static const enum _D3DTRANSFORMSTATETYPE sTextureStages[ 8 ] =
{
D3DTS_TEXTURE0, D3DTS_TEXTURE1, D3DTS_TEXTURE2, D3DTS_TEXTURE3,
D3DTS_TEXTURE4, D3DTS_TEXTURE5, D3DTS_TEXTURE6, D3DTS_TEXTURE7
};
static const float kPerspLayerScale = 0.00001f;
static const float kPerspLayerScaleW = 0.001f;
static const float kPerspLayerTrans = 0.00002f;
static const hsScalar kAvTexPoolShrinkThresh = 30.f; // seconds
// This caps the number of D3D lights we use. We'll use up to the max allowed
// or this number, whichever is smaller. (This is to prevent us going haywire
// on trying to allocate an array for ALL of the lights in the Ref device.)
//#define kD3DMaxTotalLights 32
///HAAAAACK Let's be mean and limit the artists to only 4 run-time lights.... hehehehhehe (not my idea!!!)
const int kD3DMaxTotalLights = 8;
// The framerate is the limit on the number of projected lights an object can have.
const int kMaxProjectors = 100;
/// This controls whether we can draw bounds boxes around all the ice spans.
//#ifdef HS_DEBUGGING
#define MCN_BOUNDS_SPANS 1
//#endif
#define MF_BOUNDS_LEVEL_ICE 1
//#define HS_D3D_USE_SPECULAR
/// Define this to write out z-buffer debug info to plasmalog.txt
#ifdef HS_DEBUGGING
//#define DBG_WRITE_FORMATS
#endif
plProfile_CreateMemCounter("Pipeline Surfaces", "Memory", MemPipelineSurfaces);
plProfile_Extern(MemVertex);
plProfile_Extern(MemIndex);
plProfile_CreateCounter("Feed Triangles", "Draw", DrawFeedTriangles);
plProfile_CreateCounter("Polys", "General", DrawTriangles);
plProfile_CreateCounter("Draw Prim Static", "Draw", DrawPrimStatic);
plProfile_CreateMemCounter("Total Texture Size", "Draw", TotalTexSize);
plProfile_CreateTimer("Harvest", "Draw", Harvest);
plProfile_CreateCounter("Material Change", "Draw", MatChange);
plProfile_CreateCounter("Layer Change", "Draw", LayChange);
plProfile_Extern(DrawOccBuild);
plProfile_CreateCounterNoReset("Reload", "PipeC", PipeReload);
plProfile_CreateTimer("RenderScene", "PipeT", RenderScene);
plProfile_CreateTimer("VisEval", "PipeT", VisEval);
plProfile_CreateTimer("VisSelect", "PipeT", VisSelect);
plProfile_CreateTimer("FindSceneLights", "PipeT", FindSceneLights);
plProfile_CreateTimer("PrepShadows", "PipeT", PrepShadows);
plProfile_CreateTimer("PrepDrawable", "PipeT", PrepDrawable);
plProfile_CreateTimer(" Skin", "PipeT", Skin);
plProfile_CreateTimer(" AvSort", "PipeT", AvatarSort);
plProfile_CreateTimer(" Find Lights", "PipeT", FindLights);
plProfile_CreateTimer(" Find Perms", "PipeT", FindPerm);
plProfile_CreateTimer(" FindSpan", "PipeT", FindSpan);
plProfile_CreateTimer(" FindActiveLights", "PipeT", FindActiveLights);
plProfile_CreateTimer(" ApplyActiveLights", "PipeT", ApplyActiveLights);
plProfile_CreateTimer(" ApplyMoving", "PipeT", ApplyMoving);
plProfile_CreateTimer(" ApplyToSpec", "PipeT", ApplyToSpec);
plProfile_CreateTimer(" ApplyToMoving", "PipeT", ApplyToMoving);
plProfile_CreateTimer(" ClearLights", "PipeT", ClearLights);
plProfile_CreateTimer("RenderSpan", "PipeT", RenderSpan);
plProfile_CreateTimer(" MergeCheck", "PipeT", MergeCheck);
plProfile_CreateTimer(" MergeSpan", "PipeT", MergeSpan);
plProfile_CreateTimer(" SpanTransforms", "PipeT", SpanTransforms);
plProfile_CreateTimer(" SpanFog", "PipeT", SpanFog);
plProfile_CreateTimer(" SelectLights", "PipeT", SelectLights);
plProfile_CreateTimer(" SelectProj", "PipeT", SelectProj);
plProfile_CreateTimer(" CheckDyn", "PipeT", CheckDyn);
plProfile_CreateTimer(" CheckStat", "PipeT", CheckStat);
plProfile_CreateTimer(" RenderBuff", "PipeT", RenderBuff);
plProfile_CreateTimer(" RenderPrim", "PipeT", RenderPrim);
plProfile_CreateTimer("PlateMgr", "PipeT", PlateMgr);
plProfile_CreateTimer("DebugText", "PipeT", DebugText);
plProfile_CreateTimer("Reset", "PipeT", Reset);
plProfile_CreateMemCounter("DefMem", "PipeC", DefaultMem);
plProfile_CreateMemCounter("ManMem", "PipeC", ManagedMem);
plProfile_CreateMemCounterReset("CurrTex", "PipeC", CurrTex);
plProfile_CreateMemCounterReset("CurrVB", "PipeC", CurrVB);
plProfile_CreateMemCounter("TexTot", "PipeC", TexTot);
plProfile_CreateMemCounterReset("fTexUsed", "PipeC", fTexUsed);
plProfile_CreateMemCounterReset("fTexManaged", "PipeC", fTexManaged);
plProfile_CreateMemCounterReset("fVtxUsed", "PipeC", fVtxUsed);
plProfile_CreateMemCounterReset("fVtxManaged", "PipeC", fVtxManaged);
plProfile_CreateMemCounter("ManSeen", "PipeC", ManSeen);
plProfile_CreateCounterNoReset("ManEvict", "PipeC", ManEvict);
plProfile_CreateCounter("LightOn", "PipeC", LightOn);
plProfile_CreateCounter("LightVis", "PipeC", LightVis);
plProfile_CreateCounter("LightChar", "PipeC", LightChar);
plProfile_CreateCounter("LightActive", "PipeC", LightActive);
plProfile_CreateCounter("Lights Found", "PipeC", FindLightsFound);
plProfile_CreateCounter("Perms Found", "PipeC", FindLightsPerm);
plProfile_CreateCounter("Merge", "PipeC", SpanMerge);
plProfile_CreateCounter("TexNum", "PipeC", NumTex);
plProfile_CreateCounter("LiState", "PipeC", MatLightState);
plProfile_CreateCounter("OccPoly", "PipeC", OccPolyUsed);
plProfile_CreateCounter("OccNode", "PipeC", OccNodeUsed);
plProfile_CreateCounter("NumSkin", "PipeC", NumSkin);
plProfile_CreateCounter("AvatarFaces", "PipeC", AvatarFaces);
plProfile_CreateCounter("VertexChange", "PipeC", VertexChange);
plProfile_CreateCounter("IndexChange", "PipeC", IndexChange);
plProfile_CreateCounter("DynVBuffs", "PipeC", DynVBuffs);
plProfile_CreateCounter("EmptyList", "PipeC", EmptyList);
plProfile_CreateCounter("AvRTPoolUsed", "PipeC", AvRTPoolUsed);
plProfile_CreateCounter("AvRTPoolCount", "PipeC", AvRTPoolCount);
plProfile_CreateCounter("AvRTPoolRes", "PipeC", AvRTPoolRes);
plProfile_CreateCounter("AvRTShrinkTime", "PipeC", AvRTShrinkTime);
#ifndef PLASMA_EXTERNAL_RELEASE
/// Fun inlines for keeping track of surface creation/deletion memory
void D3DSURF_MEMNEW(IDirect3DSurface9* surf)
{
if( surf )
{
D3DSURFACE_DESC info;
surf->GetDesc( &info );
PROFILE_POOL_MEM(D3DPOOL_DEFAULT, info.Width * info.Height * plDXPipeline::GetDXBitDepth(info.Format) / 8 + sizeof(IDirect3DSurface9), true, "D3DSurface");
plProfile_NewMem(MemPipelineSurfaces, info.Width * info.Height * plDXPipeline::GetDXBitDepth(info.Format) / 8 + sizeof(IDirect3DSurface9));
}
}
void D3DSURF_MEMNEW(IDirect3DTexture9* tex)
{
if( tex )
{
IDirect3DSurface9* surf;
tex->GetSurfaceLevel(0, &surf);
if( surf )
{
D3DSURF_MEMNEW(surf);
surf->Release();
}
}
}
void D3DSURF_MEMNEW(IDirect3DCubeTexture9* cTex)
{
if( cTex )
{
IDirect3DSurface9* surf;
cTex->GetCubeMapSurface(D3DCUBEMAP_FACE_POSITIVE_X, 0, &surf);
if( surf )
{
D3DSURF_MEMNEW(surf);
D3DSURF_MEMNEW(surf);
D3DSURF_MEMNEW(surf);
D3DSURF_MEMNEW(surf);
D3DSURF_MEMNEW(surf);
D3DSURF_MEMNEW(surf);
surf->Release();
}
}
}
void D3DSURF_MEMDEL(IDirect3DSurface9* surf)
{
if( surf )
{
D3DSURFACE_DESC info;
surf->GetDesc( &info );
PROFILE_POOL_MEM(D3DPOOL_DEFAULT, info.Width * info.Height * plDXPipeline::GetDXBitDepth(info.Format) / 8 + sizeof(IDirect3DSurface9), false, "D3DSurface");
plProfile_DelMem(MemPipelineSurfaces, info.Width * info.Height * plDXPipeline::GetDXBitDepth(info.Format) / 8 + sizeof(IDirect3DSurface9));
}
}
void D3DSURF_MEMDEL(IDirect3DTexture9* tex)
{
if( tex )
{
IDirect3DSurface9* surf;
tex->GetSurfaceLevel(0, &surf);
if( surf )
{
D3DSURF_MEMDEL(surf);
surf->Release();
}
}
}
void D3DSURF_MEMDEL(IDirect3DCubeTexture9* cTex)
{
if( cTex )
{
IDirect3DSurface9* surf;
cTex->GetCubeMapSurface(D3DCUBEMAP_FACE_POSITIVE_X, 0, &surf);
if( surf )
{
D3DSURF_MEMDEL(surf);
D3DSURF_MEMDEL(surf);
D3DSURF_MEMDEL(surf);
D3DSURF_MEMDEL(surf);
D3DSURF_MEMDEL(surf);
D3DSURF_MEMDEL(surf);
surf->Release();
}
}
}
#else
void D3DSURF_MEMNEW(IDirect3DSurface9* surf) {}
void D3DSURF_MEMNEW(IDirect3DTexture9* tex) {}
void D3DSURF_MEMNEW(IDirect3DCubeTexture9* cTex) {}
void D3DSURF_MEMDEL(IDirect3DSurface9* surf) {}
void D3DSURF_MEMDEL(IDirect3DTexture9* tex) {}
void D3DSURF_MEMDEL(IDirect3DCubeTexture9* cTex) {}
#endif // PLASMA_EXTERNAL_RELEASE
#ifndef PLASMA_EXTERNAL_RELEASE
void plDXPipeline::ProfilePoolMem(D3DPOOL poolType, UInt32 size, hsBool add, char *id)
{
switch( poolType )
{
case D3DPOOL_MANAGED:
if (add)
{
plProfile_NewMem(ManagedMem, size);
//plStatusLog::AddLineS("pipeline.log", 0xffff0000, "Adding MANAGED mem. Size: %10d, Total: %10d ID: %s",
// size, gProfileVarManagedMem.GetValue(), id);
}
else
{
plProfile_DelMem(ManagedMem, size);
//plStatusLog::AddLineS("pipeline.log", 0xffff0000, "Deleting MANAGED mem. Size: %10d, Total: %10d ID: %s",
// size, gProfileVarManagedMem.GetValue(), id);
}
break;
default:
if (add)
{
plProfile_NewMem(DefaultMem, size);
//plStatusLog::AddLineS("pipeline.log", 0xffff0000, "Adding DEFAULT mem. Size: %10d, Total: %10d ID: %s",
// size, gProfileVarDefaultMem.GetValue(), id);
}
else
{
plProfile_DelMem(DefaultMem, size);
//plStatusLog::AddLineS("pipeline.log", 0xffff0000, "Deleting DEFAULT mem. Size: %10d, Total: %10d ID: %s",
// size, gProfileVarDefaultMem.GetValue(), id);
}
break;
}
}
#endif // PLASMA_EXTERNAL_RELEASE
/////////////////////////////////////////////////////////////////////////////////////////
// Implementations of RenderPrims types.
// Currently support render tri list
// These allow the same setup code path to be followed, no matter what the primitive type
// (i.e. data-type/draw-call is going to happen once the render state is set.
// Originally useful to make one code path for trilists, tri-patches, and rect-patches, but
// we've since dropped support for patches. We still use the RenderNil function to allow the
// code to go through all the state setup without knowing whether a render call is going to
// come out the other end.
// Would allow easy extension for supporting tristrips or pointsprites, but we've never had
// a strong reason to use either.
// First, Declarations.
// Adding a nil RenderPrim for turning off drawing
class plRenderNilFunc : public plRenderPrimFunc
{
public:
plRenderNilFunc() {}
virtual hsBool RenderPrims() const { return false; }
};
static plRenderNilFunc sRenderNil;
class plRenderTriListFunc : public plRenderPrimFunc
{
protected:
LPDIRECT3DDEVICE9 fD3DDevice;
int fBaseVertexIndex;
int fVStart;
int fVLength;
int fIStart;
int fNumTris;
public:
plRenderTriListFunc(LPDIRECT3DDEVICE9 d3dDevice, int baseVertexIndex,
int vStart, int vLength, int iStart, int iNumTris)
: fD3DDevice(d3dDevice), fBaseVertexIndex(baseVertexIndex), fVStart(vStart), fVLength(vLength), fIStart(iStart), fNumTris(iNumTris) {}
virtual hsBool RenderPrims() const;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Implementations
hsBool plRenderTriListFunc::RenderPrims() const
{
plProfile_IncCount(DrawFeedTriangles, fNumTris);
plProfile_IncCount(DrawTriangles, fNumTris);
plProfile_Inc(DrawPrimStatic);
return FAILED( fD3DDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST, fBaseVertexIndex, fVStart, fVLength, fIStart, fNumTris ) );
}
//// Constructor & Destructor /////////////////////////////////////////////////
UInt32 plDXPipeline::fTexUsed(0);
UInt32 plDXPipeline::fTexManaged(0);
UInt32 plDXPipeline::fVtxUsed(0);
UInt32 plDXPipeline::fVtxManaged(0);
plDXPipeline::plDXPipeline( hsWinRef hWnd, const hsG3DDeviceModeRecord *devModeRec )
: fManagedAlloced(false),
fAllocUnManaged(false)
{
hsAssert(D3DTSS_TCI_PASSTHRU == plLayerInterface::kUVWPassThru, "D3D Enum has changed. Notify graphics department.");
hsAssert(D3DTSS_TCI_CAMERASPACENORMAL == plLayerInterface::kUVWNormal, "D3D Enum has changed. Notify graphics department.");
hsAssert(D3DTSS_TCI_CAMERASPACEPOSITION == plLayerInterface::kUVWPosition, "D3D Enum has changed. Notify graphics department.");
hsAssert(D3DTSS_TCI_CAMERASPACEREFLECTIONVECTOR == plLayerInterface::kUVWReflect, "D3D Enum has changed. Notify graphics department.");
// Initialize everything to NULL.
IClearMembers();
// Get the requested mode and setup
const hsG3DDeviceRecord *devRec = devModeRec->GetDevice();
const hsG3DDeviceMode *devMode = devModeRec->GetMode();
/// Init our screen mode
fSettings.fHWnd = hWnd;
if(!fInitialPipeParams.Windowed)
{
fSettings.fOrigWidth = devMode->GetWidth();
fSettings.fOrigHeight = devMode->GetHeight();
}
else
{
// windowed can run in any mode
fSettings.fOrigHeight = fInitialPipeParams.Height;
fSettings.fOrigWidth = fInitialPipeParams.Width;
}
IGetViewTransform().SetScreenSize((UInt16)(fSettings.fOrigWidth), (UInt16)(fSettings.fOrigHeight));
fSettings.fColorDepth = devMode->GetColorDepth();
fVSync = fInitialPipeParams.VSync;
if( devRec->GetAASetting() == 0 )
fSettings.fNumAASamples = 0;
else
fSettings.fNumAASamples = devMode->GetFSAAType( devRec->GetAASetting() - 1 );
hsGDirect3DTnLEnumerate d3dEnum;
if( d3dEnum.GetEnumeErrorStr()[ 0 ] )
{
IShowErrorMessage( (char *)d3dEnum.GetEnumeErrorStr() );
return;
}
if( d3dEnum.SelectFromDevMode(devRec, devMode) )
{
IShowErrorMessage( (char *)d3dEnum.GetEnumeErrorStr() );
return;
}
// Gotta create this very first, so that the device/driver init works
if( !fD3DObject )
{
if( ICreateMaster() )
{
IShowErrorMessage( "Cannot create D3D master object" );
return;
}
}
// Record the requested mode/setup.
ISetCurrentDriver( d3dEnum.GetCurrentDriver() );
ISetCurrentDevice( d3dEnum.GetCurrentDevice() );
D3DEnum_ModeInfo *pModeInfo = d3dEnum.GetCurrentMode();
pModeInfo->fWindowed = fInitialPipeParams.Windowed; // set windowed mode from ini file
ISetCurrentMode( d3dEnum.GetCurrentMode() );
fSettings.fFullscreen = !fCurrentMode->fWindowed;
fSettings.fNumAASamples = fInitialPipeParams.AntiAliasingAmount;
// ISetCaps just records the card capabilities that were passed in.
ISetCaps();
// IRestrictCaps looks over those explicit caps and makes some decisions on
// what the card can really do.
IRestrictCaps( *devRec );
fSettings.fMaxAnisotropicSamples = fInitialPipeParams.AnisotropicLevel;
if(fSettings.fMaxAnisotropicSamples > fCurrentDevice->fDDCaps.MaxAnisotropy)
fSettings.fMaxAnisotropicSamples = (UInt8)fCurrentDevice->fDDCaps.MaxAnisotropy;
plConst(UInt32) kDefaultDynVtxSize(32000 * 44);
plConst(UInt32) kDefaultDynIdxSize(0 * plGBufferGroup::kMaxNumIndicesPerBuffer * 2);
fDynVtxSize = kDefaultDynVtxSize;
fVtxRefTime = 0;
// Go create surfaces and DX-dependent objects
if( ICreateDeviceObjects() )
{
IShowErrorMessage( "Cannot create Direct3D device" );
return;
}
/*plStatusLog::AddLineS("pipeline.log", "Supported Resolutions:");
std::vector temp;
GetSupportedDisplayModes( &temp, 16 );
for(int i = 0; i < temp.size(); i++)
{
plStatusLog::AddLineS("pipeline.log", "%d, %d, %d", temp[i].Width, temp[i].Height, 16);
}
temp.clear();
GetSupportedDisplayModes( &temp, 32 );
for(int i = 0; i < temp.size(); i++)
{
plStatusLog::AddLineS("pipeline.log", "%d, %d, %d", temp[i].Width, temp[i].Height, 32);
}*/
}
// Cleanup - Most happens in IReleaseDeviceObject().
plDXPipeline::~plDXPipeline()
{
fCurrLay = nil;
hsAssert( fCurrMaterial == nil, "Current material not unrefed properly" );
// fCullProxy is a debugging representation of our CullTree. See plCullTree.cpp,
// plScene/plOccluder.cpp and plScene/plOccluderProxy.cpp for more info
if( fCullProxy )
fCullProxy->GetKey()->UnRefObject();
delete fCurrentDriver;
delete fCurrentDevice;
delete fCurrentMode;
IReleaseDeviceObjects();
IClearClothingOutfits(&fClothingOutfits);
IClearClothingOutfits(&fPrevClothingOutfits);
}
//// IClearMembers ////////////////////////////////////////////////////////////
// Initialize everything to a nil state.
// This does not initialize to a working state, but to a state that can be
// built from. For example, the fD3DObject pointer is set to nil so that it's safe
// to delete or set to a valid pointer. It must be set to a valid pointer
// before the pipeline can be used for much.
// After the core initialization is done (in ICreateMaster and ICreateDeviceObjects)
// render state will be initialized in IInitDeviceState.
void plDXPipeline::IClearMembers()
{
/// Clear some stuff
fVtxBuffRefList = nil;
fIdxBuffRefList = nil;
fTextureRefList = nil;
fTextFontRefList = nil;
fRenderTargetRefList = nil;
fVShaderRefList = nil;
fPShaderRefList = nil;
fCurrMaterial = nil;
fCurrLay = nil;
fCurrRenderLayer = 0;
#if MCN_BOUNDS_SPANS
fBoundsMat = nil;
fBoundsSpans = nil;
#endif
fPlateMgr = nil;
fLogDrawer = nil;
fDebugTextMgr = nil;
fCurrLightingMethod = plSpan::kLiteMaterial;
fCurrCullMode = D3DCULL_CW;
fTexturing = false;
fCurrNumLayers = 0;
fLastEndingStage = -1;
fSettings.Reset();
fStencil.Reset();
fTweaks.Reset();
fLights.Reset(this);
fCurrFog.Reset();
fDeviceLost = false;
fDevWasLost = false;
fSettings.fCurrFVFFormat = 0;
fDynVtxBuff = nil;
fNextDynVtx = 0;
int i;
for( i = 0; i < 8; i++ )
fLayerRef[i] = nil;
IResetRenderTargetPools();
fULutTextureRef = nil;
for( i = 0; i < kMaxRenderTargetNext; i++ )
fBlurVBuffers[i] = nil;
fBlurVSHandle = nil;
fD3DObject = nil;
fD3DDevice = nil;
fD3DBackBuff = nil;
fD3DDepthSurface = nil;
fD3DMainSurface = nil;
fSharedDepthSurface[0] = nil;
fSharedDepthFormat[0] = D3DFMT_UNKNOWN;
fSharedDepthSurface[1] = nil;
fSharedDepthFormat[1] = D3DFMT_UNKNOWN;
fCurrentMode = nil;
fCurrentDriver = nil;
fCurrentDevice = nil;
fOverLayerStack.Reset();
fOverBaseLayer = nil;
fOverAllLayer = nil;
fPiggyBackStack.Reset();
fMatPiggyBacks = 0;
fActivePiggyBacks = 0;
for( i = 0; i < 8; i++ )
{
fLayerState[i].Reset();
fOldLayerState[i].Reset();
}
fMatOverOn.Reset();
fMatOverOff.Reset();
// SetMaterialOverride( hsGMatState::kShade, hsGMatState::kShadeSpecularHighlight, false );
fView.Reset();
fCullProxy = nil;
fTime = 0;
fFrame = 0;
fInSceneDepth = 0;
fTextUseTime = 0;
fEvictTime = 0;
fManagedSeen = 0;
fManagedCutoff = 0;
fRenderCnt = 0;
fDebugFlags.Clear();
fForceMatHandle = true;
fAvRTShrinkValidSince = 0;
fAvRTWidth = 1024;
fAvNextFreeRT = 0;
}
// plDXViewSettings are just a convenience member struct to segregate the current view settings.
//
// Reset - Initialize the ViewSettings to default (normal/neutral) values.
void plDXViewSettings::Reset()
{
// Normal render, on clear, clear the color buffer and depth buffer.
fRenderState = plPipeline::kRenderNormal | plPipeline::kRenderClearColor | plPipeline::kRenderClearDepth;
fRenderRequest = nil;
fDrawableTypeMask = plDrawable::kNormal;
fSubDrawableTypeMask = plDrawable::kSubNormal;
// Clear color to black, depth to yon.
fClearColor = 0;
fClearDepth = 1.f;
fDefaultFog.Clear();
// Want to limit the number of nodes in the cull tree. After adding so many nodes,
// the benefits (#objects culled) falls off, but the cost (evaluating objects against
// node planes) keeps rising.
const UInt16 kCullMaxNodes = 250;
fCullTree.Reset();
fCullTreeDirty = true;
fCullMaxNodes = kCullMaxNodes;
// Object Local to world transform and its inverse.
fLocalToWorld.Reset();
fWorldToLocal.Reset();
// see Core/plViewTransform.h
fTransform.Reset();
fTransform.SetScreenSize(800, 600);
// Keep track of handedness of local to world and camera transform for winding.
fLocalToWorldLeftHanded = false;
fWorldToCamLeftHanded = false;
}
//// plDXGeneralSettings::Reset //////////////////////////////////////////////
// Catch all struct of general settings plus pointers to current d3d objects.
void plDXGeneralSettings::Reset()
{
fCurrVertexBuffRef = nil;
fCurrIndexBuffRef = nil;
fFullscreen = false;
fHWnd = nil;
fColorDepth = 32;
fD3DCaps = 0;
fBoardKluge = 0;
fStageEnd = 0;
fMaxNumLights = kD3DMaxTotalLights;
fMaxNumProjectors = kMaxProjectors;
fMaxLayersAtOnce = 1;
fMaxPiggyBacks = 0;
fBoundsDrawLevel = -1;
fProperties = 0;
fClearColor = 0;
fNoGammaCorrect = false;
fMaxUVWSrc = 8;
fCantProj = false;
fLimitedProj = false;
fBadManaged = false;
fShareDepth = false;
fCurrAnisotropy = false;
fIsIntel = false;
fDXError = D3D_OK;
memset( fErrorStr, 0, sizeof( fErrorStr ) );
fCurrRenderTarget = nil;
fCurrBaseRenderTarget = nil;
fCurrD3DMainSurface = nil;
fCurrD3DDepthSurface = nil;
fCurrRenderTargetRef = nil;
fCurrFVFFormat = 0;
fCurrVertexShader = nil;
fCurrPixelShader = nil;
fVeryAnnoyingTextureInvalidFlag = false;
}
//// IInitDeviceState /////////////////////////////////////////////////////////
// Initialize the device to a known state. This also syncs it up with our internal state
// as recorded in the fLayerStates.
// Some of these states reflect the caps of the device, but for the most part, the
// important thing here is NOT what state we're in coming out of this function, but
// that we are in a known state, and that the known state is recorded in fLayerStates.
void plDXPipeline::IInitDeviceState()
{
fLayerState[0].Reset();
fCurrCullMode = D3DCULL_CW;
/// Set D3D states
fCurrFog.Reset();
ISetFogParameters( nil, nil );
fD3DDevice->SetRenderState( D3DRS_ZFUNC, D3DCMP_LESSEQUAL );
fD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE );
fD3DDevice->SetRenderState( D3DRS_ZENABLE, ( fSettings.fD3DCaps & kCapsWBuffer ) ? D3DZB_USEW : D3DZB_TRUE );
fD3DDevice->SetRenderState( D3DRS_CLIPPING, TRUE );
fD3DDevice->SetRenderState( D3DRS_CULLMODE, fCurrCullMode );
ISetCullMode();
fD3DDevice->SetRenderState( D3DRS_ALPHATESTENABLE, TRUE );
fD3DDevice->SetRenderState( D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL );
fD3DDevice->SetRenderState( D3DRS_ALPHAREF, 0x00000001 );
fD3DDevice->SetRenderState( D3DRS_MULTISAMPLEANTIALIAS, ( fSettings.fD3DCaps & kCapsFSAntiAlias ) ? TRUE : FALSE );
fD3DDevice->SetRenderState( D3DRS_ANTIALIASEDLINEENABLE, FALSE );
fD3DDevice->SetRenderState( D3DRS_DITHERENABLE, ( fSettings.fD3DCaps & kCapsDither ) ? TRUE : FALSE );
fD3DDevice->SetRenderState( D3DRS_SPECULARENABLE, FALSE );
fD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE );
fCurrD3DLiteState = false;
fD3DDevice->SetRenderState( D3DRS_TEXTUREFACTOR, 0x0 );
fD3DDevice->SetRenderState( D3DRS_STENCILENABLE, FALSE );
fD3DDevice->SetTransform( D3DTS_TEXTURE0, &d3dIdentityMatrix );
fD3DDevice->SetTransform( D3DTS_WORLD, &d3dIdentityMatrix );
/// NEW: to compensate for scaling transformations that might screw up our nicely
/// normalized normals. Note: nVidia says this is as fast or faster than with
/// this disabled, but who knows what it'll do on other cards...
fD3DDevice->SetRenderState( D3DRS_NORMALIZENORMALS, TRUE );
fD3DDevice->SetRenderState( D3DRS_LOCALVIEWER, TRUE );
UInt32 totalMem = fD3DDevice->GetAvailableTextureMem();
plProfile_Set(TotalTexSize, totalMem);
// Initialization for all 8 stages (even though we only use a few of them).
int i;
for( i = 0; i < 8; i++ )
{
fLayerLODBias[ i ] = fTweaks.fDefaultLODBias;
fLayerTransform[ i ] = false;
fLayerRef[ i ] = nil;
fLayerUVWSrcs[ i ] = i;
fLayerState[ i ].Reset();
fD3DDevice->SetTexture( i, nil );
fD3DDevice->SetTextureStageState( i, D3DTSS_TEXCOORDINDEX, i );
fD3DDevice->SetSamplerState( i, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP );
fD3DDevice->SetSamplerState( i, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP );
fD3DDevice->SetSamplerState( i, D3DSAMP_MIPMAPLODBIAS, *(DWORD *)( &fLayerLODBias[ i ] ) );
if( fSettings.fMaxAnisotropicSamples > 0 && !IsDebugFlagSet(plPipeDbg::kFlagNoAnisotropy))
{
fD3DDevice->SetSamplerState( i, D3DSAMP_MINFILTER, D3DTEXF_ANISOTROPIC );
fD3DDevice->SetSamplerState( i, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR );
fD3DDevice->SetSamplerState( i, D3DSAMP_MAXANISOTROPY, (DWORD)fSettings.fMaxAnisotropicSamples );
fSettings.fCurrAnisotropy = true;
}
else
{
fD3DDevice->SetSamplerState( i, D3DSAMP_MINFILTER, D3DTEXF_LINEAR );
fD3DDevice->SetSamplerState( i, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR );
fSettings.fCurrAnisotropy = false;
}
fD3DDevice->SetSamplerState( i, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR );
fD3DDevice->SetTransform( sTextureStages[ i ], &d3dIdentityMatrix );
fLayerXformFlags[ i ] = D3DTTFF_COUNT2;
fD3DDevice->SetTextureStageState( i, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT2 );
}
// Initialize our bump mapping matrices.
for( i = 0; i < 4; i++ )
{
int j;
for( j = 0; j < 4; j++ )
{
fBumpDuMatrix.fMap[i][j] = 0;
fBumpDvMatrix.fMap[i][j] = 0;
fBumpDwMatrix.fMap[i][j] = 0;
}
}
fBumpDuMatrix.NotIdentity();
fBumpDvMatrix.NotIdentity();
fBumpDwMatrix.NotIdentity();
PushMaterialOverride( hsGMatState::kShade, hsGMatState::kShadeSpecularHighlight, false );
fLights.Reset(this);
return;
}
//// ISetCaps /////////////////////////////////////////////////////////////////
// We've recorded the capabilities of the current device in fCurrentDevice (traditionally in the setup program),
// now translate that into our own caps flags.
void plDXPipeline::ISetCaps()
{
fSettings.fD3DCaps = kCapsNone;
// Set relevant caps (ones we can do something about).
if( fCurrentDevice->fDDCaps.RasterCaps & D3DPRASTERCAPS_DEPTHBIAS )
fSettings.fD3DCaps |= kCapsZBias;
if( fCurrentDevice->fDDCaps.RasterCaps & D3DPRASTERCAPS_FOGRANGE )
fSettings.fD3DCaps |= kCapsRangeFog;
if( fCurrentDevice->fDDCaps.RasterCaps & D3DPRASTERCAPS_FOGTABLE )
fSettings.fD3DCaps |= kCapsLinearFog | kCapsExpFog | kCapsExp2Fog | kCapsPixelFog;
else
fSettings.fD3DCaps |= kCapsLinearFog;
if( fCurrentDevice->fDDCaps.TextureFilterCaps & D3DPTFILTERCAPS_MIPFLINEAR )
fSettings.fD3DCaps |= kCapsMipmap;
if( fCurrentDevice->fDDCaps.TextureCaps & D3DPTEXTURECAPS_MIPCUBEMAP )
fSettings.fD3DCaps |= kCapsCubicMipmap;
if( fCurrentDevice->fDDCaps.RasterCaps & D3DPRASTERCAPS_WBUFFER )
fSettings.fD3DCaps |= kCapsWBuffer;
if( fCurrentDevice->fDDCaps.RasterCaps & D3DPRASTERCAPS_DITHER )
fSettings.fD3DCaps |= kCapsDither;
if( fSettings.fNumAASamples > 0 )
fSettings.fD3DCaps |= kCapsFSAntiAlias;
if( fCurrentDevice->fDDCaps.RasterCaps & D3DPRASTERCAPS_WFOG )
fSettings.fD3DCaps |= kCapsDoesWFog;
if( fCurrentDevice->fDDCaps.TextureCaps & D3DPTEXTURECAPS_CUBEMAP )
fSettings.fD3DCaps |= kCapsCubicTextures;
/// New 1.5.2000 - cull out mixed vertex processing
if( fCurrentDevice->fDDCaps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT
&& fCurrentMode->fDDBehavior == D3DCREATE_HARDWARE_VERTEXPROCESSING
)
fSettings.fD3DCaps |= kCapsHWTransform;
// Currently always want d3d to transform
fSettings.fD3DCaps |= kCapsHWTransform;
/// Always assume we can do small textures (IRestrictCaps will turn this off
/// if necessary)
fSettings.fD3DCaps |= kCapsDoesSmallTextures;
/// Look for supported texture formats
if( IFindCompressedFormats() )
fSettings.fD3DCaps |= kCapsCompressTextures;
if( IFindLuminanceFormats() )
fSettings.fD3DCaps |= kCapsLuminanceTextures;
/// Max # of hardware lights
fSettings.fMaxNumLights = fCurrentDevice->fDDCaps.MaxActiveLights;
if( fSettings.fMaxNumLights > kD3DMaxTotalLights )
fSettings.fMaxNumLights = kD3DMaxTotalLights;
// Intel Extreme chips report 0 lights, meaning T&L is done
// in software, so you can have as many lights as you want.
// We only need 8, so set that here. Also turn off shadows,
// since the extreme can't really afford them, and record
// the fact this is the extreme for other driver problem
// workarounds.
if( !fSettings.fMaxNumLights )
{
fSettings.fMaxNumLights = kD3DMaxTotalLights;
fSettings.fIsIntel = true;
plShadowCaster::SetCanShadowCast(false);
}
/// Max # of textures at once
fSettings.fMaxLayersAtOnce = fCurrentDevice->fDDCaps.MaxSimultaneousTextures;
if( fCurrentDevice->fDDCaps.DevCaps & D3DDEVCAPS_SEPARATETEXTUREMEMORIES )
fSettings.fMaxLayersAtOnce = 1;
// Alloc half our simultaneous textures to piggybacks.
// Won't hurt us unless we try to many things at once.
fSettings.fMaxPiggyBacks = fSettings.fMaxLayersAtOnce >> 1;
// Less than 4 layers at once means we have to fallback on uv bumpmapping
if (fSettings.fMaxLayersAtOnce < 4)
SetDebugFlag(plPipeDbg::kFlagBumpUV, true);
fSettings.fMaxAnisotropicSamples = (UInt8)(fCurrentDevice->fDDCaps.MaxAnisotropy);
fSettings.fNoGammaCorrect = !(fCurrentDevice->fDDCaps.Caps2 & D3DCAPS2_FULLSCREENGAMMA);
if (!(fCurrentDevice->fDDCaps.TextureCaps & D3DPTEXTURECAPS_PROJECTED))
plDynamicCamMap::SetCapable(false);
ISetGraphicsCapability(fCurrentDevice->fDDCaps.PixelShaderVersion);
}
// ISetGraphicsCapability ///////////////////////////////////////////////////////
// Tell our global quality settings what we can do. We'll use this to only load
// versions we can render. So if we can render it, we load it and skip its low quality substitute,
// if we can't render it, we skip it and load its low quality substitute.
// Naturally, this must happen before we do any loading.
void plDXPipeline::ISetGraphicsCapability(UInt32 v)
{
int pixelMajor = D3DSHADER_VERSION_MAJOR(v);
int pixelMinor = D3DSHADER_VERSION_MINOR(v);
if( pixelMajor > 1 )
{
plQuality::SetCapability(plQuality::kPS_2_Plus);
}
else if( pixelMajor > 0 )
{
if( pixelMinor >= 4 )
plQuality::SetCapability(plQuality::kPS_1_4);
else if( pixelMinor > 0 )
plQuality::SetCapability(plQuality::kPS_1_1);
}
}
//// IRestrictCaps ////////////////////////////////////////////////////////////
// ISetCaps() sets our native caps based on the D3D caps bits D3D returns.
// IRestrictCaps looks at our hsG3DDeviceSelector flags and translates those
// into our runtime native caps.
// The DeviceSelector flags aren't set by what the board claims, but rather
// we try to identify the board and set them according to previous knowledge.
// For example, the ATI7500 will only use uvw coordinates 0 or 1. There's
// no d3d cap to reflect this, and it really should support [0..7], but
// there's no way to force it to be d3d compliant. So when we see we have
// an ATI7500, we set the cap kCapsMaxUVWSrc2.
// See hsG3DDeviceSelector.cpp for details and implementation.
void plDXPipeline::IRestrictCaps( const hsG3DDeviceRecord& devRec )
{
if( !devRec.GetCap( hsG3DDeviceSelector::kCapsMipmap ) )
fSettings.fD3DCaps &= ~kCapsMipmap;
if( !devRec.GetCap( hsG3DDeviceSelector::kCapsCubicMipmap ) )
fSettings.fD3DCaps &= ~kCapsCubicMipmap;
if( !devRec.GetCap( hsG3DDeviceSelector::kCapsWBuffer ) )
fSettings.fD3DCaps &= ~kCapsWBuffer;
if( !devRec.GetCap( hsG3DDeviceSelector::kCapsZBias ) )
fSettings.fD3DCaps &= ~kCapsZBias;
// if( !devRec.GetCap( hsG3DDeviceSelector::kCapsHWTransform ) )
// fSettings.fD3DCaps &= ~kCapsHWTransform;
if( !devRec.GetCap( hsG3DDeviceSelector::kCapsDither ) )
fSettings.fD3DCaps &= ~kCapsDither;
// if( devRec.GetAASetting() == 0 )
// fSettings.fD3DCaps &= ~kCapsFSAntiAlias;
if( !devRec.GetCap( hsG3DDeviceSelector::kCapsFogExp ) )
fSettings.fD3DCaps &= ~kCapsExpFog;
if( !devRec.GetCap( hsG3DDeviceSelector::kCapsCubicTextures ) )
fSettings.fD3DCaps &= ~kCapsCubicTextures;
if( devRec.GetCap(hsG3DDeviceSelector::kCapsCantShadow) )
plShadowCaster::SetCanShadowCast(false);
if( devRec.GetCap(hsG3DDeviceSelector::kCapsCantProj) )
fSettings.fCantProj = true;
if( devRec.GetCap(hsG3DDeviceSelector::kCapsLimitedProj) )
fSettings.fLimitedProj = true;
if( devRec.GetCap(hsG3DDeviceSelector::kCapsBadManaged) )
fSettings.fBadManaged = true;
if( devRec.GetCap(hsG3DDeviceSelector::kCapsShareDepth) )
fSettings.fShareDepth = true;
/// Added 9.6.2000 mcn - shouldn't they be here anyway?
if( !devRec.GetCap( hsG3DDeviceSelector::kCapsFogExp2 ) )
fSettings.fD3DCaps &= ~kCapsExp2Fog;
if( !devRec.GetCap( hsG3DDeviceSelector::kCapsDoesSmallTextures ) )
fSettings.fD3DCaps &= ~kCapsDoesSmallTextures;
/// 9.22.2000 mcn - dFlag for bad (savage4) yon fix
if( devRec.GetCap( hsG3DDeviceSelector::kCapsBadYonStuff ) )
fSettings.fD3DCaps |= kCapsHasBadYonStuff;
/// 10.31.2000 mcn - Flag for can't-handle-under-8-pixel-dimensions-on-textures
/// (see, isn't the name flag actually better in retrospect? :)
if( devRec.GetCap( hsG3DDeviceSelector::kCapsNoKindaSmallTexs ) )
fSettings.fD3DCaps |= kCapsNoKindaSmallTexs;
/// Note: the following SHOULD be here, but we later detect for texture
/// formats and reset this flag. It should only be set if it is set already,
/// but that means ensuring it's set beforehand, which it might not be.
if( !devRec.GetCap( hsG3DDeviceSelector::kCapsCompressTextures ) )
fSettings.fD3DCaps &= ~kCapsCompressTextures;
/// Set up tweaks
SetZBiasScale( (float)devRec.GetZBiasRating() );
fTweaks.fDefaultLODBias = (float)-( 0.25 + (float)devRec.GetLODBiasRating() );
devRec.GetFogApproxStarts( fTweaks.fFogExpApproxStart, fTweaks.fFogExp2ApproxStart );
fTweaks.fFogEndBias = (float)devRec.GetFogEndBias();
// Fog knee stuff
devRec.GetFogKneeParams( hsG3DDeviceRecord::kFogExp, fTweaks.fExpFogKnee, fTweaks.fExpFogKneeVal );
devRec.GetFogKneeParams( hsG3DDeviceRecord::kFogExp2, fTweaks.fExp2FogKnee, fTweaks.fExp2FogKneeVal );
// Max # of layers
UInt32 max = devRec.GetLayersAtOnce();
if( max > 0 && max < fSettings.fMaxLayersAtOnce )
fSettings.fMaxLayersAtOnce = max;
/// Debug flag to force high-level cards down to GeForce 2 caps
if( fDbgSetupInitFlags & 0x00000004 )
{
fSettings.fD3DCaps &= ~kCapsFSAntiAlias;
if( fSettings.fMaxLayersAtOnce > 2 )
fSettings.fMaxLayersAtOnce = 2;
fSettings.fMaxAnisotropicSamples = 0;
plQuality::SetCapability(plQuality::kMinimum);
}
// There's a bug in NVidia drivers on Windows 2000 for GeForce1-4 (all flavors, including MX).
// When the amount allocated into managed memory approaches the on board memory size, the performance
// severely degrades, no matter how little is actually in use in the current rendering. So say all
// our d3d textures are created into managed memory at age load. Also say you are
// consistently viewing only 5Mb of managed materials (texture + vertex buffer). So as
// you walk through the age, the new textures you see get loaded on demand into video memory.
// Once you've seen enough to fill the on board memory, your frame rate starts falling and
// continues to fall as more textures get loaded. So either the memory manager is not letting
// go of LRU textures, or fragmentation is so horrible as to make the manager useless.
// So on these boards and with this OS, we keep track of how much managed memory we've seen,
// and when it reaches a threshhold, we flush managed memory with an EvictManagedResources() call.
// There's an unfortunate glitch, and then the frame rate is fine again.
// So if we need this workaround, we set fManagedCutoff to 1 here, and then once we have our
// D3D device, we query for the amount of memory and set the threshhold for flushing memory
// based on that.
OSVERSIONINFO osinfo;
memset(&osinfo, 0, sizeof(osinfo));
osinfo.dwOSVersionInfoSize = sizeof(osinfo);
GetVersionEx(&osinfo);
if( (osinfo.dwMajorVersion == 5)
&&(osinfo.dwMinorVersion == 0) )
{
// It's the dreaded win2k
if( devRec.GetCap(hsG3DDeviceSelector::kCapsDoubleFlush) )
fManagedCutoff = 1;
else if( devRec.GetCap(hsG3DDeviceSelector::kCapsSingleFlush) )
fManagedCutoff = 1;
}
//// Our temp debug flag to force z-buffering...
if( !( fDbgSetupInitFlags & 0x00000001 ) )
fSettings.fD3DCaps &= ~kCapsWBuffer;
/// Set up the z-bias scale values, based on z- or w-buffering
if( fSettings.fD3DCaps & kCapsWBuffer )
fTweaks.fDefaultPerspLayerScale = kPerspLayerScaleW;
else
fTweaks.fDefaultPerspLayerScale = kPerspLayerScale;
// Less than 4 layers at once means we have to fallback on uv bumpmapping
if( fSettings.fMaxLayersAtOnce < 4 )
SetDebugFlag(plPipeDbg::kFlagBumpUV, true);
if( ( fSettings.fD3DCaps & kCapsHWTransform ) && ( fCurrentMode->fDDBehavior == D3DCREATE_SOFTWARE_VERTEXPROCESSING ) )
fSettings.fD3DCaps &= ~kCapsHWTransform;
if( devRec.GetCap(hsG3DDeviceSelector::kCapsMaxUVWSrc2) )
fSettings.fMaxUVWSrc = 2;
/// Anisotropy stuff
//if( devRec.GetMaxAnisotropicSamples() < fSettings.fMaxAnisotropicSamples )
// fSettings.fMaxAnisotropicSamples = devRec.GetMaxAnisotropicSamples();
if( devRec.GetCap(hsG3DDeviceSelector::kCapsNoAniso) || (fSettings.fMaxAnisotropicSamples <= 1) )
fSettings.fMaxAnisotropicSamples = 0;
}
//// Get/SetZBiasScale ////////////////////////////////////////////////////////
// If the board really doesn't support Z-biasing, we adjust the perspective matrix in IGetCameraToNDC
// The layer scale and translation are tailored to the current hardware.
hsScalar plDXPipeline::GetZBiasScale() const
{
return ( fTweaks.fPerspLayerScale / fTweaks.fDefaultPerspLayerScale ) - 1.0f;
}
void plDXPipeline::SetZBiasScale( hsScalar scale )
{
scale += 1.0f;
fTweaks.fPerspLayerScale = fTweaks.fDefaultPerspLayerScale * scale;
fTweaks.fPerspLayerTrans = kPerspLayerTrans * scale;
}
// Create all our video memory consuming D3D objects.
hsBool plDXPipeline::ICreateDynDeviceObjects()
{
// Front/Back/Depth buffers
if( ICreateNormalSurfaces() )
return true;
// RenderTarget pools are shared for our shadow generation algorithm.
// Different sizes for different resolutions.
IMakeRenderTargetPools();
// Create device-specific stuff
fDebugTextMgr = TRACKED_NEW plDebugTextManager();
if( fDebugTextMgr == nil )
return true;
// Vertex buffers, index buffers, textures, etc.
LoadResources();
return false;
}
//// ICreateDeviceObjects /////////////////////////////////////////////////////
// Create all of our steady state D3D objects. More D3D objects will be created
// and destroyed as ages are loaded and unloaded, but these are the things that
// only go away when we lose the device.
hsBool plDXPipeline::ICreateDeviceObjects()
{
// The D3D device
if( ICreateDevice(!fSettings.fFullscreen) )
return true;
// Most everything else D3D
if( ICreateDynDeviceObjects() )
return true;
// PlateMgr is largely for debugging and performance stats,
// but also gets used for some things like the cursor and
// linking fade to/from black.
fPlateMgr = TRACKED_NEW plDXPlateManager( this, fD3DDevice );
if( fPlateMgr == nil || !fPlateMgr->IsValid() )
return true;
// We've got everything created now, initialize to a known state.
IInitDeviceState();
if( FAILED( fD3DDevice->Clear( 0, nil, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, fSettings.fClearColor, 1.0f, 0L ) ) )
return true;
// You may be wondering what this is. It's a workaround for a GeForce2 driver bug, where
// clears to the Zbuffer (but not color) are getting partially ignored. Don't even ask.
// So this is just to try and get the board used to the kind of foolishness it can expect
// from here out.
if( FAILED( fD3DDevice->Clear( 0, nil, D3DCLEAR_ZBUFFER, fSettings.fClearColor, 1.0f, 0L ) ) )
return true;
if( FAILED( fD3DDevice->Clear( 0, nil, D3DCLEAR_ZBUFFER, fSettings.fClearColor, 1.0f, 0L ) ) )
return true;
if( FAILED( fD3DDevice->Clear( 0, nil, D3DCLEAR_ZBUFFER, fSettings.fClearColor, 1.0f, 0L ) ) )
return true;
/// Log renderer
fLogDrawer = TRACKED_NEW plStatusLogDrawer( this );
plStatusLogMgr::GetInstance().SetDrawer( fLogDrawer );
/// Ok, we're done now
#if MCN_BOUNDS_SPANS
fBoundsSpans = TRACKED_NEW plDrawableSpans();
hsgResMgr::ResMgr()->NewKey( "BoundsSpans", fBoundsSpans, plLocation::kGlobalFixedLoc );
fBoundsSpans->SetNativeProperty( plDrawable::kPropVolatile, true );
fBoundsMat = TRACKED_NEW hsGMaterial();
hsgResMgr::ResMgr()->NewKey( "BoundsMaterial", fBoundsMat, plLocation::kGlobalFixedLoc );
plLayer *lay = fBoundsMat->MakeBaseLayer();
lay->SetMiscFlags( hsGMatState::kMiscWireFrame | hsGMatState::kMiscTwoSided );
lay->SetShadeFlags( lay->GetShadeFlags() | hsGMatState::kShadeWhite );
// Set up a ref to these. Since we don't have a key, we use the
// generic RefObject() (and matching UnRefObject() when we're done).
// If we had a key, we would use myKey->AddViaNotify(otherKey) and myKey->Release(otherKey).
fBoundsMat->GetKey()->RefObject();
fBoundsSpans->GetKey()->RefObject();
#endif
return false;
}
//// ISetCurrentDriver ////////////////////////////////////////////////////////
// Copy over the driver info.
void plDXPipeline::ISetCurrentDriver( D3DEnum_DriverInfo *driv )
{
if( fCurrentDriver != nil )
delete fCurrentDriver;
fCurrentDriver = TRACKED_NEW D3DEnum_DriverInfo;
fCurrentDriver->fGuid = driv->fGuid;
hsStrncpy( fCurrentDriver->fStrDesc, driv->fStrDesc, 40 );
hsStrncpy( fCurrentDriver->fStrName, driv->fStrName, 40 );
fCurrentDriver->fDesktopMode = driv->fDesktopMode;
fCurrentDriver->fAdapterInfo = driv->fAdapterInfo;
fCurrentDriver->fCurrentMode = nil;
fCurrentDriver->fCurrentDevice = nil;
/// Go looking for an adapter to match this one
UINT iAdapter;
for( fCurrentAdapter = 0, iAdapter = 0; iAdapter < fD3DObject->GetAdapterCount(); iAdapter++ )
{
D3DADAPTER_IDENTIFIER9 adapterInfo;
fD3DObject->GetAdapterIdentifier( iAdapter, 0, &adapterInfo );
if( adapterInfo.DeviceIdentifier == fCurrentDriver->fAdapterInfo.DeviceIdentifier )
{
fCurrentAdapter = iAdapter;
break;
}
}
}
//// ISetCurrentDevice ////////////////////////////////////////////////////////
// Copy over the device info.
void plDXPipeline::ISetCurrentDevice( D3DEnum_DeviceInfo *dev )
{
if( fCurrentDevice != nil )
delete fCurrentDevice;
fCurrentDevice = TRACKED_NEW D3DEnum_DeviceInfo;
hsStrncpy( fCurrentDevice->fStrName, dev->fStrName, 40 );
fCurrentDevice->fDDCaps = dev->fDDCaps;
fCurrentDevice->fDDType = dev->fDDType;
fCurrentDevice->fIsHardware = dev->fIsHardware;
fCurrentDevice->fCanWindow = dev->fCanWindow;
// fCurrentDevice->fCanAntialias = dev->fCanAntialias;
fCurrentDevice->fCompatibleWithDesktop = dev->fCompatibleWithDesktop;
// copy over supported device modes
D3DEnum_ModeInfo currMode;
for(int i = 0; i < dev->fModes.Count(); i++)
{
// filter unusable modes
if(dev->fModes[i].fDDmode.Width < MIN_WIDTH || dev->fModes[i].fDDmode.Height < MIN_HEIGHT)
continue;
currMode.fBitDepth = dev->fModes[i].fBitDepth;
currMode.fCanRenderToCubic = dev->fModes[i].fCanRenderToCubic;
currMode.fDDBehavior = dev->fModes[i].fDDBehavior;
currMode.fDepthFormats = dev->fModes[i].fDepthFormats;
currMode.fFSAATypes = dev->fModes[i].fFSAATypes;
memcpy(&currMode.fDDmode, &dev->fModes[i].fDDmode, sizeof(D3DDISPLAYMODE));
strcpy(currMode.fStrDesc, dev->fModes[i].fStrDesc);
currMode.fWindowed = dev->fModes[i].fWindowed;
fCurrentDevice->fModes.Push(currMode);
}
}
//// ISetCurrentMode //////////////////////////////////////////////////////////
// Copy over the mode info.
void plDXPipeline::ISetCurrentMode( D3DEnum_ModeInfo *mode )
{
if( fCurrentMode != nil )
delete fCurrentMode;
fCurrentMode = TRACKED_NEW D3DEnum_ModeInfo;
*fCurrentMode = *mode;
}
//// IFindCompressedFormats ///////////////////////////////////////////////////
//
// New DX Way: Check to see if each format is valid.
hsBool plDXPipeline::IFindCompressedFormats()
{
D3DFORMAT toCheckFor[] = {D3DFMT_DXT1,
//D3DFMT_DXT2,
//D3DFMT_DXT3,
//D3DFMT_DXT4,
D3DFMT_DXT5,
D3DFMT_UNKNOWN };
short i = 0;
for( i = 0; toCheckFor[ i ] != D3DFMT_UNKNOWN; i++ )
{
if( FAILED( fD3DObject->CheckDeviceFormat( fCurrentAdapter, fCurrentDevice->fDDType,
fCurrentMode->fDDmode.Format,
0, D3DRTYPE_TEXTURE, toCheckFor[ i ] ) ) )
return false;
}
/// Got here, must have found them all
return true;
}
//// IFindLuminanceFormats ////////////////////////////////////////////////////
//
// New DX Way: Check to see if each format we want is valid
hsBool plDXPipeline::IFindLuminanceFormats()
{
D3DFORMAT toCheckFor[] = { D3DFMT_L8, D3DFMT_A8L8, D3DFMT_UNKNOWN };
short i = 0;
for( i = 0; toCheckFor[ i ] != D3DFMT_UNKNOWN; i++ )
{
if( FAILED( fD3DObject->CheckDeviceFormat( fCurrentAdapter, fCurrentDevice->fDDType,
fCurrentMode->fDDmode.Format,
0, D3DRTYPE_TEXTURE, toCheckFor[ i ] ) ) )
return false;
}
/// Got here, must have found them all
return true;
}
//// ITextureFormatAllowed ////////////////////////////////////////////////////
//
// Returns true if the given format is supported on the current device and
// mode, false if it isn't.
hsBool plDXPipeline::ITextureFormatAllowed( D3DFORMAT format )
{
if( FAILED( fD3DObject->CheckDeviceFormat( fCurrentAdapter, fCurrentDevice->fDDType,
fCurrentMode->fDDmode.Format,
0, D3DRTYPE_TEXTURE, format ) ) )
return false;
return true;
}
//// SetDebugFlag /////////////////////////////////////////////////////////////
// Debug flags should never be employed to do a game effect, although they can
// be useful for developing effects. Mostly they help in diagnosing problems
// in rendering or performance.
void plDXPipeline::SetDebugFlag( UInt32 flag, hsBool on )
{
fDebugFlags.SetBit(flag, on);
if (flag == plPipeDbg::kFlagColorizeMipmaps)
{
// Force textures to reload
plDXTextureRef *ref = fTextureRefList;
while( ref != nil )
{
ref->SetDirty( true );
ref = ref->GetNext();
}
// Reset mipmap filtering state (usually is LINEAR, but we set it to POINT for coloring)
int i;
for( i = 0; i < 8; i++ )
fD3DDevice->SetSamplerState( i, D3DSAMP_MIPFILTER, on ? D3DTEXF_POINT : D3DTEXF_LINEAR );
}
if (flag == plPipeDbg::kFlagNoAnisotropy)
{
ISetAnisotropy(!on);
}
}
hsBool plDXPipeline::IsDebugFlagSet( UInt32 flag ) const
{
return fDebugFlags.IsBitSet(flag);
}
///////////////////////////////////////////////////////////////////////////////
//// Device Creation //////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// ICreateMaster ////////////////////////////////////////////////////////////
// Creates the master Direct3D objects. I guess just in case you want
// multiple Direct3D devices.... :~
hsBool plDXPipeline::ICreateMaster()
{
hsAssert( !fD3DObject, "ICreateMaster() should only be called for Master Direct3DDevice" );
/// The new DirectX Way: Create a Direct3D object, out of which everything else springs
if( hsGDDrawDllLoad::GetD3DDll() == nil )
return ICreateFail( "Cannot load Direct3D driver!" );
Direct3DCreateProc procPtr;
procPtr = (Direct3DCreateProc)GetProcAddress( hsGDDrawDllLoad::GetD3DDll(), "Direct3DCreate9" );
if( procPtr == nil )
return ICreateFail( "Cannot load D3D Create Proc!" );
// Create a D3D object to use
fD3DObject = procPtr( D3D_SDK_VERSION );
if( fD3DObject == nil )
return ICreateFail( "Cannot create Direct3D object" );
return false;
}
//// ICreateDevice ////////////////////////////////////////////////////
//
// Creates the device. Surfaces, buffers, etc. created separately (in case of lost device).
// See ICreateDeviceObjects.
hsBool plDXPipeline::ICreateDevice(hsBool windowed)
{
/// First, create the D3D Device object
D3DPRESENT_PARAMETERS params;
D3DDISPLAYMODE dispMode;
int i;
#ifdef DBG_WRITE_FORMATS
char msg[ 256 ];
#endif // DBG_WRITE_FORMATS
INIT_ERROR_CHECK( fD3DObject->GetAdapterDisplayMode( fCurrentAdapter, &dispMode ),
"Cannot get desktop display mode" );
// save desktop properties
fDesktopParams.Width = dispMode.Width;
fDesktopParams.Height = dispMode.Height;
fDesktopParams.ColorDepth = GetDXBitDepth( dispMode.Format );
if( windowed )
{
// Reset fColor, since we're getting the desktop bitdepth
fSettings.fColorDepth = GetDXBitDepth( dispMode.Format );
if(fSettings.fOrigWidth > fDesktopParams.Width || fSettings.fOrigHeight > fDesktopParams.Height)
{
fSettings.fOrigWidth = fDesktopParams.Width;
fSettings.fOrigHeight = fDesktopParams.Height;
IGetViewTransform().SetScreenSize(fDesktopParams.Width, fDesktopParams.Height);
}
}
memset( ¶ms, 0, sizeof( params ) );
params.Windowed = ( windowed ? TRUE : FALSE );
params.Flags = 0;//D3DPRESENTFLAG_LOCKABLE_BACKBUFFER;
params.BackBufferCount = 1;
params.BackBufferWidth = GetViewTransform().GetScreenWidth();
params.BackBufferHeight = GetViewTransform().GetScreenHeight();
params.EnableAutoDepthStencil = TRUE;
// NOTE: This was changed 5.29.2001 mcn to avoid the nasty flashing bug on nVidia's 12.60 beta drivers
// SWAPEFFECT must be _DISCARD when using antialiasing, so we'll just go with _DISCARD for the time being. mf
params.SwapEffect = D3DSWAPEFFECT_DISCARD;
params.FullScreen_RefreshRateInHz = ( windowed ? 0 : D3DPRESENT_RATE_DEFAULT );
if(windowed)
{
params.PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT;
}
else
{
params.PresentationInterval = ( fVSync ? D3DPRESENT_INTERVAL_DEFAULT : D3DPRESENT_INTERVAL_IMMEDIATE );
}
#ifdef DBG_WRITE_FORMATS
for( i = 0; i < fCurrentMode->fDepthFormats.GetCount(); i++ )
{
sprintf( msg, "-- Valid depth buffer format: %s", IGetDXFormatName( fCurrentMode->fDepthFormats[ i ] ) );
hsDebugMessage( msg, 0 );
}
#endif
// Attempt to find the closest AA setting we can
params.MultiSampleType = D3DMULTISAMPLE_NONE;
for( i = fSettings.fNumAASamples; i >= 2; i-- )
{
if( fCurrentMode->fFSAATypes.Find( (D3DMULTISAMPLE_TYPE)i ) != fCurrentMode->fFSAATypes.kMissingIndex )
{
params.MultiSampleType = (D3DMULTISAMPLE_TYPE)i;
break;
}
}
if( !IFindDepthFormat(params) )
{
// If we haven't found a depth format, turn off multisampling and try it again.
params.MultiSampleType = D3DMULTISAMPLE_NONE;
if( !IFindDepthFormat(params) )
// Okay, we're screwed here, we might as well bail.
return ICreateFail( "Can't find a Depth Buffer format" );
}
/// TEMP HACK--if we're running 16-bit z-buffer or below, use our z-bias (go figure, it works better
/// in 16-bit, worse in 24 and 32)
if( params.AutoDepthStencilFormat == D3DFMT_D15S1 ||
params.AutoDepthStencilFormat == D3DFMT_D16 ||
params.AutoDepthStencilFormat == D3DFMT_D16_LOCKABLE )
fSettings.fD3DCaps &= ~kCapsZBias;
#ifdef DBG_WRITE_FORMATS
sprintf( msg, "-- Requesting depth buffer format: %s", IGetDXFormatName( params.AutoDepthStencilFormat ) );
hsDebugMessage( msg, 0 );
#endif
params.BackBufferFormat = ( windowed ? dispMode.Format : fCurrentMode->fDDmode.Format );
#ifdef DBG_WRITE_FORMATS
sprintf( msg, "-- Requesting back buffer format: %s", IGetDXFormatName( params.BackBufferFormat ) );
hsDebugMessage( msg, 0 );
#endif
params.hDeviceWindow = fSettings.fHWnd;
// Enable this to switch to a pure device.
// fCurrentMode->fDDBehavior |= D3DCREATE_PUREDEVICE;
// fCurrentMode->fDDBehavior |= D3DCREATE_DISABLE_DRIVER_MANAGEMENT;
#ifndef PLASMA_EXTERNAL_RELEASE
UINT adapter;
for (adapter = 0; adapter < fD3DObject->GetAdapterCount(); adapter++)
{
D3DADAPTER_IDENTIFIER9 id;
fD3DObject->GetAdapterIdentifier(adapter, 0, &id);
// We should be matching against "NVIDIA NVPerfHUD", but the space
// in the description seems to be bogus. This seems to be a fair
// alternative
if (strstr(id.Description, "NVPerfHUD"))
{
// This won't actually use the REF device, but we ask for
// it as part of the handshake to let NVPerfHUD know we give
// it permission to analyze us.
fCurrentAdapter = adapter;
fCurrentDevice->fDDType= D3DDEVTYPE_REF;
SetDebugFlag(plPipeDbg::kFlagNVPerfHUD, true);
break;
}
}
#endif // PLASMA_EXTERNAL_RELEASE
INIT_ERROR_CHECK( fD3DObject->CreateDevice( fCurrentAdapter, fCurrentDevice->fDDType,
fSettings.fHWnd, fCurrentMode->fDDBehavior,
¶ms, &fD3DDevice ),
"Cannot create primary display surface via CreateDevice()" );
fSettings.fPresentParams = params;
// This bit matches up with the fManagedCutoff workaround for a problem
// with the NVidia drivers on win2k. Search for "GetVersionEx" in IRestrictCaps
// for more info.
UInt32 mem = fD3DDevice->GetAvailableTextureMem();
plProfile_IncCount(TexTot, mem);
const UInt32 kSingleFlush(40000000);
const UInt32 kDoubleFlush(24000000);
if( fManagedCutoff )
{
if( mem < 64000000 )
fManagedCutoff = kDoubleFlush;
else
fManagedCutoff = kSingleFlush;
}
return false;
}
// IFindDepthFormat //////////////////////////////////////////////////////////////
// Look through available depth formats for the closest to what we want that
// will work.
hsBool plDXPipeline::IFindDepthFormat(D3DPRESENT_PARAMETERS& params)
{
// Okay, we're not using the stencil buffer right now, and it's bringing out
// some painful driver bugs on the GeForce2. So rather than go out of our way
// looking for trouble, we're going to look for a depth buffer with NO STENCIL.
int i;
for( i = fCurrentMode->fDepthFormats.GetCount() - 1; i >= 0; i-- )
{
D3DFORMAT fmt = fCurrentMode->fDepthFormats[ i ];
if( (fmt == D3DFMT_D32)
||(fmt == D3DFMT_D24X8)
||(fmt == D3DFMT_D16) )
{
HRESULT hr = fD3DObject->CheckDeviceMultiSampleType(fCurrentAdapter,
fCurrentDevice->fDDType,
fmt,
fCurrentMode->fWindowed ? TRUE : FALSE,
params.MultiSampleType, NULL);
if( !FAILED(hr) )
{
params.AutoDepthStencilFormat = fmt;
fStencil.fDepth = 0;
break;
}
}
}
if( i < 0 )
{
for( i = fCurrentMode->fDepthFormats.GetCount() - 1; i >= 0; i-- )
{
D3DFORMAT fmt = fCurrentMode->fDepthFormats[ i ];
if( fmt == D3DFMT_D15S1 || fmt == D3DFMT_D24X4S4 || fmt == D3DFMT_D24S8 )
{
HRESULT hr = fD3DObject->CheckDeviceMultiSampleType(fCurrentAdapter,
fCurrentDevice->fDDType,
fmt,
fCurrentMode->fWindowed ? TRUE : FALSE,
params.MultiSampleType, NULL);
if( !FAILED(hr) )
{
params.AutoDepthStencilFormat = fmt;
if( fmt == D3DFMT_D15S1 )
fStencil.fDepth = 1;
else if( fmt == D3DFMT_D24X4S4 )
fStencil.fDepth = 4;
else
fStencil.fDepth = 8;
break;
}
}
}
}
return i >= 0;
}
// ICreateNormalSurfaces //////////////////////////////////////////////////////
// Create the primary color and depth buffers.
//
hsBool plDXPipeline::ICreateNormalSurfaces()
{
/// Now get the backbuffer surface pointer
INIT_ERROR_CHECK( fD3DDevice->GetBackBuffer( 0, 0, D3DBACKBUFFER_TYPE_MONO, &fD3DBackBuff ),
"Cannot get primary surface's back buffer" );
/// And finally, get the main D3D surfaces (for restoring after rendertargets )
INIT_ERROR_CHECK( fD3DDevice->GetRenderTarget( 0, &fD3DMainSurface ), "Cannot capture primary surface" );
INIT_ERROR_CHECK( fD3DDevice->GetDepthStencilSurface( &fD3DDepthSurface ), "Cannot capture primary depth surface" );
fSettings.fCurrD3DMainSurface = fD3DMainSurface;
fSettings.fCurrD3DDepthSurface = fD3DDepthSurface;
D3DSURF_MEMNEW( fD3DMainSurface );
D3DSURF_MEMNEW( fD3DDepthSurface );
D3DSURF_MEMNEW( fD3DBackBuff );
D3DSURFACE_DESC info;
fD3DMainSurface->GetDesc( &info );
fD3DDepthSurface->GetDesc( &info );
fD3DBackBuff->GetDesc( &info );
return false;
}
// IReleaseRenderTargetPools //////////////////////////////////////////////////
// Free up all resources assosiated with our pools of rendertargets of varying
// sizes. Primary user of these pools is the shadow generation.
void plDXPipeline::IReleaseRenderTargetPools()
{
int i;
for( i = 0; i < fRenderTargetPool512.GetCount(); i++ )
{
delete fRenderTargetPool512[i];
fRenderTargetPool512[i] = nil;
}
fRenderTargetPool512.SetCount(0);
for( i = 0; i < fRenderTargetPool256.GetCount(); i++ )
{
delete fRenderTargetPool256[i];
fRenderTargetPool256[i] = nil;
}
fRenderTargetPool256.SetCount(0);
for( i = 0; i < fRenderTargetPool128.GetCount(); i++ )
{
delete fRenderTargetPool128[i];
fRenderTargetPool128[i] = nil;
}
fRenderTargetPool128.SetCount(0);
for( i = 0; i < fRenderTargetPool64.GetCount(); i++ )
{
delete fRenderTargetPool64[i];
fRenderTargetPool64[i] = nil;
}
fRenderTargetPool64.SetCount(0);
for( i = 0; i < fRenderTargetPool32.GetCount(); i++ )
{
delete fRenderTargetPool32[i];
fRenderTargetPool32[i] = nil;
}
fRenderTargetPool32.SetCount(0);
for( i = 0; i < kMaxRenderTargetNext; i++ )
{
fRenderTargetNext[i] = 0;
fBlurScratchRTs[i] = nil;
fBlurDestRTs[i] = nil;
}
#ifdef MF_ENABLE_HACKOFF
hackOffscreens.Reset();
#endif // MF_ENABLE_HACKOFF
}
// IReleaseDynDeviceObjects //////////////////////////////////////////////
// Make sure we aren't holding on to anything, and release all of
// the D3D resources that we normally hang on to forever. Meaning things
// that persist through unloading one age and loading the next.
void plDXPipeline::IReleaseDynDeviceObjects()
{
// We should do this earlier, but the textFont objects don't remove
// themselves from their parent objects yet
delete fDebugTextMgr;
fDebugTextMgr = nil;
if( fD3DDevice )
{
fD3DDevice->SetStreamSource(0, nil, 0, 0);
fD3DDevice->SetIndices(nil);
}
/// Delete actual d3d objects
hsRefCnt_SafeUnRef( fSettings.fCurrVertexBuffRef );
fSettings.fCurrVertexBuffRef = nil;
hsRefCnt_SafeUnRef( fSettings.fCurrIndexBuffRef );
fSettings.fCurrIndexBuffRef = nil;
while( fTextFontRefList )
delete fTextFontRefList;
while( fRenderTargetRefList )
{
plDXRenderTargetRef* rtRef = fRenderTargetRefList;
rtRef->Release();
rtRef->Unlink();
}
// The shared dynamic vertex buffers used by things like objects skinned on CPU, or
// particle systems.
IReleaseDynamicBuffers();
IReleaseAvRTPool();
IReleaseRenderTargetPools();
if( fSharedDepthSurface[0] )
{
D3DSURF_MEMDEL(fSharedDepthSurface[0]);
ReleaseObject(fSharedDepthSurface[0]);
fSharedDepthFormat[0] = D3DFMT_UNKNOWN;
}
if( fSharedDepthSurface[1] )
{
D3DSURF_MEMDEL(fSharedDepthSurface[1]);
ReleaseObject(fSharedDepthSurface[1]);
fSharedDepthFormat[1] = D3DFMT_UNKNOWN;
}
D3DSURF_MEMDEL( fD3DMainSurface );
D3DSURF_MEMDEL( fD3DDepthSurface );
D3DSURF_MEMDEL( fD3DBackBuff );
ReleaseObject( fD3DBackBuff );
ReleaseObject( fD3DDepthSurface );
ReleaseObject( fD3DMainSurface );
}
// IReleaseShaders ///////////////////////////////////////////////////////////////
// Delete our vertex and pixel shaders. Releasing the plasma ref will release the
// D3D handle.
void plDXPipeline::IReleaseShaders()
{
while( fVShaderRefList )
{
plDXVertexShader* ref = fVShaderRefList;
ref->Release();
ref->Unlink();
}
while( fPShaderRefList )
{
plDXPixelShader* ref = fPShaderRefList;
ref->Release();
ref->Unlink();
}
}
//// IReleaseDeviceObjects ///////////////////////////////////////////////////////
// Release everything we've created. This is the main cleanup function.
void plDXPipeline::IReleaseDeviceObjects()
{
plDXDeviceRef *ref;
/// Delete d3d-dependent objects
#if MCN_BOUNDS_SPANS
if( fBoundsSpans )
fBoundsSpans->GetKey()->UnRefObject();
fBoundsSpans = nil;
if( fBoundsMat )
fBoundsMat->GetKey()->UnRefObject();
fBoundsMat = nil;
#endif
plStatusLogMgr::GetInstance().SetDrawer( nil );
delete fLogDrawer;
fLogDrawer = nil;
IGetPixelScratch( 0 );
int i;
for( i = 0; i < 8; i++ )
{
if( fLayerRef[i] )
{
hsRefCnt_SafeUnRef(fLayerRef[i]);
fLayerRef[i] = nil;
}
}
#ifdef MF_ENABLE_HACKOFF
//WHITE
hackOffscreens.SetCount(0);
#endif // MF_ENABLE_HACKOFF
if( fULutTextureRef )
delete [] fULutTextureRef->fData;
hsRefCnt_SafeUnRef(fULutTextureRef);
fULutTextureRef = nil;
while( fVtxBuffRefList )
{
ref = fVtxBuffRefList;
ref->Release();
ref->Unlink();
}
while( fIdxBuffRefList )
{
ref = fIdxBuffRefList;
ref->Release();
ref->Unlink();
}
while( fTextureRefList )
{
ref = fTextureRefList;
ref->Release();
ref->Unlink();
}
IReleaseShaders();
fLights.Release();
IReleaseDynDeviceObjects();
delete fPlateMgr;
fPlateMgr = nil;
if( fD3DDevice != nil )
{
LONG ret;
while( ret = fD3DDevice->Release() )
{
hsStatusMessageF("%d - Error releasing device", ret);
}
fD3DDevice = nil;
}
if( fD3DObject != nil )
{
LONG ret;
while( ret = fD3DObject->Release() )
{
hsStatusMessageF("%d - Error releasing Direct3D Object", ret);
}
fD3DObject = nil;
}
fManagedAlloced = false;
fAllocUnManaged = false;
}
// IReleaseDynamicBuffers /////////////////////////////////////////////////
// Release everything we've created in POOL_DEFAULT.
// This is called on shutdown or when we lose the device. Search for D3DERR_DEVICELOST.
void plDXPipeline::IReleaseDynamicBuffers()
{
// Workaround for ATI driver bug.
if( fSettings.fBadManaged )
{
plDXTextureRef* tRef = fTextureRefList;
while( tRef )
{
tRef->Release();
tRef = tRef->GetNext();
}
}
plDXVertexBufferRef* vbRef = fVtxBuffRefList;
while( vbRef )
{
if( vbRef->Volatile() && vbRef->fD3DBuffer )
{
vbRef->fD3DBuffer->Release();
vbRef->fD3DBuffer = nil;
// Actually, if it's volatile, it's sharing the global dynamic vertex buff, so we're already
// accounting for the memory when we clear the global buffer.
//PROFILE_POOL_MEM(D3DPOOL_DEFAULT, vbRef->fCount * vbRef->fVertexSize, false, "VtxBuff");
}
// 9600 THRASH
else if( fSettings.fBadManaged )
{
vbRef->Release();
}
vbRef = vbRef->GetNext();
}
plDXIndexBufferRef* iRef = fIdxBuffRefList;
while( iRef )
{
// If it's volatile, we have to release it.
// If it's not, we want to release it so
// we can make it volatile (D3DPOOL_DEFAULT)
if (iRef->fD3DBuffer)
{
iRef->fD3DBuffer->Release();
iRef->fD3DBuffer = nil;
PROFILE_POOL_MEM(iRef->fPoolType, iRef->fCount * sizeof(UInt16), false, "IndexBuff");
}
iRef = iRef->GetNext();
}
if (fDynVtxBuff)
{
ReleaseObject(fDynVtxBuff);
PROFILE_POOL_MEM(D3DPOOL_DEFAULT, fDynVtxSize, false, "DynVtxBuff");
fDynVtxBuff = nil;
}
fNextDynVtx = 0;
fVtxRefTime++;
// PlateMgr has a POOL_DEFAULT vertex buffer for drawing quads.
if( fPlateMgr )
fPlateMgr->IReleaseGeometry();
// Also has POOL_DEFAULT vertex buffer.
plDXTextFont::ReleaseShared(fD3DDevice);
IReleaseBlurVBuffers();
}
// ICreateDynamicBuffers /////////////////////////////////////////////////////
// Create the things we need in POOL_DEFAULT. We clump them into this function,
// because they must be created before anything in POOL_MANAGED.
// So we create these global POOL_DEFAULT objects here, then send out a message
// to the objects in the scene to create anything they need in POOL_DEFAULT,
// then go on to create things on POOL_MANAGED.
// Set LoadResources().
void plDXPipeline::ICreateDynamicBuffers()
{
ICreateBlurVBuffers();
plDXTextFont::CreateShared(fD3DDevice);
if( fPlateMgr )
fPlateMgr->ICreateGeometry(this);
fNextDynVtx = 0;
fVtxRefTime++;
DWORD usage = D3DUSAGE_WRITEONLY | D3DUSAGE_DYNAMIC;
hsAssert(!fManagedAlloced, "Alloc default with managed alloc'd");
D3DPOOL poolType = D3DPOOL_DEFAULT;
if( fDynVtxSize )
{
PROFILE_POOL_MEM(poolType, fDynVtxSize, true, "DynVtxBuff");
if( FAILED( fD3DDevice->CreateVertexBuffer( fDynVtxSize,
usage,
0,
poolType,
&fDynVtxBuff, NULL) ) )
{
hsAssert(false, "Don't know what to do here.");
}
}
}
void plDXPipeline::IPrintDeviceInitError()
{
char str[256];
char err[16];
switch(plLocalization::GetLanguage())
{
case plLocalization::kFrench: strcpy(err, "Erreur"); strcpy(str, "Erreur d'initialisation de votre carte graphique. Les valeurs par défaut de ses paramètres ont été rétablis. "); break;
case plLocalization::kGerman: strcpy(err, "Fehler"); strcpy(str, "Bei der Initialisierung Ihrer Grafikkarte ist ein Fehler aufgetreten. Standardeinstellungen werden wiederhergestellt."); break;
case plLocalization::kSpanish: strcpy(err, "Error"); strcpy(str, "Ocurrió un error al inicializar tu tarjeta de vídeo. Hemos restaurado los ajustes por defecto. "); break;
case plLocalization::kItalian: strcpy(err, "Errore"); strcpy(str, "Errore di inizializzazione della scheda video. Sono state ripristinate le impostazioni predefinite."); break;
default: strcpy(err, "Error"); strcpy(str, "There was an error initializing your video card. We have reset it to its Default settings."); break;
}
hsMessageBox(str, err, hsMessageBoxNormal, hsMessageBoxIconError);
}
// Reset device creation parameters to default and write to ini file
void plDXPipeline::IResetToDefaults(D3DPRESENT_PARAMETERS *params)
{
// this will reset device parameters to default and make sure all other necessary parameters are updated
params->BackBufferWidth = fDefaultPipeParams.Width;
params->BackBufferHeight = fDefaultPipeParams.Height;
fSettings.fOrigWidth = fDefaultPipeParams.Width;
fSettings.fOrigHeight = fDefaultPipeParams.Height;
IGetViewTransform().SetScreenSize(fDefaultPipeParams.Width, fDefaultPipeParams.Height);
params->BackBufferFormat = D3DFMT_X8R8G8B8;
fSettings.fColorDepth = fDefaultPipeParams.ColorDepth;
int i;
hsTArray *modes = &fCurrentDevice->fModes;
for( i = 0; i < modes->Count(); i++ )
{
D3DEnum_ModeInfo *mode = &(*modes)[i];
if(mode->fDDmode.Width == params->BackBufferWidth &&
mode->fDDmode.Height == params->BackBufferHeight &&
mode->fBitDepth == 32 )
{
ISetCurrentMode(&(*modes)[i]);
break;
}
}
params->Windowed = fDefaultPipeParams.Windowed;
fSettings.fFullscreen = !fDefaultPipeParams.Windowed;
fCurrentMode->fWindowed = fDefaultPipeParams.Windowed;
// Attempt to find the closest AA setting we can
params->MultiSampleType = D3DMULTISAMPLE_NONE;
fSettings.fNumAASamples = 0;
for( int i = fDefaultPipeParams.AntiAliasingAmount; i >= 2; i-- )
{
if( fCurrentMode->fFSAATypes.Find( (D3DMULTISAMPLE_TYPE)i ) != fCurrentMode->fFSAATypes.kMissingIndex )
{
fSettings.fNumAASamples = i;
params->MultiSampleType = (D3DMULTISAMPLE_TYPE)i;
break;
}
}
fSettings.fMaxAnisotropicSamples = fDefaultPipeParams.AnisotropicLevel;
fVSync = false;
params->PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;
plShadowCaster::EnableShadowCast(fDefaultPipeParams.Shadows ? true : false);
plQuality::SetQuality(fDefaultPipeParams.VideoQuality);
plQuality::SetCapability(fDefaultPipeParams.VideoQuality);
plDynamicCamMap::SetEnabled(fDefaultPipeParams.PlanarReflections ? true : false);
plBitmap::SetGlobalLevelChopCount(2 - fDefaultPipeParams.TextureQuality);
// adjust camera properties
plVirtualCam1::SetAspectRatio((float)fSettings.fOrigWidth / (float)fSettings.fOrigHeight);
plVirtualCam1::SetFOV(plVirtualCam1::GetFOVw(), plVirtualCam1::GetFOVh());
// fire off a message to the client so we can write defaults to the ini file, and adjust the window size
plKey clientKey = hsgResMgr::ResMgr()->FindKey( kClient_KEY );
plClientMsg* clientMsg = TRACKED_NEW plClientMsg(plClientMsg::kSetGraphicsDefaults);
clientMsg->Send(clientKey);
}
// IResetDevice
// reset the device to its operational state.
// returns true if not ready yet, false if the reset was successful.
// All this is generally in response to a fullscreen alt-tab.
hsBool plDXPipeline::IResetDevice()
{
hsBool fakeDevLost(false);
if( fakeDevLost )
fDeviceLost = true;
if( fDeviceLost )
{
IClearShadowSlaves();
ReleaseCapture();
Sleep(100);
HRESULT coopLev = fD3DDevice->TestCooperativeLevel();
if( coopLev == D3DERR_DEVICELOST )
{
// Nothing to do yet.
return true;
}
if( fakeDevLost )
coopLev = D3DERR_DEVICENOTRESET;
if( coopLev == D3DERR_DEVICENOTRESET || fForceDeviceReset)
{
plStatusLog::AddLineS("pipeline.log", 0xffff0000, "Resetting Device");
IReleaseDynDeviceObjects();
if( !IFindDepthFormat(fSettings.fPresentParams) )
{
// If we haven't found a depth format, turn off multisampling and try it again.
fSettings.fPresentParams.MultiSampleType = D3DMULTISAMPLE_NONE;
IFindDepthFormat(fSettings.fPresentParams);
}
HRESULT hr = fD3DDevice->Reset(&fSettings.fPresentParams);
int count = 0;
while( FAILED(hr) )
{
if(count++ == 25)
{
IPrintDeviceInitError();
IResetToDefaults(&fSettings.fPresentParams);
}
// Still not ready? This is bad.
// Until we called Reset(), we could make any D3D call we wanted,
// and it would turn into a no-op. But once we call Reset(), until
// the device really is reset, anything but TestCoop/Reset/Release
// has just become illegal. We've already released everything, Reset
// just failed, not much to do but wait and try again.
::Sleep(250);
hr = fD3DDevice->Reset(&fSettings.fPresentParams);
}
fSettings.fCurrFVFFormat = 0;
fSettings.fCurrVertexShader = NULL;
fManagedAlloced = false;
ICreateDynDeviceObjects();
IInitDeviceState();
/// Broadcast a message letting everyone know that we were recreated and that
/// all device-specific stuff needs to be recreated
plDeviceRecreateMsg* clean = TRACKED_NEW plDeviceRecreateMsg();
plgDispatch::MsgSend(clean);
SetCapture(fSettings.fHWnd);
}
fDevWasLost = true;
fDeviceLost = false;
// We return true here, even though we've successfully recreated, to take
// another spin around the update loop and give everyone a chance to
// get back in sync.
return true;
}
return false;
}
void plDXPipeline::ResetDisplayDevice(int Width, int Height, int ColorDepth, hsBool Windowed, int NumAASamples, int MaxAnisotropicSamples, hsBool VSync /* = false */)
{
if( fSettings.fPresentParams.BackBufferWidth == Width &&
fSettings.fPresentParams.BackBufferHeight == Height &&
(fSettings.fPresentParams.Windowed ? 1 : fSettings.fColorDepth == ColorDepth) && // if we're windowed dont check color depth we just use the desktop colordepth
((fSettings.fPresentParams.Windowed && Windowed) || (!fSettings.fPresentParams.Windowed && !Windowed)) &&
fSettings.fNumAASamples == NumAASamples &&
fSettings.fMaxAnisotropicSamples == MaxAnisotropicSamples &&
fVSync == VSync
)
{
return; // nothing has changed
}
fVSync = VSync;
int i = 0;
hsTArray *modes = &fCurrentDevice->fModes;
// check for supported resolution if we're not going to windowed mode
if(!Windowed)
{
for( i = 0; i < modes->Count(); i++ )
{
D3DEnum_ModeInfo *mode = &(*modes)[i];
if(mode->fDDmode.Width == Width &&
mode->fDDmode.Height == Height &&
mode->fBitDepth == ColorDepth )
{
ISetCurrentMode(&(*modes)[i]);
break;
}
}
}
if(i != modes->Count())
{
// Set Resolution
fSettings.fOrigWidth = Width;
fSettings.fOrigHeight = Height;
IGetViewTransform().SetScreenSize(Width, Height);
fSettings.fPresentParams.BackBufferWidth = Width;
fSettings.fPresentParams.BackBufferHeight = Height;
fSettings.fColorDepth = ColorDepth;
fSettings.fPresentParams.BackBufferFormat = D3DFMT_X8R8G8B8;
}
// set windowed/fullscreen mode
fCurrentMode->fWindowed = Windowed;
fSettings.fPresentParams.Windowed = Windowed;
fSettings.fFullscreen = !Windowed;
// set Antialiasing
fSettings.fNumAASamples = 0;
// Attempt to find the closest AA setting we can
fSettings.fPresentParams.MultiSampleType = D3DMULTISAMPLE_NONE;
for( i = NumAASamples; i >= 2; i-- )
{
if( fCurrentMode->fFSAATypes.Find( (D3DMULTISAMPLE_TYPE)i ) != fCurrentMode->fFSAATypes.kMissingIndex )
{
fSettings.fNumAASamples = i;
fSettings.fPresentParams.MultiSampleType = (D3DMULTISAMPLE_TYPE)i;
break;
}
}
if( fSettings.fNumAASamples > 0 )
fSettings.fD3DCaps |= kCapsFSAntiAlias;
else
fSettings.fD3DCaps &= ~kCapsFSAntiAlias;
// Set Anisotropic filtering
fSettings.fMaxAnisotropicSamples = MaxAnisotropicSamples;
ISetAnisotropy(MaxAnisotropicSamples > 0);
if(Windowed)
{
fSettings.fPresentParams.PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT;
}
else
{
fSettings.fPresentParams.PresentationInterval = ( fVSync ? D3DPRESENT_INTERVAL_DEFAULT : D3DPRESENT_INTERVAL_IMMEDIATE );
}
// Force a device reset
fDeviceLost = true;
fForceDeviceReset = true;
plVirtualCam1::SetAspectRatio((float)Width / (float)Height);
plVirtualCam1::SetFOV(plVirtualCam1::GetFOVw(), plVirtualCam1::GetFOVh());
IResetDevice();
return;
}
void plDXPipeline::GetSupportedColorDepths(hsTArray &ColorDepths)
{
int i, j;
// iterate through display modes
for( i = 0; i < fCurrentDevice->fModes.Count(); i++ )
{
// Check to see if color depth has been added already
for( j = 0; j < ColorDepths.Count(); j++ )
{
if( fCurrentDevice->fModes[i].fBitDepth == ColorDepths[i] )
break;
}
if(j == ColorDepths.Count())
{
//add it
ColorDepths.Push( fCurrentDevice->fModes[i].fBitDepth );
}
}
}
void plDXPipeline::GetSupportedDisplayModes(std::vector *res, int ColorDepth )
{
int i, j;
std::vector supported;
// loop through display modes
for( i = 0; i < fCurrentDevice->fModes.Count(); i++ )
{
if( fCurrentDevice->fModes[i].fBitDepth == ColorDepth )
{
// check for duplicate mode
for( j = 0; j < supported.size(); j++ )
{
if(supported[j].Width == fCurrentDevice->fModes[i].fDDmode.Width && supported[j].Height == fCurrentDevice->fModes[i].fDDmode.Height)
break;
}
if(j == supported.size())
{
// new mode, add it
plDisplayMode mode;
mode.Width = fCurrentDevice->fModes[i].fDDmode.Width;
mode.Height = fCurrentDevice->fModes[i].fDDmode.Height;
mode.ColorDepth = ColorDepth;
supported.push_back(mode);
}
}
}
*res = supported;
}
// Get max anitialias for the specified displaymode
int plDXPipeline::GetMaxAntiAlias(int Width, int Height, int ColorDepth)
{
int max = 0;
D3DEnum_ModeInfo *pCurrMode = nil;
hsTArray *modes = &fCurrentDevice->fModes;
for(int i = 0; i < modes->Count(); i++ )
{
D3DEnum_ModeInfo *mode = &(*modes)[i];
if( mode->fDDmode.Width == Width &&
mode->fDDmode.Height == Height &&
mode->fBitDepth == ColorDepth )
{
pCurrMode = mode;
}
}
if(pCurrMode)
{
for(int i = 0; i < pCurrMode->fFSAATypes.Count(); i++)
{
if(pCurrMode->fFSAATypes[i] > max)
max = pCurrMode->fFSAATypes[i];
}
}
return max;
}
int plDXPipeline::GetMaxAnisotropicSamples()
{
return fCurrentDevice ? fCurrentDevice->fDDCaps.MaxAnisotropy : 0;
}
//// Resize ///////////////////////////////////////////////////////////////////
// Resize is fairly obsolete, having been replaced by IResetDevice, which is
// automatically called if needed on BeginRender.
// This Resize function used to serve as both to Resize the primary buffers and
// to restore after losing the device (alt-tab). It didn't actually do either
// very well, so I'm not sure why I haven't deleted it.
void plDXPipeline::Resize( UInt32 width, UInt32 height )
{
hsMatrix44 w2c, c2w, proj;
HRESULT coopLev = fD3DDevice->TestCooperativeLevel();
if( coopLev == D3DERR_DEVICELOST )
{
/// Direct3D is reporting that we lost the device but are unable to reset
/// it yet, so ignore.
hsStatusMessage( "Received Resize() request at an invalid time. Ignoring...\n" );
return;
}
if( !width && !height )
{
if( D3D_OK == coopLev )
return;
IReleaseDynDeviceObjects();
HRESULT hr = fD3DDevice->Reset(&fSettings.fPresentParams);
fManagedAlloced = false;
if( !FAILED(hr) )
{
ICreateDynDeviceObjects();
IInitDeviceState();
return;
}
}
// Store some states that we *want* to restore back...
plViewTransform resetTransform = GetViewTransform();
/// HACK: Don't recreate if we're windowed, bad things happen
/// Comment out this if if you want to test the crashing thing in windowed alt-tabbing
#if 0
if( ( width == 0 || height == 0 ) && !fSettings.fFullscreen )
return;
#endif
// Destroy old
IReleaseDeviceObjects();
// Reset width and height
if( width != 0 && height != 0 )
{
// Width and height of zero mean just recreate
fSettings.fOrigWidth = width;
fSettings.fOrigHeight = height;
IGetViewTransform().SetScreenSize((UInt16)(fSettings.fOrigWidth), (UInt16)(fSettings.fOrigHeight));
resetTransform.SetScreenSize((UInt16)(fSettings.fOrigWidth), (UInt16)(fSettings.fOrigHeight));
}
else
{
// Just for debug
hsStatusMessage( "Recreating the pipeline...\n" );
}
// Recreate
if( !fD3DObject )
{
if( ICreateMaster() )
{
IShowErrorMessage( "Cannot create D3D master object" );
return;
}
}
// Go recreate surfaces and DX-dependent objects
if( ICreateDeviceObjects() )
{
IShowErrorMessage( "Cannot create Direct3D device" );
return;
}
// Restore states
SetViewTransform(resetTransform);
IProjectionMatrixToD3D();
/// Broadcast a message letting everyone know that we were recreated and that
/// all device-specific stuff needs to be recreated
plDeviceRecreateMsg* clean = TRACKED_NEW plDeviceRecreateMsg();
plgDispatch::MsgSend(clean);
}
///////////////////////////////////////////////////////////////////////////////
//// Debug Text ///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// MakeTextFont /////////////////////////////////////////////////////////////
plTextFont *plDXPipeline::MakeTextFont( char *face, UInt16 size )
{
plTextFont *font;
font = TRACKED_NEW plDXTextFont( this, fD3DDevice );
if( font == nil )
return nil;
font->Create( face, size );
font->Link( &fTextFontRefList );
return font;
}
///////////////////////////////////////////////////////////////////////////////
//// Drawable Stuff ///////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// Draw /////////////////////////////////////////////////////////////////////
// PreRender //////////////////////////////////////////////////////////////////
// Most of this is debugging stuff, drawing the bounds, drawing the normals, etc.
// The functional part is in IGetVisibleSpans, which creates a list of the visible (non-culled)
// span indices within this drawable.
// This is called once per render, and generally well before rendering begins (as part of the
// cull phase).
hsBool plDXPipeline::PreRender( plDrawable* drawable, hsTArray& visList, plVisMgr* visMgr )
{
plDrawableSpans *ds = plDrawableSpans::ConvertNoRef(drawable);
if( !ds )
return false;
if( ( ds->GetType() & fView.fDrawableTypeMask ) == 0 )
return false;
IGetVisibleSpans( ds, visList, visMgr );
#if MCN_BOUNDS_SPANS
if( ( drawable != fBoundsSpans ) && IsDebugFlagSet(plPipeDbg::kFlagShowAllBounds) )
{
const hsTArray &spans = ds->GetSpanArray();
int i;
for( i = 0; i < visList.GetCount(); i++ )
{
/// Add a span to our boundsIce to show this
IAddBoundsSpan( fBoundsSpans, &spans[ visList[i] ]->fWorldBounds );
}
}
else if( ( drawable != fBoundsSpans ) && IsDebugFlagSet(plPipeDbg::kFlagShowNormals) )
{
const hsTArray &spans = ds->GetSpanArray();
int i;
for( i = 0; i < visList.GetCount(); i++ )
{
/// Add a span to our boundsIce to show this
plIcicle *span = (plIcicle *)spans[ visList[ i ] ];
if( span->fTypeMask & plSpan::kIcicleSpan )
{
IAddNormalsSpan( fBoundsSpans, span, (plDXVertexBufferRef *)ds->GetVertexRef( span->fGroupIdx, span->fVBufferIdx ), 0xff0000ff );
}
}
}
#endif
#if MF_BOUNDS_LEVEL_ICE
if( (fSettings.fBoundsDrawLevel >= 0) && ( drawable != fBoundsSpans ) )
{
hsTArray bndList;
drawable->GetSpaceTree()->HarvestLevel(fSettings.fBoundsDrawLevel, bndList);
int i;
for( i = 0; i < bndList.GetCount(); i++ )
{
IAddBoundsSpan( fBoundsSpans, &hsBounds3Ext(drawable->GetSpaceTree()->GetNode(bndList[i]).GetWorldBounds()), 0xff000000 | (0xf << ((fSettings.fBoundsDrawLevel % 6) << 2)) );
}
}
#endif // MF_BOUNDS_LEVEL_ICE
return visList.GetCount() > 0;
}
struct plSortFace
{
UInt16 fIdx[3];
hsScalar fDist;
};
struct plCompSortFace : public std::binary_function
{
bool operator()( const plSortFace& lhs, const plSortFace& rhs) const
{
return lhs.fDist > rhs.fDist;
}
};
// IAvatarSort /////////////////////////////////////////////////////////////////////////
// We handle avatar sort differently from the rest of the face sort. The reason is that
// within the single avatar index buffer, we want to only sort the faces of spans requesting
// a sort, and sort them in place.
// Contrast that with the normal scene translucency sort. There, we sort all the spans in a drawble,
// then we sort all the faces in that drawable, then for each span in the sorted span list, we extract
// the faces for that span appending onto the index buffer. This gives great efficiency because
// only the visible faces are sorted and they wind up packed into the front of the index buffer, which
// permits more batching. See plDrawableSpans::SortVisibleSpans.
// For the avatar, it's generally the case that all the avatar is visible or not, and there is only
// one material, so neither of those efficiencies is helpful. Moreover, for the avatar the faces we
// want sorted are a tiny subset of the avatar's faces. Moreover, and most importantly, for the avatar, we
// want to preserve the order that spans are drawn, so, for example, the opaque base head will always be
// drawn before the translucent hair fringe, which will always be drawn before the pink clear plastic baseball cap.
hsBool plDXPipeline::IAvatarSort(plDrawableSpans* d, const hsTArray& visList)
{
plProfile_BeginTiming(AvatarSort);
int i;
for( i = 0; i < visList.GetCount(); i++ )
{
hsAssert(d->GetSpan(visList[i])->fTypeMask & plSpan::kIcicleSpan, "Unknown type for sorting faces");
plIcicle* span = (plIcicle*)d->GetSpan(visList[i]);
if( span->fProps & plSpan::kPartialSort )
{
hsAssert(d->GetBufferGroup(span->fGroupIdx)->AreIdxVolatile(), "Badly setup buffer group - set PartialSort too late?");
const hsPoint3 viewPos = GetViewPositionWorld();
plGBufferGroup* group = d->GetBufferGroup(span->fGroupIdx);
plDXVertexBufferRef* vRef = (plDXVertexBufferRef*)group->GetVertexBufferRef(span->fVBufferIdx);
const UInt8* vdata = vRef->fData;
const UInt32 stride = vRef->fVertexSize;
const int numTris = span->fILength/3;
static hsTArray sortScratch;
sortScratch.SetCount(numTris);
plProfile_IncCount(AvatarFaces, numTris);
plSortFace* begin = sortScratch.AcquireArray();
plSortFace* end = begin + numTris;
//
// Have three very similar sorts here, differing only on where the "position" of
// each triangle is defined, either as the center of the triangle, the nearest
// point on the triangle, or the farthest point on the triangle.
// Having tried all three on the avatar (the only thing this sort is used on),
// the best results surprisingly came from using the center of the triangle.
UInt16* indices = group->GetIndexBufferData(span->fIBufferIdx) + span->fIStartIdx;
int j;
for( j = 0; j < numTris; j++ )
{
#if 1 // TRICENTER
UInt16 idx = *indices++;
sortScratch[j].fIdx[0] = idx;
hsPoint3 pos = *(hsPoint3*)(vdata + idx * stride);
idx = *indices++;
sortScratch[j].fIdx[1] = idx;
pos += *(hsPoint3*)(vdata + idx * stride);
idx = *indices++;
sortScratch[j].fIdx[2] = idx;
pos += *(hsPoint3*)(vdata + idx * stride);
pos *= 0.3333f;
sortScratch[j].fDist = hsVector3(&pos, &viewPos).MagnitudeSquared();
#elif 0 // NEAREST
UInt16 idx = *indices++;
sortScratch[j].fIdx[0] = idx;
hsPoint3 pos = *(hsPoint3*)(vdata + idx * stride);
hsScalar dist = hsVector3(&pos, &viewPos).MagnitudeSquared();
hsScalar minDist = dist;
idx = *indices++;
sortScratch[j].fIdx[1] = idx;
pos = *(hsPoint3*)(vdata + idx * stride);
dist = hsVector3(&pos, &viewPos).MagnitudeSquared();
if( dist < minDist )
minDist = dist;
idx = *indices++;
sortScratch[j].fIdx[2] = idx;
pos = *(hsPoint3*)(vdata + idx * stride);
dist = hsVector3(&pos, &viewPos).MagnitudeSquared();
if( dist < minDist )
minDist = dist;
sortScratch[j].fDist = minDist;
#elif 1 // FURTHEST
UInt16 idx = *indices++;
sortScratch[j].fIdx[0] = idx;
hsPoint3 pos = *(hsPoint3*)(vdata + idx * stride);
hsScalar dist = hsVector3(&pos, &viewPos).MagnitudeSquared();
hsScalar maxDist = dist;
idx = *indices++;
sortScratch[j].fIdx[1] = idx;
pos = *(hsPoint3*)(vdata + idx * stride);
dist = hsVector3(&pos, &viewPos).MagnitudeSquared();
if( dist > maxDist )
maxDist = dist;
idx = *indices++;
sortScratch[j].fIdx[2] = idx;
pos = *(hsPoint3*)(vdata + idx * stride);
dist = hsVector3(&pos, &viewPos).MagnitudeSquared();
if( dist > maxDist )
maxDist = dist;
sortScratch[j].fDist = maxDist;
#endif // SORTTYPES
}
std::sort(begin, end, plCompSortFace());
indices = group->GetIndexBufferData(span->fIBufferIdx) + span->fIStartIdx;
plSortFace* iter = sortScratch.AcquireArray();;
for( j = 0; j < numTris; j++ )
{
*indices++ = iter->fIdx[0];
*indices++ = iter->fIdx[1];
*indices++ = iter->fIdx[2];
iter++;
}
group->DirtyIndexBuffer(span->fIBufferIdx);
}
}
plProfile_EndTiming(AvatarSort);
return true;
}
// PrepForRender //////////////////////////////////////////////////////////////////
// Make sure the given drawable and each of the spans to be drawn (as noted in the
// indices in visList) is ready to be rendered.
// This means:
// a) select which lights will be used for each span
// b) do any necessary sorting (if required, spans are already in sorted order in visList,
// so this only means face sorting).
// c) do any necessary software skinning.
// This is called once per render, and before any rendering actually starts. See plPageTreeMgr.cpp.
// So any preperation needs to last until rendering actually begins. So cached information, like
// which lights a span will use, needs to be stored on the span.
hsBool plDXPipeline::PrepForRender(plDrawable* d, hsTArray& visList, plVisMgr* visMgr)
{
plProfile_BeginTiming(PrepDrawable);
plDrawableSpans *drawable = plDrawableSpans::ConvertNoRef(d);
if( !drawable )
{
plProfile_EndTiming(PrepDrawable);
return false;
}
// Find our lights
ICheckLighting(drawable, visList, visMgr);
// Sort our faces
if( drawable->GetNativeProperty(plDrawable::kPropSortFaces) )
{
drawable->SortVisibleSpans(visList, this);
}
// Prep for render. This is gives the drawable a chance to
// do any last minute updates for its buffers, including
// generating particle tri lists.
drawable->PrepForRender( this );
// Any skinning necessary
if( !ISoftwareVertexBlend(drawable, visList) )
{
plProfile_EndTiming(PrepDrawable);
return false;
}
// Avatar face sorting happens after the software skin.
if( drawable->GetNativeProperty(plDrawable::kPropPartialSort) )
{
IAvatarSort(drawable, visList);
}
plProfile_EndTiming(PrepDrawable);
return true;
}
// Draw ///////////////////////////////////////////////////////////
// Convenience function for a drawable that needs to get drawn outside of
// the normal scene graph render (i.e. something not managed by the plPageTreeMgr).
// Not nearly as efficient, so only useful as a special case.
void plDXPipeline::Draw( plDrawable *d )
{
plDrawableSpans *ds = plDrawableSpans::ConvertNoRef( d );
if( ds )
{
if( ( ds->GetType() & fView.fDrawableTypeMask ) == 0 )
return;
static hsTArrayvisList;
PreRender( ds, visList );
PrepForRender(ds, visList);
Render( ds, visList );
}
}
// Render ////////////////////////////////////////////////////////////////////////////////
// The normal way to render a subset of a drawable.
// This assumes that PreRender and PrepForRender have already been called.
// Note that PreRender and PrepForRender are called once per drawable per render
// with a visList containing all of the spans which will be rendered, but
// Render itself may be called with multiple visList subsets which union to
// the visList passed into PreRender/PrepForRender. This happens when drawing
// sorted spans, because some spans from drawable B may be in the middle of
// the spans of drawable A, so the sequence would be:
//
// PreRender(A, ATotalVisList);
// PreRender(B, BTotalVisList);
// PrepForRender(A, ATotalVisList);
// PrepForRender(B, BTotalVisList);
// Render(A, AFarHalfVisList);
// Render(B, BTotalVisList);
// Render(A, ANearHalfVisList);
// See plPageTreeMgr, which handles all this.
void plDXPipeline::Render( plDrawable *d, const hsTArray& visList )
{
// Reset here, since we can push/pop renderTargets after BeginRender() but before
// this function, which necessitates this being called
if( fView.fXformResetFlags != 0 )
ITransformsToD3D();
plDrawableSpans *ds = plDrawableSpans::ConvertNoRef( d );
if( ds )
{
IRenderSpans( ds, visList );
}
}
//// BeginDrawable ////////////////////////////////////////////////////////////
// Obsolete, should be removed
hsBool plDXPipeline::BeginDrawable( plDrawable *d )
{
return true;
}
//// EndDrawable //////////////////////////////////////////////////////////////
// Obsolete, should be removed
hsBool plDXPipeline::EndDrawable( plDrawable *d )
{
return true;
}
// IMakeLightLists ///////////////////////////////////////////////////////////
// Look through all the current lights, and fill out two lists.
// Only active lights (not disabled, not exactly black, and not
// ignored because of visibility regions by plVisMgr) will
// be considered.
// The first list is lights that will affect the avatar and similar
// indeterminately mobile (physical) objects - fLights.fCharLights.
// The second list is lights that aren't restricted by light include
// lists.
// These two abbreviated lists will be further refined for each object
// and avatar to find the strongest 8 lights which affect that object.
// A light with an include list, or LightGroup Component) has
// been explicitly told which objects it affects, so they don't
// need to be in the search lists.
// These lists are only constructed once per render, but searched
// multiple times
void plDXPipeline::IMakeLightLists(plVisMgr* visMgr)
{
plProfile_BeginTiming(FindSceneLights);
fLights.fCharLights.SetCount(0);
fLights.fVisLights.SetCount(0);
if( visMgr )
{
const hsBitVector& visSet = visMgr->GetVisSet();
const hsBitVector& visNot = visMgr->GetVisNot();
plLightInfo* light;
for( light = fLights.fActiveList; light != nil; light = light->GetNext() )
{
plProfile_IncCount(LightActive, 1);
if( !light->IsIdle() && !light->InVisNot(visNot) && light->InVisSet(visSet) )
{
plProfile_IncCount(LightOn, 1);
if( light->GetProperty(plLightInfo::kLPHasIncludes) )
{
if( light->GetProperty(plLightInfo::kLPIncludesChars) )
fLights.fCharLights.Append(light);
}
else
{
fLights.fVisLights.Append(light);
fLights.fCharLights.Append(light);
}
}
}
}
else
{
plLightInfo* light;
for( light = fLights.fActiveList; light != nil; light = light->GetNext() )
{
plProfile_IncCount(LightActive, 1);
if( !light->IsIdle() )
{
plProfile_IncCount(LightOn, 1);
if( light->GetProperty(plLightInfo::kLPHasIncludes) )
{
if( light->GetProperty(plLightInfo::kLPIncludesChars) )
fLights.fCharLights.Append(light);
}
else
{
fLights.fVisLights.Append(light);
fLights.fCharLights.Append(light);
}
}
}
}
plProfile_IncCount(LightVis, fLights.fVisLights.GetCount());
plProfile_IncCount(LightChar, fLights.fCharLights.GetCount());
plProfile_EndTiming(FindSceneLights);
}
// BeginVisMgr /////////////////////////////////////////////////////////
// Marks the beginning of a render with the given visibility manager.
// In particular, we cache which lights the visMgr believes to be
// currently active
void plDXPipeline::BeginVisMgr(plVisMgr* visMgr)
{
IMakeLightLists(visMgr);
}
// EndVisMgr ///////////////////////////////////////////////////////////
// Marks the end of a render with the given visibility manager.
void plDXPipeline::EndVisMgr(plVisMgr* visMgr)
{
fLights.fCharLights.SetCount(0);
fLights.fVisLights.SetCount(0);
}
// ICheckLighting ///////////////////////////////////////////////////////
// For every span in the list of visible span indices, find the list of
// lights that currently affect the span with an estimate of the strength
// of how much the light affects it. The strongest 8 lights will be used
// to illuminate that span.
// For projective lights, there is no limit on how many are supported, other
// than performance (usually fill rate limited).
// The permaLights and permaProjs are lights explicitly selected for a span
// via the LightGroup component.
// For static objects and static lights, the lighting was done offline and stored
// in the vertex diffuse color.
// So here we're only looking for:
// A) moving objects, which can't be staticly lit, so are affected by all runtime lights.
// B) moving lights, which can't staticly light, so affect all objects
// C) specular objects + specular lights, since specular can't be precomputed.
void plDXPipeline::ICheckLighting(plDrawableSpans* drawable, hsTArray& visList, plVisMgr* visMgr)
{
if( fView.fRenderState & kRenderNoLights )
return;
if( !visList.GetCount() )
return;
plLightInfo *light;
int j;
// First add in the explicit lights (from LightGroups).
// Refresh the lights as they are added (actually a lazy eval).
plProfile_BeginTiming(FindLights);
plProfile_BeginTiming(FindPerm);
for( j = 0; j < visList.GetCount(); j++ )
{
drawable->GetSpan( visList[ j ] )->ClearLights();
if (IsDebugFlagSet(plPipeDbg::kFlagNoRuntimeLights))
continue;
// Set the bits for the lights added from the permanent lists (during ClearLights()).
int k;
const hsTArray& permaLights = drawable->GetSpan(visList[j])->fPermaLights;
for( k = 0; k < permaLights.GetCount(); k++ )
{
permaLights[k]->Refresh();
if( permaLights[k]->GetProperty(plLightInfo::kLPShadowLightGroup) && !permaLights[k]->IsIdle() )
{
// If it casts a shadow, attach the shadow now.
ISetShadowFromGroup(drawable, drawable->GetSpan(visList[j]), permaLights[k]);
}
}
const hsTArray& permaProjs = drawable->GetSpan(visList[j])->fPermaProjs;
for( k = 0; k < permaProjs.GetCount(); k++ )
{
permaProjs[k]->Refresh();
if( permaProjs[k]->GetProperty(plLightInfo::kLPShadowLightGroup) && !permaProjs[k]->IsIdle() )
{
// If it casts a shadow, attach the shadow now.
ISetShadowFromGroup(drawable, drawable->GetSpan(visList[j]), permaProjs[k]);
}
}
}
plProfile_EndTiming(FindPerm);
if (IsDebugFlagSet(plPipeDbg::kFlagNoRuntimeLights))
{
plProfile_EndTiming( FindLights );
return;
}
// Sort the incoming spans as either
// A) moving - affected by all lights - moveList
// B) specular - affected by specular lights - specList
// C) visible - affected by moving lights - visList
static hsTArray tmpList;
static hsTArray moveList;
static hsTArray specList;
moveList.SetCount(0);
specList.SetCount(0);
plProfile_BeginTiming(FindSpan);
int k;
for( k = 0; k < visList.GetCount(); k++ )
{
const plSpan* span = drawable->GetSpan(visList[k]);
if( span->fProps & plSpan::kPropRunTimeLight )
{
moveList.Append(visList[k]);
specList.Append(visList[k]);
}
else if( span->fProps & plSpan::kPropMatHasSpecular )
specList.Append(visList[k]);
}
plProfile_EndTiming(FindSpan);
// Make a list of lights that can potentially affect spans in this drawable
// based on the drawables bounds and properties.
// If the drawable has the PropCharacter property, it is affected by lights
// in fLights.fCharLights, else only by the smaller list of fLights.fVisLights.
plProfile_BeginTiming(FindActiveLights);
static hsTArray lightList;
lightList.SetCount(0);
const hsBool isChar = 0 != drawable->GetNativeProperty(plDrawable::kPropCharacter);
if( isChar )
{
int i;
for( i = 0; i < fLights.fCharLights.GetCount(); i++ )
{
if( fLights.fCharLights[i]->AffectsBound(drawable->GetSpaceTree()->GetWorldBounds()) )
lightList.Append(fLights.fCharLights[i]);
}
}
else
{
int i;
for( i = 0; i < fLights.fVisLights.GetCount(); i++ )
{
if( fLights.fVisLights[i]->AffectsBound(drawable->GetSpaceTree()->GetWorldBounds()) )
lightList.Append(fLights.fVisLights[i]);
}
}
plProfile_EndTiming(FindActiveLights);
// Loop over the lights and for each light, extract a list of the spans that light
// affects. Append the light to each spans list with a scalar strength of how strongly
// the light affects it. Since the strength is based on the object's center position,
// it's not very accurate, but good enough for selecting which lights to use.
plProfile_BeginTiming(ApplyActiveLights);
for( k = 0; k < lightList.GetCount(); k++ )
{
light = lightList[k];
tmpList.SetCount(0);
if( light->GetProperty(plLightInfo::kLPMovable) )
{
plProfile_BeginTiming(ApplyMoving);
const hsTArray& litList = light->GetAffected(drawable->GetSpaceTree(),
visList,
tmpList,
drawable->GetNativeProperty(plDrawable::kPropCharacter) );
// PUT OVERRIDE FOR KILLING PROJECTORS HERE!!!!
hsBool proj = nil != light->GetProjection();
if( fView.fRenderState & kRenderNoProjection )
proj = false;
for( j = 0; j < litList.GetCount(); j++ )
{
// Use the light IF light is enabled and
// 1) light is movable
// 2) span is movable, or
// 3) Both the light and the span have specular
const plSpan* span = drawable->GetSpan(litList[j]);
hsBool currProj = proj;
if( span->fProps & plSpan::kPropProjAsVtx )
currProj = false;
if( !(currProj && (span->fProps & plSpan::kPropSkipProjection)) )
{
plDXLightRef *ref = (plDXLightRef *)light->GetDeviceRef();
hsScalar strength, scale;
light->GetStrengthAndScale(span->fWorldBounds, strength, scale);
// We can't pitch a light because it's "strength" is zero, because the strength is based
// on the center of the span and isn't conservative enough. We can pitch based on the
// scale though, since a light scaled down to zero will have no effect no where.
if( scale > 0 )
{
plProfile_Inc(FindLightsFound);
span->AddLight(light, strength, scale, currProj);
}
}
}
plProfile_EndTiming(ApplyMoving);
}
else if( light->GetProperty(plLightInfo::kLPHasSpecular) )
{
if( !specList.GetCount() )
continue;
plProfile_BeginTiming(ApplyToSpec);
const hsTArray& litList = light->GetAffected(drawable->GetSpaceTree(),
specList,
tmpList,
drawable->GetNativeProperty(plDrawable::kPropCharacter) );
// PUT OVERRIDE FOR KILLING PROJECTORS HERE!!!!
hsBool proj = nil != light->GetProjection();
if( fView.fRenderState & kRenderNoProjection )
proj = false;
for( j = 0; j < litList.GetCount(); j++ )
{
// Use the light IF light is enabled and
// 1) light is movable
// 2) span is movable, or
// 3) Both the light and the span have specular
const plSpan* span = drawable->GetSpan(litList[j]);
hsBool currProj = proj;
if( span->fProps & plSpan::kPropProjAsVtx )
currProj = false;
if( !(currProj && (span->fProps & plSpan::kPropSkipProjection)) )
{
plDXLightRef *ref = (plDXLightRef *)light->GetDeviceRef();
hsScalar strength, scale;
light->GetStrengthAndScale(span->fWorldBounds, strength, scale);
// We can't pitch a light because it's "strength" is zero, because the strength is based
// on the center of the span and isn't conservative enough. We can pitch based on the
// scale though, since a light scaled down to zero will have no effect no where.
if( scale > 0 )
{
plProfile_Inc(FindLightsFound);
span->AddLight(light, strength, scale, currProj);
}
}
}
plProfile_EndTiming(ApplyToSpec);
}
else
{
if( !moveList.GetCount() )
continue;
plProfile_BeginTiming(ApplyToMoving);
const hsTArray& litList = light->GetAffected(drawable->GetSpaceTree(),
moveList,
tmpList,
drawable->GetNativeProperty(plDrawable::kPropCharacter) );
// PUT OVERRIDE FOR KILLING PROJECTORS HERE!!!!
hsBool proj = nil != light->GetProjection();
if( fView.fRenderState & kRenderNoProjection )
proj = false;
for( j = 0; j < litList.GetCount(); j++ )
{
// Use the light IF light is enabled and
// 1) light is movable
// 2) span is movable, or
// 3) Both the light and the span have specular
const plSpan* span = drawable->GetSpan(litList[j]);
hsBool currProj = proj;
if( span->fProps & plSpan::kPropProjAsVtx )
currProj = false;
if( !(currProj && (span->fProps & plSpan::kPropSkipProjection)) )
{
plDXLightRef *ref = (plDXLightRef *)light->GetDeviceRef();
hsScalar strength, scale;
light->GetStrengthAndScale(span->fWorldBounds, strength, scale);
// We can't pitch a light because it's "strength" is zero, because the strength is based
// on the center of the span and isn't conservative enough. We can pitch based on the
// scale though, since a light scaled down to zero will have no effect no where.
if( scale > 0 )
{
plProfile_Inc(FindLightsFound);
span->AddLight(light, strength, scale, currProj);
}
}
}
plProfile_EndTiming(ApplyToMoving);
}
}
plProfile_EndTiming(ApplyActiveLights);
IAttachShadowsToReceivers(drawable, visList);
plProfile_EndTiming(FindLights);
}
// HarvestVisible ////////////////////////////////////////////////////////////////////////
// Contruct a list of the indices of leaf nodes in the given spacetree which are currently
// visible according to the current cull tree. The cull tree factors in camera frustum and
// occluder polys, but _not_ the current visibility regions, plVisMgr.
// This is the normal path for visibility culling at a gross level (e.g. which SceneNodes
// to bother with, which drawables within the SceneNode). For finer objects, like the spans
// themselves, the culling is done via IGetVisibleSpans, which also takes the plVisMgr into
// account.
hsBool plDXPipeline::HarvestVisible(plSpaceTree* space, hsTArray& visList)
{
if( !space )
return false;
space->SetViewPos(GetViewPositionWorld());
space->Refresh();
if( fView.fCullTreeDirty )
IRefreshCullTree();
plProfile_BeginTiming(Harvest);
fView.fCullTree.Harvest(space, visList);
plProfile_EndTiming(Harvest);
return visList.GetCount() != 0;
}
//// IGetVisibleSpans /////////////////////////////////////////////////////
// Given a drawable, returns a list of visible span indices. Disabled spans will not
// show up in the list, behaving as if they were culled.
// See plCullTree (in plPipeline) and plSpaceTree (in plDrawable) and plVisMgr (in plScene).
void plDXPipeline::IGetVisibleSpans( plDrawableSpans* drawable, hsTArray& visList, plVisMgr* visMgr )
{
static hsTArray tmpVis;
tmpVis.SetCount(0);
visList.SetCount(0);
drawable->GetSpaceTree()->SetViewPos(GetViewPositionWorld());
drawable->GetSpaceTree()->Refresh();
if( fView.fCullTreeDirty )
IRefreshCullTree();
const hsScalar viewDist = GetViewDirWorld().InnerProduct(GetViewPositionWorld());
const hsTArray &spans = drawable->GetSpanArray();
plProfile_BeginTiming(Harvest);
if( visMgr )
{
drawable->SetVisSet(visMgr);
fView.fCullTree.Harvest(drawable->GetSpaceTree(), tmpVis);
drawable->SetVisSet(nil);
}
else
{
fView.fCullTree.Harvest(drawable->GetSpaceTree(), tmpVis);
}
// This is a big waste of time, As a desparate "optimization" pass, the artists
// insist on going through and marking objects to fade or pop out of rendering
// past a certain distance. This breaks the batching and requires more CPU to
// check the objects by distance. Since there is no pattern to the distance at
// which objects will be told not to draw, there's no way to make this hierarchical,
// which is what it would take to make it a performance win. So they succeed in
// reducing the poly count, but generally the frame rate goes _down_ as well.
// Unfortunately, this technique actually does work in a few key areas, so
// I haven't been able to purge it.
if (IsDebugFlagSet(plPipeDbg::kFlagSkipVisDist))
{
int i;
for( i = 0; i < tmpVis.GetCount(); i++ )
{
if( spans[tmpVis[i]]->fSubType & GetSubDrawableTypeMask() )
{
visList.Append(tmpVis[i]);
}
}
}
else
{
int i;
for( i = 0; i < tmpVis.GetCount(); i++ )
{
if( spans[tmpVis[i]]->fSubType & GetSubDrawableTypeMask() )
{
// We'll check here for spans we can discard because they've completely distance faded out.
// Note this is based on view direction distance (because the fade is), rather than the
// preferrable distance to camera we sort by.
hsScalar minDist, maxDist;
if( drawable->GetSubVisDists(tmpVis[i], minDist, maxDist) )
{
const hsBounds3Ext& bnd = drawable->GetSpaceTree()->GetNode(tmpVis[i]).fWorldBounds;
hsPoint2 depth;
bnd.TestPlane(GetViewDirWorld(), depth);
if( (0 < minDist + viewDist - depth.fY)
||(0 > maxDist + viewDist - depth.fX) )
continue;
}
visList.Append(tmpVis[i]);
}
}
}
plProfile_EndTiming(Harvest);
}
// ISetupTransforms //////////////////////////////////////////////////////////////////////////////////
// Set the D3D world transform according to the input span.
// Engine currently supports HW vertex blending with 2 matrices,
// else a single Local To World.
// If software skinning is being used, the WORLD matrix will be identity,
// because the full local to world is folded into the skinned vertices.
void plDXPipeline::ISetupTransforms(plDrawableSpans* drawable, const plSpan& span, hsMatrix44& lastL2W)
{
if( span.fNumMatrices )
{
if( span.fNumMatrices <= 2 )
{
ISetLocalToWorld( span.fLocalToWorld, span.fWorldToLocal );
lastL2W = span.fLocalToWorld;
}
else
{
lastL2W.Reset();
ISetLocalToWorld( lastL2W, lastL2W );
fView.fLocalToWorldLeftHanded = span.fLocalToWorld.GetParity();
}
}
else
if( lastL2W != span.fLocalToWorld )
{
ISetLocalToWorld( span.fLocalToWorld, span.fWorldToLocal );
lastL2W = span.fLocalToWorld;
}
else
{
fView.fLocalToWorldLeftHanded = lastL2W.GetParity();
}
if( span.fNumMatrices == 2 )
{
D3DXMATRIX mat;
IMatrix44ToD3DMatrix(mat, drawable->GetPaletteMatrix(span.fBaseMatrix+1));
fD3DDevice->SetTransform(D3DTS_WORLDMATRIX(1), &mat);
fD3DDevice->SetRenderState(D3DRS_VERTEXBLEND, D3DVBF_1WEIGHTS);
}
else
{
fD3DDevice->SetRenderState(D3DRS_VERTEXBLEND, D3DVBF_DISABLE);
}
}
// IRefreshDynVertices ////////////////////////////////////////////////////////////////////////
// All dynamic vertices share a single dynamic vertex buffer. They are cycled through
// that buffer using the NOOVERWRITE/DISCARD paradigm. Since the vertices sharing that
// buffer may be of different formats, care is taken to always start a group of vertices
// a the next available position in the buffer aligned with that vertex size.
// Only software skinned objects, dynamic decals, and particle systems currently use the
// dynamic vertex buffer.
hsBool plDXPipeline::IRefreshDynVertices(plGBufferGroup* group, plDXVertexBufferRef* vRef)
{
// First, pad out our next slot to be on a vertex boundary (for this vertex size).
fNextDynVtx = ((fNextDynVtx + vRef->fVertexSize-1) / vRef->fVertexSize) * vRef->fVertexSize;
Int32 size = (group->GetVertBufferEnd(vRef->fIndex) - group->GetVertBufferStart(vRef->fIndex)) * vRef->fVertexSize;
if( !size )
return false; // No error, just nothing to do.
hsAssert(size > 0, "Bad start and end counts in a group");
// If we DON'T have room in our dynamic buffer
if( fNextDynVtx + size > fDynVtxSize )
{
plProfile_IncCount(DynVBuffs, 1);
// Advance the timestamp, because we're about to reuse the buffer
fVtxRefTime++;
// Reset next available spot index to zero
fNextDynVtx = 0;
}
// Point our ref at the next available spot
Int32 newStart = fNextDynVtx / vRef->fVertexSize;
vRef->fOffset = newStart - group->GetVertBufferStart(vRef->fIndex);
// Lock the buffer
// If index is zero, lock with discard, else with overwrite.
DWORD lockFlag = fNextDynVtx ? D3DLOCK_NOOVERWRITE : D3DLOCK_DISCARD;
UInt8* destPtr = nil;
if( FAILED( fDynVtxBuff->Lock( fNextDynVtx,
size,
(void **)&destPtr,
lockFlag) ) )
{
hsAssert( false, "Cannot lock vertex buffer for writing" );
return true;
}
UInt8* vData;
if( vRef->fData )
{
vData = vRef->fData;
}
else
{
vData = group->GetVertBufferData(vRef->fIndex) + group->GetVertBufferStart(vRef->fIndex) * vRef->fVertexSize;
}
memcpy(destPtr, vData, size);
// Unlock the buffer
fDynVtxBuff->Unlock();
// Advance next available spot index
fNextDynVtx += size;
// Set the timestamp
vRef->fRefTime = fVtxRefTime;
vRef->SetDirty(false);
if( !vRef->fD3DBuffer )
{
vRef->fD3DBuffer = fDynVtxBuff;
fDynVtxBuff->AddRef();
}
hsAssert(vRef->fD3DBuffer == fDynVtxBuff, "Holding on to an old dynamic buffer?");
// vRef->SetRebuiltSinceUsed(true);
return false;
}
// ICheckAuxBuffers ///////////////////////////////////////////////////////////////////////
// The AuxBuffers are associated with drawables for things to be drawn right after that
// drawable's contents. In particular, see the plDynaDecal, which includes things like
// water ripples, bullet hits, and footprints.
// This function just makes sure they are ready to be rendered, called right before
// the rendering.
hsBool plDXPipeline::ICheckAuxBuffers(const plAuxSpan* span)
{
plGBufferGroup* group = span->fGroup;
plDXVertexBufferRef* vRef = (plDXVertexBufferRef*)group->GetVertexBufferRef(span->fVBufferIdx);
if( !vRef )
return true;
plDXIndexBufferRef* iRef = (plDXIndexBufferRef*)group->GetIndexBufferRef(span->fIBufferIdx);
if( !iRef )
return true;
// If our vertex buffer ref is volatile and the timestamp is off
// then it needs to be refilled
if( vRef->Expired(fVtxRefTime) )
{
IRefreshDynVertices(group, vRef);
}
if( vRef->fOffset != iRef->fOffset )
{
iRef->fOffset = vRef->fOffset;
iRef->SetRebuiltSinceUsed(true);
}
return false; // No error
}
// ICheckDynBuffers ////////////////////////////////////////////////////////////////////////////////////////
// Make sure the buffers underlying this span are ready to be rendered. Meaning that the underlying
// D3D buffers are in sync with the plasma buffers.
hsBool plDXPipeline::ICheckDynBuffers(plDrawableSpans* drawable, plGBufferGroup* group, const plSpan* spanBase)
{
if( !(spanBase->fTypeMask & plSpan::kVertexSpan) )
return false;
// If we arent' an trilist, we're toast.
if( !(spanBase->fTypeMask & plSpan::kIcicleSpan) )
return false;
plIcicle* span = (plIcicle*)spanBase;
plDXVertexBufferRef* vRef = (plDXVertexBufferRef*)group->GetVertexBufferRef(span->fVBufferIdx);
if( !vRef )
return true;
plDXIndexBufferRef* iRef = (plDXIndexBufferRef*)group->GetIndexBufferRef(span->fIBufferIdx);
if( !iRef )
return true;
// If our vertex buffer ref is volatile and the timestamp is off
// then it needs to be refilled
if( vRef->Expired(fVtxRefTime) )
{
IRefreshDynVertices(group, vRef);
}
if( vRef->fOffset != iRef->fOffset )
{
iRef->fOffset = vRef->fOffset;
iRef->SetRebuiltSinceUsed(true);
}
if( iRef->IsDirty() )
{
IFillIndexBufferRef(iRef, group, span->fIBufferIdx);
iRef->SetRebuiltSinceUsed(true);
}
return false; // No error
}
//// IRenderSpans /////////////////////////////////////////////////////////////
// Renders an array of spans obtained from a plDrawableSpans object
// The incoming visList gives the indices of the spans which are visible and should
// be drawn now, and gives them in sorted order.
void plDXPipeline::IRenderSpans( plDrawableSpans *drawable, const hsTArray& visList )
{
plProfile_BeginTiming(RenderSpan);
hsMatrix44 lastL2W;
UInt32 i, j;
bool drewPatch = false;
hsGMaterial *material;
const hsTArray& spans = drawable->GetSpanArray();
plProfile_IncCount(EmptyList, !visList.GetCount());
/// Set this (*before* we do our TestVisibleWorld stuff...)
lastL2W.Reset();
ISetLocalToWorld( lastL2W, lastL2W ); // This is necessary; otherwise, we have to test for
// the first transform set, since this'll be identity
// but the actual device transform won't be (unless
// we do this)
/// Loop through our spans, combining them when possible
for( i = 0; i < visList.GetCount(); )
{
material = GetOverrideMaterial() ? GetOverrideMaterial() : drawable->GetMaterial( spans[ visList[ i ] ]->fMaterialIdx );
/// It's an icicle--do our icicle merge loop
plIcicle tempIce(*( (plIcicle *)spans[ visList[ i ] ] ));
// Start at i + 1, look for as many spans as we can add to tempIce
for( j = i + 1; j < visList.GetCount(); j++ )
{
if( GetOverrideMaterial() )
tempIce.fMaterialIdx = spans[visList[j]]->fMaterialIdx;
plProfile_BeginTiming(MergeCheck);
if( !spans[ visList[ j ] ]->CanMergeInto( &tempIce ) )
{
plProfile_EndTiming(MergeCheck);
break;
}
plProfile_EndTiming(MergeCheck);
plProfile_Inc(SpanMerge);
plProfile_BeginTiming(MergeSpan);
spans[ visList[ j ] ]->MergeInto( &tempIce );
plProfile_EndTiming(MergeSpan);
}
if( material != nil )
{
// What do we change?
plProfile_BeginTiming(SpanTransforms);
ISetupTransforms(drawable, tempIce, lastL2W);
plProfile_EndTiming(SpanTransforms);
// Turn on this spans lights and turn off the rest.
IEnableLights( &tempIce );
// Check that the underlying buffers are ready to go.
plProfile_BeginTiming(CheckDyn);
ICheckDynBuffers(drawable, drawable->GetBufferGroup(tempIce.fGroupIdx), &tempIce);
plProfile_EndTiming(CheckDyn);
plProfile_BeginTiming(CheckStat);
CheckVertexBufferRef(drawable->GetBufferGroup(tempIce.fGroupIdx), tempIce.fVBufferIdx);
CheckIndexBufferRef(drawable->GetBufferGroup(tempIce.fGroupIdx), tempIce.fIBufferIdx);
plProfile_EndTiming(CheckStat);
// Draw this span now
IRenderBufferSpan( tempIce,
drawable->GetVertexRef( tempIce.fGroupIdx, tempIce.fVBufferIdx ),
drawable->GetIndexRef( tempIce.fGroupIdx, tempIce.fIBufferIdx ),
material,
tempIce.fVStartIdx, tempIce.fVLength, // These are used as our accumulated range
tempIce.fIPackedIdx, tempIce.fILength );
}
// Restart our search...
i = j;
}
plProfile_EndTiming(RenderSpan);
/// All done!
}
//// IAddBoundsSpan ///////////////////////////////////////////////////////////
// Creates a new span for the given drawable to represent the specified
// world bounds.
// Debugging only.
void plDXPipeline::IAddBoundsSpan( plDrawableSpans *ice, const hsBounds3Ext *bounds, UInt32 bndColor )
{
#if MCN_BOUNDS_SPANS
static hsTArray spanArray;
static hsMatrix44 identMatrix;
static hsPoint3 c[ 8 ], n[ 8 ];
static int nPts[ 8 ][ 3 ] = { { -1, -1, -1 }, { 1, -1, -1 }, { -1, 1, -1 }, { 1, 1, -1 },
{ -1, -1, 1 }, { 1, -1, 1 }, { -1, 1, 1 }, { 1, 1, 1 } };
int i;
plGeometrySpan *newSpan;
if( spanArray.GetCount() == 0 )
{
spanArray.Reset();
spanArray.Append( TRACKED_NEW plGeometrySpan() );
identMatrix.Reset();
// Make normals
for( i = 0; i < 8; i++ )
{
n[ i ].fX = (float)nPts[ i ][ 0 ];
n[ i ].fY = (float)nPts[ i ][ 1 ];
n[ i ].fZ = (float)nPts[ i ][ 2 ];
}
}
else
spanArray[ 0 ] = TRACKED_NEW plGeometrySpan();
newSpan = spanArray[ 0 ];
newSpan->BeginCreate( fBoundsMat, identMatrix, 0 );
// Make corners
c[1] = c[2] = c[4] = *bounds->GetCorner(&c[0]);
hsVector3 axes[3];
bounds->GetAxes(axes+0, axes+1, axes+2);
c[1] += axes[0];
c[2] += axes[1];
c[4] += axes[2];
c[3] = c[1];
c[3] += axes[1];
c[5] = c[1];
c[5] += axes[2];
c[6] = c[2];
c[6] += axes[2];
c[7] = c[6];
c[7] += axes[0];
for( i = 0; i < 8; i++ )
newSpan->AddVertex( &c[ i ], &n[ i ], bndColor );
newSpan->AddTriIndices( 0, 1, 2 );
newSpan->AddTriIndices( 2, 1, 3 );
newSpan->AddTriIndices( 6, 3, 7 );
newSpan->AddTriIndices( 7, 1, 5 );
newSpan->AddTriIndices( 5, 0, 4 );
newSpan->AddTriIndices( 4, 2, 6 );
newSpan->EndCreate();
fBSpansToDelete.Append( ice->AppendDISpans( spanArray ) );
#endif
}
//// IAddNormalsSpan //////////////////////////////////////////////////////////
// Creates a new span for the given drawable to represent the specified
// world bounds.
// Debugging only.
void plDXPipeline::IAddNormalsSpan( plDrawableSpans *ice, plIcicle *span, plDXVertexBufferRef *vRef, UInt32 bndColor )
{
#if MCN_BOUNDS_SPANS
static hsTArray spanArray;
static hsMatrix44 identMatrix;
static hsPoint3 point, off, blank;
hsVector3 b2;
UInt16 v1, v2, v3;
int i;
plGeometrySpan *newSpan;
if( spanArray.GetCount() == 0 )
{
spanArray.Reset();
spanArray.Append( TRACKED_NEW plGeometrySpan() );
identMatrix.Reset();
}
else
spanArray[ 0 ] = TRACKED_NEW plGeometrySpan();
newSpan = spanArray[ 0 ];
newSpan->BeginCreate( fBoundsMat, span->fLocalToWorld, 0 );
for( i = 0; i < span->fVLength; i++ )
{
point = vRef->fOwner->Position( span->fVBufferIdx, span->fCellIdx, span->fCellOffset + i );
b2 = vRef->fOwner->Normal( span->fVBufferIdx, span->fCellIdx, span->fCellOffset + i );
off.Set( point.fX + b2.fX, point.fY + b2.fY, point.fZ + b2.fZ );
v1 = newSpan->AddVertex( &point, &blank, bndColor );
v2 = newSpan->AddVertex( &off, &blank, bndColor );
v3 = newSpan->AddVertex( &point, &blank, bndColor );
newSpan->AddTriIndices( v1, v2, v3 );
}
newSpan->EndCreate();
fBSpansToDelete.Append( ice->AppendDISpans( spanArray ) );
#endif
}
//// BeginRender //////////////////////////////////////////////////////////////
// Specifies the beginning of the render frame.
// If this succeeds (returns false) it must be matched with a call to EndRender.
// Normally, the main client loop will wrap the entire scene render (including
// any offscreen rendering) in a BeginRender/EndRender pair. There is no need
// for further calls for sub-renders.
hsBool plDXPipeline::BeginRender()
{
// Do we have some restoration work ahead of us?
// Checks for Device Lost condition
if( IResetDevice() )
return true;
// We were lost, but now we're found! Spread the good word brother!
if( fDevWasLost )
{
/// Broadcast a message letting everyone know that we were recreated and that
/// all device-specific stuff needs to be recreated
// plDeviceRecreateMsg* clean = TRACKED_NEW plDeviceRecreateMsg();
// plgDispatch::MsgSend(clean);
fDevWasLost = false;
}
if (IsDebugFlagSet(plPipeDbg::kFlagReload))
{
IReleaseShaders();
fD3DDevice->EvictManagedResources();
fEvictTime = fTextUseTime;
fManagedSeen = 0;
SetDebugFlag(plPipeDbg::kFlagReload, false);
}
// offset transform
RefreshScreenMatrices();
// If this is the primary BeginRender, make sure we're really ready.
if( !fInSceneDepth++ )
{
// Workaround for NVidia memory manager bug. Search for "OSVERSIONINFO" to
// find notes on the bug. This is where we purge managed memory periodically.
plProfile_Set(ManSeen, fManagedSeen);
if( fManagedCutoff )
{
plConst(UInt32) kMinEvictTime(1800); // ~2 minutes @ 15FPS
if( (fManagedSeen > fManagedCutoff) && (fTexUsed + fVtxUsed < fManagedCutoff) && (fTextUseTime - fEvictTime > kMinEvictTime) )
{
fD3DDevice->EvictManagedResources();
fManagedSeen = 0;
fEvictTime = fTextUseTime;
plProfile_IncCount(ManEvict, 1);
}
}
// Superfluous setting of Z state.
fD3DDevice->SetRenderState( D3DRS_ZENABLE,
( fView.IsPerspective() && ( fSettings.fD3DCaps & kCapsWBuffer ) )
? D3DZB_USEW : D3DZB_TRUE );
/// If we have a renderTarget active, use its viewport
ISetViewport();
// Tell D3D we're ready to start rendering.
if( FAILED(fD3DDevice->BeginScene()) )
{
fDeviceLost = true;
}
// Reset all our buffer/image usage counters
fNextDynVtx = 0;
fVtxRefTime++;
fTexUsed = 0;
fVtxUsed = 0;
fTextUseTime++;
// Render any shadow maps that have been submitted for this frame.
IPreprocessShadows();
IPreprocessAvatarTextures();
}
fRenderCnt++;
// Would probably rather this be an input.
fTime = hsTimer::GetSysSeconds();
return false;
}
//// ISetViewport /////////////////////////////////////////////////////////////
// Translate our viewport into a D3D viewport
void plDXPipeline::ISetViewport()
{
D3DVIEWPORT9 vp = { GetViewTransform().GetViewPortLeft(),
GetViewTransform().GetViewPortTop(),
GetViewTransform().GetViewPortWidth(),
GetViewTransform().GetViewPortHeight(),
0.f, 1.f };
WEAK_ERROR_CHECK( fD3DDevice->SetViewport( &vp ) );
}
//// RenderScreenElements /////////////////////////////////////////////////////
// Renders all the screen elements, such as debug text and plates. Also puts
// up all the info about vertex buffers and such. Should be called right
// before EndRender(), but only on the main surface (not on renderTargets,
// for example).
void plDXPipeline::RenderScreenElements()
{
bool reset = false;
#if MCN_BOUNDS_SPANS
if( fBoundsSpans && fBSpansToDelete.GetCount() > 0 )
{
Draw( fBoundsSpans );
int i;
for( i = 0; i < fBSpansToDelete.GetCount(); i++ )
fBoundsSpans->RemoveDISpans( fBSpansToDelete[ i ] );
fBSpansToDelete.Reset();
}
#endif
if( fCullProxy )
Draw( fCullProxy );
#ifdef MF_ENABLE_HACKOFF
//WHITE
static plPlate* hackPlate = nil;
if( doHackPlate < hackOffscreens.GetCount() )
{
if( !hackPlate )
{
fPlateMgr->CreatePlate(&hackPlate, 0.5f, 0.5f, 1.0f, 1.0f);
hackPlate->CreateBlankMaterial(32, 32, false);
}
}
if( hackPlate )
{
if( doHackPlate < hackOffscreens.GetCount() )
{
hsGMaterial* hackMat = hackPlate->GetMaterial();
plLayer* lay = plLayer::ConvertNoRef(hackMat->GetLayer(0));
if( lay )
lay->SetTexture(hackOffscreens[doHackPlate]);
hackPlate->SetVisible( true );
}
else
{
hackPlate->SetVisible( false );
}
}
#endif // MF_ENABLE_HACKOFF
hsGMatState tHack = PushMaterialOverride(hsGMatState::kMisc, hsGMatState::kMiscWireFrame, false);
hsGMatState ambHack = PushMaterialOverride(hsGMatState::kShade, hsGMatState::kShadeWhite, true);
plProfile_BeginTiming(PlateMgr);
/// Plates
if( fPlateMgr )
{
fPlateMgr->DrawToDevice( this );
reset = true;
}
plProfile_EndTiming(PlateMgr);
PopMaterialOverride(ambHack, true);
PopMaterialOverride(tHack, false);
plProfile_BeginTiming(DebugText);
/// Debug text
if( fDebugTextMgr && plDebugText::Instance().IsEnabled() )
{
fDebugTextMgr->DrawToDevice( this );
reset = true;
}
plProfile_EndTiming(DebugText);
plProfile_BeginTiming(Reset);
if( reset )
{
// Reset these since the drawing might have trashed them
hsRefCnt_SafeUnRef( fSettings.fCurrVertexBuffRef );
hsRefCnt_SafeUnRef( fSettings.fCurrIndexBuffRef );
fSettings.fCurrVertexBuffRef = nil;
fSettings.fCurrIndexBuffRef = nil;
fView.fXformResetFlags = fView.kResetAll; // Text destroys view transforms
hsRefCnt_SafeUnRef( fLayerRef[ 0 ] );
fLayerRef[ 0 ] = nil; // Text destroys stage 0 texture
}
plProfile_EndTiming(Reset);
}
//// EndRender ////////////////////////////////////////////////////////////////
// Tell D3D we're through rendering for this frame, and flip the back buffer to front.
// Also includes a bit of making sure we're not holding onto anything that might
// get deleted before the next render.
hsBool plDXPipeline::EndRender()
{
#ifdef MF_ENABLE_HACKOFF
hackOffscreens.SetCount(0);
#endif // MF_ENABLE_HACKOFF
IBottomLayer();
hsBool retVal = false;
/// Actually end the scene
if( !--fInSceneDepth )
{
WEAK_ERROR_CHECK( fD3DDevice->EndScene() );
retVal = IFlipSurface();
IClearShadowSlaves();
}
// Do this last, after we've drawn everything
// Just letting go of things we're done with for the frame.
fForceMatHandle = true;
hsRefCnt_SafeUnRef( fCurrMaterial );
fCurrMaterial = nil;
int i;
for( i = 0; i < 8; i++ )
{
if( fLayerRef[i] )
{
hsRefCnt_SafeUnRef(fLayerRef[i]);
fLayerRef[i] = nil;
}
}
return retVal;
}
// SetGamma ////////////////////////////////////////////////////////////
// Create and set a gamma table based on the input exponent values for
// R, G, and B. Can also set explicit table using the other SetGamma().
hsBool plDXPipeline::SetGamma(hsScalar eR, hsScalar eG, hsScalar eB)
{
if( fSettings.fNoGammaCorrect )
return false;
D3DGAMMARAMP ramp;
ramp.red[0] = ramp.green[0] = ramp.blue[0] = 0L;
plConst(hsScalar) kMinE(0.1f);
if( eR > kMinE )
eR = 1.f / eR;
else
eR = 1.f / kMinE;
if( eG > kMinE )
eG = 1.f / eG;
else
eG = 1.f / kMinE;
if( eB > kMinE )
eB = 1.f / eB;
else
eB = 1.f / kMinE;
int i;
for( i = 1; i < 256; i++ )
{
hsScalar orig = hsScalar(i) / 255.f;
hsScalar gamm;
gamm = pow(orig, eR);
gamm *= hsScalar(UInt16(-1));
ramp.red[i] = UInt16(gamm);
gamm = pow(orig, eG);
gamm *= hsScalar(UInt16(-1));
ramp.green[i] = UInt16(gamm);
gamm = pow(orig, eB);
gamm *= hsScalar(UInt16(-1));
ramp.blue[i] = UInt16(gamm);
}
fD3DDevice->SetGammaRamp(0, D3DSGR_NO_CALIBRATION, &ramp);
return true;
}
// SetGamma
// Copy the input gamma tables and pass them to the hardware.
hsBool plDXPipeline::SetGamma(const UInt16* const tabR, const UInt16* const tabG, const UInt16* const tabB)
{
if( fSettings.fNoGammaCorrect )
return false;
D3DGAMMARAMP ramp;
memcpy(ramp.red, tabR, 256 * sizeof(WORD));
memcpy(ramp.green, tabG, 256 * sizeof(WORD));
memcpy(ramp.blue, tabB, 256 * sizeof(WORD));
fD3DDevice->SetGammaRamp(0, D3DSGR_NO_CALIBRATION, &ramp);
return true;
}
//// IFlipSurface /////////////////////////////////////////////////////////////
// Initiate moving the back buffer contents to the front buffer. Will detect
// and set the device lost condition when it occurs.
hsBool plDXPipeline::IFlipSurface()
{
/// Works now for both fullscreen and windowed modes
HRESULT hr = D3D_OK;
if( fSettings.fCurrRenderTarget == nil )
{
hr = fD3DDevice->Present( nil, nil, fSettings.fHWnd, nil );
}
if( FAILED(hr) )
{
fDeviceLost = true;
}
return fDeviceLost;
}
// ExtractMipMap
// This code works and is fairly fast for creating a new mipmap
// as a copy of the data in an offscreen render target. It's not
// currently used, because of driver bugs found in rendering to
// offscreen render targets.
plMipmap* plDXPipeline::ExtractMipMap(plRenderTarget* targ)
{
if( plCubicRenderTarget::ConvertNoRef(targ) )
return nil;
if( targ->GetPixelSize() != 32 )
{
hsAssert(false, "Only RGBA8888 currently implemented");
return nil;
}
plDXRenderTargetRef* ref = (plDXRenderTargetRef*)targ->GetDeviceRef();
if( !ref )
return nil;
IDirect3DSurface9* surf = ref->GetColorSurface();
if( !surf )
return nil;
D3DLOCKED_RECT rect;
if( FAILED( surf->LockRect(&rect, nil, D3DLOCK_READONLY) ) )
{
return nil;
}
const int width = targ->GetWidth();
const int height = targ->GetHeight();
plMipmap* mipMap = TRACKED_NEW plMipmap(width, height, plMipmap::kARGB32Config, 1);
UInt8* ptr = (UInt8*)(rect.pBits);
const int pitch = rect.Pitch;
const UInt32 blackOpaque = 0xff000000;
int y;
for( y = 0; y < height; y++ )
{
UInt32* destPtr = mipMap->GetAddr32(0, y);
UInt32* srcPtr = (UInt32*)ptr;
int x;
for( x = 0; x < width; x++ )
{
destPtr[x] = srcPtr[x] | blackOpaque;
}
ptr += pitch;
}
surf->UnlockRect();
return mipMap;
}
//// CaptureScreen ////////////////////////////////////////////////////////////
// Copy the current contents of the front buffer to the destination mipmap, with optional
// rescaling. Note that the mipmap function which does this rescaling is of low quality
// (pyramid filter even though it claims a box filter) and low performance (slow).
// If it mattered, it would take about an hour to have a higher performance, higher quality,
// more robust rescale function.
// This function is fairly straightforward, the complexity only comes from making sure
// all pixels in dest get written to, even though the client window may be partially
// offscreen. If the client window is partially offscreen, there will be no values
// for the "offscreen pixels" to copy to dest, so opaque black is used.
hsBool plDXPipeline::CaptureScreen( plMipmap *dest, bool flipVertical, UInt16 desiredWidth, UInt16 desiredHeight )
{
UInt32 y, *destPtr, *srcPtr, width, height, bigWidth, bigHeight;
IDirect3DSurface9 *surface;
D3DLOCKED_RECT rect;
RECT rToLock;
width = GetViewTransform().GetViewPortWidth();
height = GetViewTransform().GetViewPortHeight();
int left = 0;
int right = width;
int top = 0;
int bottom = height;
if( fSettings.fFullscreen )
{
if (FAILED(fD3DDevice->CreateOffscreenPlainSurface(width, height, D3DFMT_A8R8G8B8, D3DPOOL_SCRATCH, &surface, NULL)))
return false;
rToLock.left = GetViewTransform().GetViewPortLeft();
rToLock.top = GetViewTransform().GetViewPortTop();
rToLock.right = GetViewTransform().GetViewPortRight();
rToLock.bottom = GetViewTransform().GetViewPortBottom();
}
else
{
bigWidth = GetSystemMetrics( SM_CXSCREEN );
bigHeight = GetSystemMetrics( SM_CYSCREEN );
if (FAILED(fD3DDevice->CreateOffscreenPlainSurface(bigWidth, bigHeight, D3DFMT_A8R8G8B8, D3DPOOL_SCRATCH, &surface, NULL)))
return false;
GetClientRect( fSettings.fHWnd, &rToLock );
MapWindowPoints( fSettings.fHWnd, nil, (POINT *)&rToLock, 2 );
if( rToLock.right > bigWidth )
{
right -= (rToLock.right - bigWidth);
rToLock.right = bigWidth;
}
if( rToLock.bottom > bigHeight )
{
bottom -= (rToLock.bottom - bigHeight);
rToLock.bottom = bigHeight;
}
if( rToLock.top < 0 )
{
top -= rToLock.top;
rToLock.top = 0;
}
if( rToLock.left < 0 )
{
left -= rToLock.left;
rToLock.left = 0;
}
}
UINT swapChain = 0;
if( FAILED( fD3DDevice->GetFrontBufferData(swapChain, surface) ) )
{
ReleaseObject( surface );
return false;
}
if( FAILED( surface->LockRect( &rect, &rToLock, D3DLOCK_READONLY ) ) )
{
ReleaseObject( surface );
return false;
}
if( dest->GetWidth() != width || dest->GetHeight() != height ||
dest->GetPixelSize() != 32 )
{
dest->Reset();
dest->Create( width, height, plMipmap::kARGB32Config, 1 );
}
const UInt32 blackOpaque = 0xff000000;
/// Copy over
for( y = 0; y < top; y++ )
{
if (flipVertical)
destPtr = dest->GetAddr32( 0, height - 1 - y );
else
destPtr = dest->GetAddr32( 0, y );
int x;
for( x = 0; x < width; x++ )
{
*destPtr++ = blackOpaque;
}
}
for( y = top; y < bottom; y++ )
{
srcPtr = (UInt32 *)( (UInt8 *)rect.pBits + rect.Pitch * y );
if (flipVertical)
destPtr = dest->GetAddr32( 0, height - 1 - y );
else
destPtr = dest->GetAddr32( 0, y );
int x;
for( x = 0; x < left; x++ )
*destPtr++ = blackOpaque;
memcpy( destPtr, srcPtr, (right - left) * sizeof( UInt32 ) );
destPtr += (right - left);
for( x = right; x < width; x++ )
*destPtr++ = blackOpaque;
}
for( y = bottom; y < height; y++ )
{
if (flipVertical)
destPtr = dest->GetAddr32( 0, height - 1 - y );
else
destPtr = dest->GetAddr32( 0, y );
int x;
for( x = 0; x < width; x++ )
{
*destPtr++ = blackOpaque;
}
}
surface->UnlockRect();
ReleaseObject( surface );
if( desiredWidth != 0 && desiredHeight != nil )
{
// Rescale to the right size
dest->ResizeNicely( desiredWidth, desiredHeight, plMipmap::kDefaultFilter );
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
//// Render Targets ///////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// MakeRenderTargetRef //////////////////////////////////////////////////////
// Create the a Plasma render target ref, filling in the underlying D3D resources
// (e.g. color/depth buffers).
// Note that for ATI boards, we create a single depth surface for them to share.
// That can actually be 2 depth surfaces, if some color surfaces are 16 bit and
// others are 24/32 bit, since the ATI's want to match color depth with depth depth.
hsGDeviceRef *plDXPipeline::MakeRenderTargetRef( plRenderTarget *owner )
{
plDXRenderTargetRef *ref = nil;
IDirect3DSurface9 *surface = nil, *depthSurface = nil;
IDirect3DTexture9 *texture = nil;
IDirect3DCubeTexture9 *cTexture = nil;
D3DFORMAT surfFormat = D3DFMT_UNKNOWN, depthFormat = D3DFMT_UNKNOWN;
D3DRESOURCETYPE resType;
int i;
plCubicRenderTarget *cubicRT;
UInt16 width, height;
hsAssert(!fManagedAlloced, "Allocating non-managed resource with managed resources alloc'd");
/// Check--is this renderTarget really a child of a cubicRenderTarget?
if( owner->GetParent() != nil )
{
/// This'll create the deviceRefs for all of its children as well
MakeRenderTargetRef( owner->GetParent() );
return owner->GetDeviceRef();
}
// If we already have a rendertargetref, we just need it filled out with D3D resources.
if( owner->GetDeviceRef() != nil )
ref = (plDXRenderTargetRef *)owner->GetDeviceRef();
// Look for supported format. Note that the surfFormat and depthFormat are
// passed in by ref, so they may be different after this function call (if
// an exact match isn't supported, but something similar is).
if( !IPrepRenderTargetInfo( owner, surfFormat, depthFormat, resType ) )
{
hsAssert( false, "Error getting renderTarget info" );
return nil;
}
/// Create the render target now
// Start with the depth surface.
// Note that we only ever give a cubic rendertarget a single shared depth buffer,
// since we only render one face at a time. If we were rendering part of face X, then part
// of face Y, then more of face X, then they would all need their own depth buffers.
if( owner->GetZDepth() && (owner->GetFlags() & ( plRenderTarget::kIsTexture | plRenderTarget::kIsOffscreen )) )
{
// 9600 THRASH
if( !fSettings.fShareDepth )
{
/// Create the depthbuffer
if( FAILED( fD3DDevice->CreateDepthStencilSurface(
owner->GetWidth(), owner->GetHeight(), depthFormat,
D3DMULTISAMPLE_NONE, 0, FALSE,
&depthSurface, NULL ) ) )
{
return nil;
}
// See plDXRenderTargetRef::Release()
//D3DSURF_MEMNEW(depthSurface);
}
else
{
const int iZ = owner->GetZDepth() / 24;
if( !fSharedDepthSurface[iZ] )
{
plConst(DWORD) kSharedWidth(800);
plConst(DWORD) kSharedHeight(600);
if( FAILED( fD3DDevice->CreateDepthStencilSurface(
kSharedWidth, kSharedHeight, depthFormat,
D3DMULTISAMPLE_NONE, 0, FALSE,
&fSharedDepthSurface[iZ], NULL ) ) )
{
return nil;
}
// See plDXRenderTargetRef::Release()
//D3DSURF_MEMNEW(fSharedDepthSurface[iZ]);
fSharedDepthFormat[iZ] = depthFormat;
}
hsAssert(depthFormat == fSharedDepthFormat[iZ], "Mismatch on render target types");
fSharedDepthSurface[iZ]->AddRef();
depthSurface = fSharedDepthSurface[iZ];
}
}
// See if it's a cubic render target.
// Primary consumer here is the vertex/pixel shader water.
cubicRT = plCubicRenderTarget::ConvertNoRef( owner );
if( cubicRT != nil )
{
/// And create the ref (it'll know how to set all the flags)
if( ref != nil )
ref->Set( surfFormat, 0, owner );
else
ref = TRACKED_NEW plDXRenderTargetRef( surfFormat, 0, owner );
if( !FAILED( fD3DDevice->CreateCubeTexture( owner->GetWidth(), 1, D3DUSAGE_RENDERTARGET, surfFormat,
D3DPOOL_DEFAULT, (IDirect3DCubeTexture9 **)&cTexture, NULL ) ) )
{
/// Create a CUBIC texture
for( i = 0; i < 6; i++ )
{
plRenderTarget *face = cubicRT->GetFace( i );
plDXRenderTargetRef *fRef;
if( face->GetDeviceRef() != nil )
{
fRef = (plDXRenderTargetRef *)face->GetDeviceRef();
fRef->Set( surfFormat, 0, face );
if( !fRef->IsLinked() )
fRef->Link( &fRenderTargetRefList );
}
else
{
face->SetDeviceRef( TRACKED_NEW plDXRenderTargetRef( surfFormat, 0, face, false ) );
( (plDXRenderTargetRef *)face->GetDeviceRef())->Link( &fRenderTargetRefList );
// Unref now, since for now ONLY the RT owns the ref, not us (not until we use it, at least)
hsRefCnt_SafeUnRef( face->GetDeviceRef() );
}
}
D3DSURF_MEMNEW(cTexture);
ref->SetTexture( cTexture, depthSurface );
}
else
{
ReleaseObject(depthSurface);
hsRefCnt_SafeUnRef(ref);
ref = nil;
}
}
// Not a cubic, is it a texture render target? These are currently used
// primarily for shadow map generation.
else if( owner->GetFlags() & plRenderTarget::kIsTexture )
{
/// Create a normal texture
if( ref != nil )
ref->Set( surfFormat, 0, owner );
else
ref = TRACKED_NEW plDXRenderTargetRef( surfFormat, 0, owner );
if( !FAILED( fD3DDevice->CreateTexture( owner->GetWidth(), owner->GetHeight(), 1, D3DUSAGE_RENDERTARGET, surfFormat,
D3DPOOL_DEFAULT, (IDirect3DTexture9 **)&texture, NULL ) ) )
{
D3DSURF_MEMNEW(texture);
ref->SetTexture( texture, depthSurface );
}
else
{
ReleaseObject(depthSurface);
hsRefCnt_SafeUnRef(ref);
ref = nil;
}
}
// Not a texture either, must be a plain offscreen.
// Note that the plain offscreen code path works and was used until recently,
// until it turned up that some hardware had bugs on rendering to
// an offscreen.
// Some GeForce1's had lighting anomolies, although my GeForce1 DDR didn't.
// Some ATI's showed a momemtary glitch of corrupted rendering on the frame
// when rendering both to the primary and an offscreen (again, not mine).
// So the Offscreen isn't currently used for anything.
else if( owner->GetFlags() & plRenderTarget::kIsOffscreen )
{
/// Create a blank surface
if( ref != nil )
ref->Set( surfFormat, 0, owner );
else
ref = TRACKED_NEW plDXRenderTargetRef( surfFormat, 0, owner );
width = owner->GetWidth();
height = owner->GetHeight();
// Specify true for lockable, otherwise I'm not sure what we'd do with it. I guess we
// could copyrect to another surface, presumably a texture. But right now the only
// thing we use this for is to render a snapshot and copy it to sysmem, which implies
// lockable.
if( !FAILED( fD3DDevice->CreateRenderTarget( width, height, surfFormat,
D3DMULTISAMPLE_NONE, 0,
TRUE, &surface, NULL ) ) )
{
D3DSURF_MEMNEW(surface);
ref->SetTexture( surface, depthSurface );
}
else
{
ReleaseObject(depthSurface);
hsRefCnt_SafeUnRef(ref);
ref = nil;
}
}
// Keep it in a linked list for ready destruction.
if( owner->GetDeviceRef() != ref )
{
owner->SetDeviceRef( ref );
// Unref now, since for now ONLY the RT owns the ref, not us (not until we use it, at least)
hsRefCnt_SafeUnRef( ref );
if( ref != nil && !ref->IsLinked() )
ref->Link( &fRenderTargetRefList );
}
else
{
if( ref != nil && !ref->IsLinked() )
ref->Link( &fRenderTargetRefList );
}
// Mark as dirty.
if( ref != nil )
{
ref->SetDirty( false );
}
return ref;
}
//// SharedRenderTargetRef //////////////////////////////////////////////////////
// Same as MakeRenderTargetRef, except specialized for the shadow map generation.
// The shadow map pools of a given dimension (called RenderTargetPool) all share
// a single depth buffer of that size. This allows sharing on NVidia hardware
// that wants the depth buffer dimensions to match the color buffer size.
// It may be that NVidia hardware doesn't care any more. Contact Matthias
// about that.
hsGDeviceRef* plDXPipeline::SharedRenderTargetRef(plRenderTarget* share, plRenderTarget *owner)
{
plDXRenderTargetRef* ref = nil;
IDirect3DSurface9* surface = nil;
IDirect3DSurface9* depthSurface = nil;
IDirect3DTexture9* texture = nil;
IDirect3DCubeTexture9* cTexture = nil;
D3DFORMAT surfFormat = D3DFMT_UNKNOWN, depthFormat = D3DFMT_UNKNOWN;
D3DRESOURCETYPE resType;
int i;
plCubicRenderTarget* cubicRT;
UInt16 width, height;
// If we don't already have one to share from, start from scratch.
if( !share )
return MakeRenderTargetRef(owner);
hsAssert(!fManagedAlloced, "Allocating non-managed resource with managed resources alloc'd");
#ifdef HS_DEBUGGING
// Check out the validity of the match. Debug only.
hsAssert(!owner->GetParent() == !share->GetParent(), "Mismatch on shared render target");
hsAssert(owner->GetWidth() == share->GetWidth(), "Mismatch on shared render target");
hsAssert(owner->GetHeight() == share->GetHeight(), "Mismatch on shared render target");
hsAssert(owner->GetZDepth() == share->GetZDepth(), "Mismatch on shared render target");
hsAssert(owner->GetStencilDepth() == share->GetStencilDepth(), "Mismatch on shared render target");
#endif // HS_DEBUGGING
/// Check--is this renderTarget really a child of a cubicRenderTarget?
if( owner->GetParent() != nil )
{
/// This'll create the deviceRefs for all of its children as well
SharedRenderTargetRef(share->GetParent(), owner->GetParent());
return owner->GetDeviceRef();
}
if( owner->GetDeviceRef() != nil )
ref = (plDXRenderTargetRef *)owner->GetDeviceRef();
// Look for a good format of matching color and depth size.
if( !IFindRenderTargetInfo(owner, surfFormat, resType) )
{
hsAssert( false, "Error getting renderTarget info" );
return nil;
}
/// Create the render target now
// Start with the depth. We're just going to share the depth surface on the
// input shareRef.
plDXRenderTargetRef* shareRef = (plDXRenderTargetRef*)share->GetDeviceRef();
hsAssert(shareRef, "Trying to share from a render target with no ref");
if( shareRef->fD3DDepthSurface )
shareRef->fD3DDepthSurface->AddRef();
depthSurface = shareRef->fD3DDepthSurface;
// Check for Cubic. This is unlikely, since this function is currently only
// used for the shadow map pools.
cubicRT = plCubicRenderTarget::ConvertNoRef( owner );
if( cubicRT != nil )
{
/// And create the ref (it'll know how to set all the flags)
if( ref != nil )
ref->Set( surfFormat, 0, owner );
else
ref = TRACKED_NEW plDXRenderTargetRef( surfFormat, 0, owner );
hsAssert(!fManagedAlloced, "Alloc default with managed alloc'd");
if( !FAILED( fD3DDevice->CreateCubeTexture( owner->GetWidth(), 1, D3DUSAGE_RENDERTARGET, surfFormat,
D3DPOOL_DEFAULT, (IDirect3DCubeTexture9 **)&cTexture, NULL ) ) )
{
/// Create a CUBIC texture
for( i = 0; i < 6; i++ )
{
plRenderTarget *face = cubicRT->GetFace( i );
plDXRenderTargetRef *fRef;
if( face->GetDeviceRef() != nil )
{
fRef = (plDXRenderTargetRef *)face->GetDeviceRef();
fRef->Set( surfFormat, 0, face );
if( !fRef->IsLinked() )
fRef->Link( &fRenderTargetRefList );
}
else
{
face->SetDeviceRef( TRACKED_NEW plDXRenderTargetRef( surfFormat, 0, face, false ) );
( (plDXRenderTargetRef *)face->GetDeviceRef())->Link( &fRenderTargetRefList );
// Unref now, since for now ONLY the RT owns the ref, not us (not until we use it, at least)
hsRefCnt_SafeUnRef( face->GetDeviceRef() );
}
}
D3DSURF_MEMNEW(cTexture);
ref->SetTexture( cTexture, depthSurface );
}
else
{
ReleaseObject(depthSurface);
hsRefCnt_SafeUnRef(ref);
ref = nil;
}
}
// Is it a texture render target? Probably, since shadow maps are all we use this for.
else if( owner->GetFlags() & plRenderTarget::kIsTexture )
{
/// Create a normal texture
if( ref != nil )
ref->Set( surfFormat, 0, owner );
else
ref = TRACKED_NEW plDXRenderTargetRef( surfFormat, 0, owner );
hsAssert(!fManagedAlloced, "Alloc default with managed alloc'd");
if( !FAILED( fD3DDevice->CreateTexture( owner->GetWidth(), owner->GetHeight(), 1, D3DUSAGE_RENDERTARGET, surfFormat,
D3DPOOL_DEFAULT, (IDirect3DTexture9 **)&texture, NULL ) ) )
{
D3DSURF_MEMNEW(texture);
ref->SetTexture( texture, depthSurface );
}
else
{
ReleaseObject(depthSurface);
hsRefCnt_SafeUnRef(ref);
ref = nil;
}
}
// Pretty sure this code path has never been followed.
else if( owner->GetFlags() & plRenderTarget::kIsOffscreen )
{
/// Create a blank surface
if( ref != nil )
ref->Set( surfFormat, 0, owner );
else
ref = TRACKED_NEW plDXRenderTargetRef( surfFormat, 0, owner );
width = owner->GetWidth();
height = owner->GetHeight();
if( !FAILED( fD3DDevice->CreateRenderTarget( width, height, surfFormat,
D3DMULTISAMPLE_NONE, 0,
FALSE, &surface, NULL ) ) )
{
D3DSURF_MEMNEW(surface);
ref->SetTexture( surface, depthSurface );
}
else
{
ReleaseObject(depthSurface);
hsRefCnt_SafeUnRef(ref);
ref = nil;
}
}
if( owner->GetDeviceRef() != ref )
{
owner->SetDeviceRef( ref );
// Unref now, since for now ONLY the RT owns the ref, not us (not until we use it, at least)
hsRefCnt_SafeUnRef( ref );
if( ref != nil && !ref->IsLinked() )
ref->Link( &fRenderTargetRefList );
}
else
{
if( ref != nil && !ref->IsLinked() )
ref->Link( &fRenderTargetRefList );
}
if( ref != nil )
{
ref->SetDirty( false );
}
return ref;
}
//// IPrepRenderTargetInfo ////////////////////////////////////////////////////
// Shared processing of render target creation parameters. Also does the
// dirty work of finding a good surface format to use.
hsBool plDXPipeline::IPrepRenderTargetInfo( plRenderTarget *owner, D3DFORMAT &surfFormat,
D3DFORMAT &depthFormat, D3DRESOURCETYPE &resType )
{
int i, j;
UInt16 flags, width, height;
Int8 bitDepth, zDepth, stencilDepth, stencilIndex;
D3DFORMAT depthFormats[] = { D3DFMT_D24X8, D3DFMT_D24X4S4, D3DFMT_D24S8 };
flags = owner->GetFlags();
width = owner->GetWidth();
height = owner->GetHeight();
bitDepth = owner->GetPixelSize();
zDepth = owner->GetZDepth();
stencilDepth = owner->GetStencilDepth();
if( flags != 0 )
{
if( flags & plRenderTarget::kIsTexture )
{
/// Do an extra check for width and height here
for( i = width >> 1, j = 0; i != 0; i >>= 1, j++ );
if( width != ( 1 << j ) )
return false;
for( i = height >> 1, j = 0; i != 0; i >>= 1, j++ );
if( height!= ( 1 << j ) )
return false;
resType = D3DRTYPE_TEXTURE;
}
else
resType = D3DRTYPE_SURFACE;
if( bitDepth == 16 )
surfFormat = D3DFMT_A4R4G4B4;
else if( bitDepth == 32 )
surfFormat = D3DFMT_A8R8G8B8;
/// Get the backbuffer format (if one is requested)
if( zDepth )
{
if( zDepth == 16 && stencilDepth == 0 )
depthFormat = D3DFMT_D16;
else if( zDepth == 24 )
{
if( stencilDepth == 0 ) stencilIndex = 0;
else if( stencilDepth <= 4 ) stencilIndex = 1;
else if( stencilDepth <= 8 ) stencilIndex = 2;
else
stencilIndex = 2;
depthFormat = depthFormats[ stencilIndex ];
}
else if( zDepth == 32 && stencilDepth == 0 )
depthFormat = D3DFMT_D32;
else if( zDepth == 15 && stencilDepth == 1 )
depthFormat = D3DFMT_D15S1;
if( surfFormat == D3DFMT_UNKNOWN || depthFormat == D3DFMT_UNKNOWN )
{
return false;
}
}
else
{
depthFormat = D3DFMT_UNKNOWN;
}
/// Check the device format
if( FAILED( fSettings.fDXError = fD3DObject->CheckDeviceFormat( fCurrentAdapter, fCurrentDevice->fDDType, fCurrentMode->fDDmode.Format,
D3DUSAGE_RENDERTARGET, resType, surfFormat ) ) )
{
if( bitDepth == 16 )
{
bitDepth = 32;
surfFormat = D3DFMT_A8R8G8B8;
}
else if( bitDepth == 32 )
{
bitDepth = 16;
surfFormat = D3DFMT_A4R4G4B4;
}
if( FAILED( fSettings.fDXError = fD3DObject->CheckDeviceFormat( fCurrentAdapter, fCurrentDevice->fDDType, fCurrentMode->fDDmode.Format,
D3DUSAGE_RENDERTARGET, resType, surfFormat ) ) )
{
IGetD3DError();
return false;
}
}
if( zDepth )
{
while( FAILED( fSettings.fDXError = fD3DObject->CheckDeviceFormat( fCurrentAdapter, fCurrentDevice->fDDType, fCurrentMode->fDDmode.Format,
D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, depthFormat ) ) )
{
if( stencilIndex < sizeof( depthFormats ) / sizeof( depthFormats[ 0 ] ) - 1 )
{
stencilIndex++;
depthFormat = depthFormats[ stencilIndex ];
}
else
{
IGetD3DError();
return false;
}
}
if( FAILED( fSettings.fDXError = fD3DObject->CheckDepthStencilMatch( fCurrentAdapter, fCurrentDevice->fDDType, fCurrentMode->fDDmode.Format,
surfFormat, depthFormat ) ) )
{
IGetD3DError();
return false;
}
}
}
return true;
}
//// IFindRenderTargetInfo ////////////////////////////////////////////////////
// Shared processing of render target creation parameters. Also does the
// dirty work of finding a good surface format to use.
// Doesn't bother checking depth buffer, since this is only used for a render target
// that's going to share a depth buffer that's already been created.
hsBool plDXPipeline::IFindRenderTargetInfo( plRenderTarget *owner, D3DFORMAT &surfFormat, D3DRESOURCETYPE &resType )
{
UInt16 flags, width, height;
Int8 bitDepth;
flags = owner->GetFlags();
width = owner->GetWidth();
height = owner->GetHeight();
bitDepth = owner->GetPixelSize();
if( flags != 0 )
{
if( flags & plRenderTarget::kIsTexture )
{
resType = D3DRTYPE_TEXTURE;
}
else
resType = D3DRTYPE_SURFACE;
if( bitDepth == 16 )
surfFormat = D3DFMT_A4R4G4B4;
else if( bitDepth == 32 )
surfFormat = D3DFMT_A8R8G8B8;
if( surfFormat == D3DFMT_UNKNOWN )
{
return false;
}
/// Check the device format
if( FAILED( fSettings.fDXError = fD3DObject->CheckDeviceFormat( fCurrentAdapter, fCurrentDevice->fDDType, fCurrentMode->fDDmode.Format,
D3DUSAGE_RENDERTARGET, resType, surfFormat ) ) )
{
if( bitDepth == 16 )
{
bitDepth = 32;
surfFormat = D3DFMT_A8R8G8B8;
}
else if( bitDepth == 32 )
{
bitDepth = 16;
surfFormat = D3DFMT_A4R4G4B4;
}
if( FAILED( fSettings.fDXError = fD3DObject->CheckDeviceFormat( fCurrentAdapter, fCurrentDevice->fDDType, fCurrentMode->fDDmode.Format,
D3DUSAGE_RENDERTARGET, resType, surfFormat ) ) )
{
IGetD3DError();
return false;
}
}
}
return true;
}
// PushRenderRequest ///////////////////////////////////////////////
// We're moving from our current render (probably to primary) onto
// another specialized render request. This may be to the primary (if req->GetRenderTarget() is nil)
// or to a texture. This function saves enough state to resume rendering on PopRenderRequest.
// The render request may just be a new camera position.
void plDXPipeline::PushRenderRequest(plRenderRequest* req)
{
// Save these, since we want to copy them to our current view
hsMatrix44 l2w = fView.fLocalToWorld;
hsMatrix44 w2l = fView.fWorldToLocal;
plFogEnvironment defFog = fView.fDefaultFog;
fSettings.fViewStack.Push(fView);
SetViewTransform(req->GetViewTransform());
PushRenderTarget(req->GetRenderTarget());
fView.fRenderState = req->GetRenderState();
fView.fRenderRequest = req;
hsRefCnt_SafeRef(fView.fRenderRequest);
SetDrawableTypeMask(req->GetDrawableMask());
SetSubDrawableTypeMask(req->GetSubDrawableMask());
fView.fClearColor = inlGetD3DColor( req->GetClearColor() );
fView.fClearDepth = req->GetClearDepth();
if( req->GetFogStart() < 0 )
{
fView.fDefaultFog = defFog;
}
else
{
fView.fDefaultFog.Set( req->GetYon() * (1.f - req->GetFogStart()), req->GetYon(), 1.f, &req->GetClearColor());
fCurrFog.fEnvPtr = nil;
}
if( req->GetOverrideMat() )
PushOverrideMaterial(req->GetOverrideMat());
// Set from our saved ones...
fView.fWorldToLocal = w2l;
fView.fLocalToWorld = l2w;
RefreshMatrices();
if (req->GetIgnoreOccluders())
fView.fCullMaxNodes = 0;
fView.fCullTreeDirty = true;
}
// PopRenderRequest //////////////////////////////////////////////////
// Restore state to resume rendering as before the preceding PushRenderRequest.
void plDXPipeline::PopRenderRequest(plRenderRequest* req)
{
if( req->GetOverrideMat() )
PopOverrideMaterial(nil);
hsRefCnt_SafeUnRef(fView.fRenderRequest);
fView = fSettings.fViewStack.Pop();
// Force the next thing drawn to update the fog settings.
fD3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE);
fCurrFog.fEnvPtr = nil;
PopRenderTarget();
fView.fXformResetFlags = fView.kResetProjection | fView.kResetCamera;
}
//// PushRenderTarget /////////////////////////////////////////////////////////
// Begin rendering to the specified target. If target is nil, that's the primary surface.
void plDXPipeline::PushRenderTarget( plRenderTarget *target )
{
//WHITE
#ifdef MF_ENABLE_HACKOFF
if( target && (hackOffscreens.kMissingIndex == hackOffscreens.Find(target)) )
hackOffscreens.Append(target);
#endif // MF_ENABLE_HACKOFF
fSettings.fCurrRenderTarget = target;
hsRefCnt_SafeAssign( fSettings.fCurrRenderTargetRef, ( target != nil ) ? (plDXDeviceRef *)target->GetDeviceRef() : nil );
while( target != nil )
{
fSettings.fCurrBaseRenderTarget = target;
target = target->GetParent();
}
fSettings.fRenderTargets.Push( fSettings.fCurrRenderTarget );
ISetRenderTarget( fSettings.fCurrRenderTarget );
}
//// PopRenderTarget //////////////////////////////////////////////////////////
// Resume rendering to the render target before the last PushRenderTarget,
// making sure we aren't holding on to anything from the render target getting
// popped.
plRenderTarget *plDXPipeline::PopRenderTarget()
{
plRenderTarget *old = fSettings.fRenderTargets.Pop(), *temp;
int i = fSettings.fRenderTargets.GetCount();
if( i == 0 )
{
fSettings.fCurrRenderTarget = nil;
fSettings.fCurrBaseRenderTarget = nil;
hsRefCnt_SafeUnRef( fSettings.fCurrRenderTargetRef );
fSettings.fCurrRenderTargetRef = nil;
}
else
{
fSettings.fCurrRenderTarget = fSettings.fRenderTargets[ i - 1 ];
temp = fSettings.fCurrRenderTarget;
while( temp != nil )
{
fSettings.fCurrBaseRenderTarget = temp;
temp = temp->GetParent();
}
hsRefCnt_SafeAssign( fSettings.fCurrRenderTargetRef,
( fSettings.fCurrRenderTarget != nil ) ?
(plDXDeviceRef *)fSettings.fCurrRenderTarget->GetDeviceRef()
: nil );
}
ISetRenderTarget( fSettings.fCurrRenderTarget );
return old;
}
// ISetAnisotropy ///////////////////////////////////////////////////////////
// Set the current anisotropic filtering settings to D3D
void plDXPipeline::ISetAnisotropy(hsBool on)
{
if( (fSettings.fMaxAnisotropicSamples <= 0) || IsDebugFlagSet(plPipeDbg::kFlagNoAnisotropy) )
on = false;
if( on == fSettings.fCurrAnisotropy )
return;
if( on )
{
int i;
for( i = 0; i < 8; i++ )
{
// GeForce cards have decided that they no longer handle anisotropic as a mag filter.
// We could detect caps... but I don't think we'd notice if we just made the mag
// filter always be linear.
fD3DDevice->SetSamplerState( i, D3DSAMP_MINFILTER, D3DTEXF_ANISOTROPIC );
fD3DDevice->SetSamplerState( i, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR );
fD3DDevice->SetSamplerState( i, D3DSAMP_MAXANISOTROPY, (DWORD)fSettings.fMaxAnisotropicSamples );
}
fSettings.fCurrAnisotropy = true;
}
else
{
int i;
for( i = 0; i < 8; i++ )
{
fD3DDevice->SetSamplerState( i, D3DSAMP_MINFILTER, D3DTEXF_LINEAR );
fD3DDevice->SetSamplerState( i, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR );
}
fSettings.fCurrAnisotropy = false;
}
}
//// ISetRenderTarget /////////////////////////////////////////////////////////
// Set rendering to the specified render target. Nil rendertarget is the primary.
// Invalidates the state as required by experience, not documentation.
void plDXPipeline::ISetRenderTarget( plRenderTarget *target )
{
IDirect3DSurface9 *main, *depth;
plDXRenderTargetRef *ref = nil;
if( target != nil )
{
ref = (plDXRenderTargetRef *)target->GetDeviceRef();
if( ref == nil || ref->IsDirty() )
ref = (plDXRenderTargetRef *)MakeRenderTargetRef( target );
}
if( ref == nil || ref->GetColorSurface() == nil )
{
/// Set to main screen
main = fD3DMainSurface;
depth = fD3DDepthSurface;
ISetAnisotropy(true);
}
else
{
/// Set to this target
main = ref->GetColorSurface();
depth = ref->fD3DDepthSurface;
ISetAnisotropy(false);
}
if( main != fSettings.fCurrD3DMainSurface || depth != fSettings.fCurrD3DDepthSurface )
{
fSettings.fCurrD3DMainSurface = main;
fSettings.fCurrD3DDepthSurface = depth;
fD3DDevice->SetRenderTarget(0, main);
fD3DDevice->SetDepthStencilSurface(depth);
}
IInvalidateState();
ISetViewport();
}
// SetClear /////////////////////////////////////////////////////////////////////
// Set the color and depth clear values.
void plDXPipeline::SetClear(const hsColorRGBA* col, const hsScalar* depth)
{
if( col )
fView.fClearColor = inlGetD3DColor(*col);
if( depth )
fView.fClearDepth = *depth;
}
// GetClearColor ////////////////////////////////////////////////////////////////
// Return the current clear color.
hsColorRGBA plDXPipeline::GetClearColor() const
{
return hsColorRGBA().FromARGB32(fView.fClearColor);
}
// GetClearDepth ////////////////////////////////////////////////////////////////
// Return the current clear depth.
hsScalar plDXPipeline::GetClearDepth() const
{
return fView.fClearDepth;
}
//// ClearRenderTarget ////////////////////////////////////////////////////////
// Clear the current color and depth buffers. If a drawable is passed in, then
// the color buffer will be cleared by rendering that drawable.
// The depth buffer is always cleared with a clear call.
// Clearing of depth and/or color may be turned off by setting the kRenderClearDepth
// and kRenderClearColor bits in fView.fRenderState to false.
void plDXPipeline::ClearRenderTarget( plDrawable* d )
{
plDrawableSpans* src = plDrawableSpans::ConvertNoRef(d);
if( !src )
{
ClearRenderTarget();
return;
}
// First clear the depth buffer as normal.
if( fView.fRenderState & kRenderClearDepth )
{
D3DRECT r;
hsBool useRect = IGetClearViewPort(r);
if( useRect )
{
WEAK_ERROR_CHECK( fD3DDevice->Clear( 1, &r, D3DCLEAR_ZBUFFER, 0, fView.fClearDepth, 0L ) );
}
else
{
WEAK_ERROR_CHECK( fD3DDevice->Clear( 0, nil, D3DCLEAR_ZBUFFER, 0, fView.fClearDepth, 0L ) );
// debug, clears to red WEAK_ERROR_CHECK( fD3DDevice->Clear( 0, nil, D3DCLEAR_ZBUFFER | D3DCLEAR_TARGET, 0xffff0000, fView.fClearDepth, 0L ) );
}
}
UInt32 s = fView.fRenderState;
UInt32 dtm = fView.fDrawableTypeMask;
UInt32 sdtm = fView.fSubDrawableTypeMask;
fView.fDrawableTypeMask = plDrawable::kNormal;
fView.fSubDrawableTypeMask = UInt32(-1);
BeginDrawable(d);
Draw(d);
EndDrawable(d);
fView.fSubDrawableTypeMask = sdtm;
fView.fDrawableTypeMask = dtm;
fView.fRenderState = s;
}
// IGetClearViewPort //////////////////////////////////////////////
// Sets the input rect to the current viewport. Returns true if
// that is a subset of the current render target, else false.
hsBool plDXPipeline::IGetClearViewPort(D3DRECT& r)
{
r.x1 = GetViewTransform().GetViewPortLeft();
r.y1 = GetViewTransform().GetViewPortTop();
r.x2 = GetViewTransform().GetViewPortRight();
r.y2 = GetViewTransform().GetViewPortBottom();
hsBool useRect = false;
if( fSettings.fCurrRenderTarget != nil )
{
useRect = ( (r.x1 != 0) || (r.y1 != 0) || (r.x2 != fSettings.fCurrRenderTarget->GetWidth()) || (r.y2 != fSettings.fCurrRenderTarget->GetHeight()) );
}
else
{
useRect = ( (r.x1 != 0) || (r.y1 != 0) || (r.x2 != fSettings.fOrigWidth) || (r.y2 != fSettings.fOrigHeight) );
}
return useRect;
}
// ClearRenderTarget //////////////////////////////////////////////////////////////////////////////
// Flat fill the current render target with the specified color and depth values.
void plDXPipeline::ClearRenderTarget( const hsColorRGBA *col, const hsScalar* depth )
{
if( fView.fRenderState & (kRenderClearColor | kRenderClearDepth) )
{
DWORD clearColor = inlGetD3DColor(col ? *col : GetClearColor());
hsScalar clearDepth = depth ? *depth : fView.fClearDepth;
DWORD dwFlags = 0;//fStencil.fDepth > 0 ? D3DCLEAR_STENCIL : 0;
if( fView.fRenderState & kRenderClearColor )
dwFlags |= D3DCLEAR_TARGET;
if( fView.fRenderState & kRenderClearDepth )
dwFlags |= D3DCLEAR_ZBUFFER;
D3DRECT r;
hsBool useRect = IGetClearViewPort(r);
if( useRect )
{
WEAK_ERROR_CHECK( fD3DDevice->Clear( 1, &r, dwFlags, clearColor, clearDepth, 0L ) );
}
else
{
WEAK_ERROR_CHECK( fD3DDevice->Clear( 0, nil, dwFlags, clearColor, clearDepth, 0L ) );
}
}
}
///////////////////////////////////////////////////////////////////////////////
//// Fog //////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// The current fog system sucks. It was never meant to get used this way, but
// the production artists started using it with debug commands that were around,
// and before they could be stopped it was too late.
// The good news is that there's a lot that could be done with fog here that
// would be greatly appreciated.
// IGetVSFogSet ///////////////////////////////////////////////////////////////
// Translate the current fog settings into a linear fog that the current
// vertex shaders can use.
void plDXPipeline::IGetVSFogSet(float* const set) const
{
set[2] = 0.f;
set[3] = 1.f;
if( fCurrFog.fEnvPtr )
{
hsColorRGBA colorTrash;
hsScalar start;
hsScalar end;
fCurrFog.fEnvPtr->GetPipelineParams(&start, &end, &colorTrash);
if( end > start )
{
set[0] = -end;
set[1] = 1.f / (start - end);
}
else
{
set[0] = 1.f;
set[1] = 0.f;
}
}
else
{
set[0] = 1.f;
set[1] = 0.f;
}
}
//// ISetFogParameters ////////////////////////////////////////////////////////
// So looking at this function, one might guess that fog parameters were settable
// individually for different objects, and that was the original intent, with transitions
// as something like the avatar moved from one fog region to another.
// Never happened.
// So the current state is that there is one set of fog parameters per age, and things
// are either fogged, or not fogged.
// This is complicated by the DX vertex/pixel shaders only supporting per-vertex fog,
// so the same plasma fog settings may turn into differing D3D fog state.
void plDXPipeline::ISetFogParameters(const plSpan* span, const plLayerInterface* baseLay)
{
#ifndef PLASMA_EXTERNAL_RELEASE
if (IsDebugFlagSet(plPipeDbg::kFlagNoFog))
{
fCurrFog.fEnvPtr = nil;
fD3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE);
return;
}
#endif // PLASMA_EXTERNAL_RELEASE
plFogEnvironment* fog = (span ? (span->fFogEnvironment ? span->fFogEnvironment : &fView.fDefaultFog) : nil);
UInt8 isVertex = 0;
UInt8 isShader = false;
if (baseLay)
{
if ((baseLay->GetShadeFlags() & hsGMatState::kShadeReallyNoFog) && !(fMatOverOff.fShadeFlags & hsGMatState::kShadeReallyNoFog))
fog = nil;
if (baseLay->GetVertexShader())
isShader = true;
}
if (fMatOverOn.fShadeFlags & hsGMatState::kShadeReallyNoFog)
fog = nil;
bool forceLoad = false;
D3DRENDERSTATETYPE d3dFogType = D3DRS_FOGTABLEMODE; // Use VERTEXMODE for vertex fog
#if !HS_BUILD_FOR_XBOX
if (!(fSettings.fD3DCaps & kCapsPixelFog) || isShader)
{
d3dFogType = D3DRS_FOGVERTEXMODE;
isVertex = true;
}
#endif
// Quick check
if ((fCurrFog.fEnvPtr == fog) && (fCurrFog.fIsVertex == isVertex) && (fCurrFog.fIsShader == isShader))
return;
UInt8 type = ( fog == nil ) ? plFogEnvironment::kNoFog : fog->GetType();
if (type == plFogEnvironment::kNoFog)
{
/// No fog, just disable
fD3DDevice->SetRenderState( D3DRS_FOGENABLE, FALSE );
fCurrFog.fEnvPtr = nil;
return;
}
else if( fCurrFog.fEnvPtr != fog )
{
fD3DDevice->SetRenderState( D3DRS_FOGENABLE, TRUE );
forceLoad = true;
fCurrFog.fEnvPtr = fog;
}
if( isShader )
type = plFogEnvironment::kLinearFog;
if( fCurrFog.fIsShader != isShader )
forceLoad = true;
if( fCurrFog.fIsVertex != isVertex )
forceLoad = true;
fCurrFog.fIsShader = isShader;
fCurrFog.fIsVertex = isVertex;
hsScalar startOrDensity, end;
hsColorRGBA color;
/// Get params
if( type == plFogEnvironment::kLinearFog )
{
fog->GetPipelineParams( &startOrDensity, &end, &color );
if (startOrDensity == end)
{
// This should be legal, but some cards don't like it. Just disable. Same thing.
fD3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE);
return;
}
}
else
fog->GetPipelineParams( &startOrDensity, &color );
if( isShader )
{
// None of this is technically necessary, but it's to work around
// a known goofiness in the NVidia drivers. Actually, I don't think
// having to set the tablemode fog to linear in addition to setting
// the vertexmode is even a "known" issue. But turns out to be
// necessary on GeForceFX latest drivers.
startOrDensity = 1.f;
end = 0.f;
// Setting FOGTABLEMODE to none seems to work on both ATI and NVidia,
// but I haven't tried it on the GeForceFX yet.
// if( fCurrFog.fMode != D3DFOG_LINEAR )
// fD3DDevice->SetRenderState(D3DRS_FOGTABLEMODE, D3DFOG_LINEAR);
fD3DDevice->SetRenderState(D3DRS_FOGTABLEMODE, D3DFOG_NONE);
}
/// Set color
if( !( fCurrFog.fColor == color ) || forceLoad )
{
fCurrFog.fColor = color;
fCurrFog.fHexColor = inlGetD3DColor( color );
fD3DDevice->SetRenderState( D3DRS_FOGCOLOR, fCurrFog.fHexColor );
}
D3DFOGMODE modes[ 4 ] = { D3DFOG_LINEAR, D3DFOG_EXP, D3DFOG_EXP2, D3DFOG_NONE };
/// Set type
if( fCurrFog.fMode != modes[type] || forceLoad )
{
fCurrFog.fMode = modes[type];
if( fCurrFog.fMode == D3DFOG_LINEAR )
{
fCurrFog.fStart = startOrDensity;
fCurrFog.fEnd = end;
fD3DDevice->SetRenderState( d3dFogType, fCurrFog.fMode );
fD3DDevice->SetRenderState( D3DRS_FOGSTART, *(DWORD *)( &fCurrFog.fStart ) );
fD3DDevice->SetRenderState( D3DRS_FOGEND, *(DWORD *)( &fCurrFog.fEnd ) );
}
else
{
fCurrFog.fDensity = startOrDensity;
fD3DDevice->SetRenderState( d3dFogType, fCurrFog.fMode );
fD3DDevice->SetRenderState( D3DRS_FOGDENSITY, *(DWORD *)( &fCurrFog.fDensity ) );
}
}
else
{
// Type is the same, but are the params?
if( fCurrFog.fMode == D3DFOG_LINEAR )
{
if( fCurrFog.fStart != startOrDensity )
{
fCurrFog.fStart = startOrDensity;
fD3DDevice->SetRenderState( D3DRS_FOGSTART, *(DWORD *)( &fCurrFog.fStart ) );
}
if( fCurrFog.fEnd != end )
{
fCurrFog.fEnd = end;
fD3DDevice->SetRenderState( D3DRS_FOGEND, *(DWORD *)( &fCurrFog.fEnd ) );
}
}
else
{
if( fCurrFog.fDensity != startOrDensity )
{
fCurrFog.fDensity = startOrDensity;
fD3DDevice->SetRenderState( D3DRS_FOGDENSITY, *(DWORD *)( &fCurrFog.fDensity ) );
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
//// Stenciling ///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// I know that none of this stencil code has ever been used in production.
// To my knowledge, none of this stencil code was ever even tested.
// It may save you some time as a starting point, but don't trust it.
//// StencilEnable ////////////////////////////////////////////////////////////
hsBool plDXPipeline::StencilEnable( hsBool enable )
{
if( fStencil.fEnabled == enable )
return true;
if( enable && fStencil.fDepth == 0 )
return false; // Can't enable stenciling when we don't support it!
fD3DDevice->SetRenderState( D3DRS_STENCILENABLE, enable ? TRUE : FALSE );
return true;
}
//// StencilSetCompareFunc ////////////////////////////////////////////////////
void plDXPipeline::StencilSetCompareFunc( UInt8 func, UInt32 refValue )
{
D3DCMPFUNC newFunc;
switch( func )
{
case plStencilCaps::kCmpNever: newFunc = D3DCMP_NEVER; break;
case plStencilCaps::kCmpLessThan: newFunc = D3DCMP_LESS; break;
case plStencilCaps::kCmpEqual: newFunc = D3DCMP_EQUAL; break;
case plStencilCaps::kCmpLessThanOrEqual: newFunc = D3DCMP_LESSEQUAL; break;
case plStencilCaps::kCmpGreaterThan: newFunc = D3DCMP_GREATER; break;
case plStencilCaps::kCmpNotEqual: newFunc = D3DCMP_NOTEQUAL; break;
case plStencilCaps::kCmpGreaterThanOrEqual: newFunc = D3DCMP_GREATEREQUAL; break;
case plStencilCaps::kCmpAlways: newFunc = D3DCMP_ALWAYS; break;
default: hsAssert( false, "Invalid compare function to StencilSetCompareFunc()" ); return;
}
if( fStencil.fCmpFunc != newFunc )
{
fD3DDevice->SetRenderState( D3DRS_STENCILFUNC, newFunc );
fStencil.fCmpFunc = newFunc;
}
if( fStencil.fRefValue != refValue )
{
fD3DDevice->SetRenderState( D3DRS_STENCILREF, refValue );
fStencil.fRefValue = refValue;
}
}
//// StencilSetMask ///////////////////////////////////////////////////////////
void plDXPipeline::StencilSetMask( UInt32 mask, UInt32 writeMask )
{
if( fStencil.fMask != mask )
{
fD3DDevice->SetRenderState( D3DRS_STENCILMASK, mask );
fStencil.fMask = mask;
}
if( fStencil.fWriteMask != writeMask )
{
fD3DDevice->SetRenderState( D3DRS_STENCILWRITEMASK, writeMask );
fStencil.fWriteMask = writeMask;
}
}
//// StencilSetOps ////////////////////////////////////////////////////////////
void plDXPipeline::StencilSetOps( UInt8 passOp, UInt8 failOp, UInt8 passButZFailOp )
{
D3DSTENCILOP op;
/// Pass op
switch( passOp )
{
case plStencilCaps::kOpKeep: op = D3DSTENCILOP_KEEP; break;
case plStencilCaps::kOpSetToZero: op = D3DSTENCILOP_ZERO; break;
case plStencilCaps::kOpReplace: op = D3DSTENCILOP_REPLACE; break;
case plStencilCaps::kOpIncClamp: op = D3DSTENCILOP_INCRSAT; break;
case plStencilCaps::kOpDecClamp: op = D3DSTENCILOP_DECRSAT; break;
case plStencilCaps::kOpInvert: op = D3DSTENCILOP_INVERT; break;
case plStencilCaps::kOpIncWrap: op = D3DSTENCILOP_INCR; break;
case plStencilCaps::kOpDecWrap: op = D3DSTENCILOP_DECR; break;
default: hsAssert( false, "Invalid op to StencilSetOps()" ); return;
}
if( fStencil.fPassOp != op )
{
fD3DDevice->SetRenderState( D3DRS_STENCILPASS, op );
fStencil.fPassOp = op;
}
/// Fail op
switch( failOp )
{
case plStencilCaps::kOpKeep: op = D3DSTENCILOP_KEEP; break;
case plStencilCaps::kOpSetToZero: op = D3DSTENCILOP_ZERO; break;
case plStencilCaps::kOpReplace: op = D3DSTENCILOP_REPLACE; break;
case plStencilCaps::kOpIncClamp: op = D3DSTENCILOP_INCRSAT; break;
case plStencilCaps::kOpDecClamp: op = D3DSTENCILOP_DECRSAT; break;
case plStencilCaps::kOpInvert: op = D3DSTENCILOP_INVERT; break;
case plStencilCaps::kOpIncWrap: op = D3DSTENCILOP_INCR; break;
case plStencilCaps::kOpDecWrap: op = D3DSTENCILOP_DECR; break;
default: hsAssert( false, "Invalid op to StencilSetOps()" ); return;
}
if( fStencil.fFailOp != op )
{
fD3DDevice->SetRenderState( D3DRS_STENCILFAIL, op );
fStencil.fFailOp = op;
}
/// Pass-but-z-fail op
switch( passButZFailOp )
{
case plStencilCaps::kOpKeep: op = D3DSTENCILOP_KEEP; break;
case plStencilCaps::kOpSetToZero: op = D3DSTENCILOP_ZERO; break;
case plStencilCaps::kOpReplace: op = D3DSTENCILOP_REPLACE; break;
case plStencilCaps::kOpIncClamp: op = D3DSTENCILOP_INCRSAT; break;
case plStencilCaps::kOpDecClamp: op = D3DSTENCILOP_DECRSAT; break;
case plStencilCaps::kOpInvert: op = D3DSTENCILOP_INVERT; break;
case plStencilCaps::kOpIncWrap: op = D3DSTENCILOP_INCR; break;
case plStencilCaps::kOpDecWrap: op = D3DSTENCILOP_DECR; break;
default: hsAssert( false, "Invalid op to StencilSetOps()" ); return;
}
if( fStencil.fPassButZFailOp != op )
{
fD3DDevice->SetRenderState( D3DRS_STENCILZFAIL, op );
fStencil.fPassButZFailOp = op;
}
}
//// StencilGetCaps ///////////////////////////////////////////////////////////
hsBool plDXPipeline::StencilGetCaps( plStencilCaps *caps )
{
hsAssert( caps != nil, "Invalid pointer to StencilGetCaps()" );
int i;
/// Find supported depths
caps->fSupportedDepths = 0;
for( i = 0; i < fCurrentMode->fDepthFormats.GetCount(); i++ )
{
switch( fCurrentMode->fDepthFormats[ i ] )
{
case D3DFMT_D15S1: caps->fSupportedDepths |= plStencilCaps::kDepth1Bit; break;
case D3DFMT_D24X4S4: caps->fSupportedDepths |= plStencilCaps::kDepth4Bits; break;
case D3DFMT_D24S8: caps->fSupportedDepths |= plStencilCaps::kDepth8Bits; break;
}
}
if( caps->fSupportedDepths == 0 )
{
caps->fIsSupported = false;
return false;
}
/// Get supported ops
caps->fSupportedOps = 0;
if( fCurrentDevice->fDDCaps.StencilCaps & D3DSTENCILCAPS_DECR )
caps->fSupportedOps |= plStencilCaps::kOpDecWrap;
if( fCurrentDevice->fDDCaps.StencilCaps & D3DSTENCILCAPS_DECRSAT )
caps->fSupportedOps |= plStencilCaps::kOpDecClamp;
if( fCurrentDevice->fDDCaps.StencilCaps & D3DSTENCILCAPS_INCR )
caps->fSupportedOps |= plStencilCaps::kOpIncWrap;
if( fCurrentDevice->fDDCaps.StencilCaps & D3DSTENCILCAPS_INCRSAT )
caps->fSupportedOps |= plStencilCaps::kOpIncClamp;
if( fCurrentDevice->fDDCaps.StencilCaps & D3DSTENCILCAPS_INVERT )
caps->fSupportedOps |= plStencilCaps::kOpInvert;
if( fCurrentDevice->fDDCaps.StencilCaps & D3DSTENCILCAPS_KEEP )
caps->fSupportedOps |= plStencilCaps::kOpKeep;
if( fCurrentDevice->fDDCaps.StencilCaps & D3DSTENCILCAPS_REPLACE )
caps->fSupportedOps |= plStencilCaps::kOpReplace;
if( fCurrentDevice->fDDCaps.StencilCaps & D3DSTENCILCAPS_ZERO )
caps->fSupportedOps |= plStencilCaps::kOpSetToZero;
return true;
}
///////////////////////////////////////////////////////////////////////////////
//// Lighting /////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// IMakeLightRef ////////////////////////////////////////////////////////////
// Create a plasma device ref for a light. Includes reserving a D3D light
// index for the light. Ref is kept in a linked list for ready disposal
// as well as attached to the light.
hsGDeviceRef *plDXPipeline::IMakeLightRef( plLightInfo *owner )
{
plDXLightRef *lRef = TRACKED_NEW plDXLightRef();
/// Assign stuff and update
lRef->fD3DIndex = fLights.ReserveD3DIndex();
lRef->fOwner = owner;
owner->SetDeviceRef( lRef );
// Unref now, since for now ONLY the BG owns the ref, not us (not until we use it, at least)
hsRefCnt_SafeUnRef( lRef );
lRef->Link( &fLights.fRefList );
lRef->UpdateD3DInfo( fD3DDevice, &fLights );
// Neutralize it until we need it.
fD3DDevice->LightEnable(lRef->fD3DIndex, false);
return lRef;
}
//// RegisterLight ////////////////////////////////////////////////////////////
// Register a light with the pipeline. Light become immediately
// ready to illuminate the scene.
void plDXPipeline::RegisterLight(plLightInfo* liInfo)
{
if( liInfo->IsLinked() )
return;
liInfo->Link( &fLights.fActiveList );
liInfo->SetDeviceRef( IMakeLightRef( liInfo ) );
fLights.fTime++;
}
//// UnRegisterLight //////////////////////////////////////////////////////////
// Remove a light from the pipeline's active light list. Light will
// no longer illuminate the scene.
void plDXPipeline::UnRegisterLight(plLightInfo* liInfo)
{
liInfo->SetDeviceRef( nil );
liInfo->Unlink();
fLights.fTime++;
}
//// IEnableLights ////////////////////////////////////////////////////////////
// Does the lighting enable pass. Given a span with lights to use, builds
// a bit vector representing the lights to use, then uses that to mask off
// which lights actually need to be enabled/disabled.
// Constructs 2 lists on the span, one for normal lights, and one for projective lights.
void plDXPipeline::IEnableLights( plSpan *span )
{
plProfile_BeginTiming(SelectLights);
ISelectLights( span, fSettings.fMaxNumLights, false );
plProfile_EndTiming(SelectLights);
if( !(fView.fRenderState & kRenderNoProjection) )
{
plProfile_BeginTiming(SelectProj);
ISelectLights( span, fSettings.fMaxNumProjectors, true );
plProfile_EndTiming(SelectProj);
}
}
// ISelectLights ///////////////////////////////////////////////////////////////
// Find the strongest numLights lights to illuminate the span with.
// Weaker lights are faded out in effect so they won't pop when the
// strongest N changes membership.
void plDXPipeline::ISelectLights( plSpan *span, int numLights, hsBool proj )
{
int i, startScale;
static hsBitVector newFlags;
static hsTArray onLights;
plDXLightRef *ref;
float threshhold, overHold = 0.3, scale;
/// Build new flags
/// Step 1: Find the n strongest lights
newFlags.Clear();
onLights.SetCount(0);
if (!IsDebugFlagSet(plPipeDbg::kFlagNoRuntimeLights) &&
!(IsDebugFlagSet(plPipeDbg::kFlagNoApplyProjLights) && proj) &&
!(IsDebugFlagSet(plPipeDbg::kFlagOnlyApplyProjLights) && !proj))
{
hsTArray& spanLights = span->GetLightList(proj);
for( i = 0; i < spanLights.GetCount() && i < numLights; i++ )
{
ref = (plDXLightRef *)spanLights[i]->GetDeviceRef();
if( ref->IsDirty() )
{
if( ref->fD3DIndex == 0 )
ref->fD3DIndex = fLights.ReserveD3DIndex();
ref->UpdateD3DInfo( fD3DDevice, &fLights );
ref->SetDirty( false );
}
newFlags.SetBit( ref->fD3DIndex );
onLights.Append(spanLights[i]);
}
startScale = i;
/// Attempt #2: Take some of the n strongest lights (below a given threshhold) and
/// fade them out to nothing as they get closer to the bottom. This way, they fade
/// out of existence instead of pop out.
if( i < spanLights.GetCount() - 1 && i > 0 )
{
threshhold = span->GetLightStrength( i, proj );
i--;
overHold = threshhold * 1.5f;
if( overHold > span->GetLightStrength( 0, proj ) )
overHold = span->GetLightStrength( 0, proj );
for( ; i > 0 && span->GetLightStrength( i, proj ) < overHold; i-- )
{
scale = ( overHold - span->GetLightStrength( i, proj ) ) / ( overHold - threshhold );
ref = (plDXLightRef *)spanLights[i]->GetDeviceRef();
IScaleD3DLight( ref, (1 - scale) * span->GetLightScale(i, proj) );
}
startScale = i + 1;
}
/// Make sure those lights that aren't scaled....aren't
for( i = 0; i < startScale; i++ )
{
ref = (plDXLightRef *)spanLights[i]->GetDeviceRef();
IScaleD3DLight(ref, span->GetLightScale(i, proj) );
}
}
// If these are non-projected lights, go ahead and enable them.
// For the projected lights, don't enable, just remember who they are.
if( !proj )
{
// A little change here. Some boards get sticky about exactly
// how many lights you have enabled, whether you are currently
// rendering or not. So if we go through enabling the lights
// we want and disabling the ones we don't, then even though
// at the end of the loop, less than MaxNumLights are enabled,
// we can still wind up screwed.
// Think about if we have 8 lights enabled, and they all happen
// to be at the end of fLights. Now we want to enable a different
// 8 lights, which happen to be at the beginning of the list.
// So we loop through and enable the lights we want, and then later
// in the loop disable the lights we don't want. Problem is that
// when we were enabling the ones we want we went over our 8 light
// limit, and some boards (ATI) react by ignoring the enable request.
// So then we disable the other lights at the end of the loop, but
// it's too late because our enable requests at the beginning of the
// loop were ignored.
// Solution is to go through the list twice, first disabling, then
// enabling. mf
hsBitVector newOff = fLights.fEnabledFlags - newFlags;
hsBitIterator iterOff(newOff);
for( iterOff.Begin(); !iterOff.End(); iterOff.Advance() )
fD3DDevice->LightEnable(iterOff.Current(), false);
hsBitVector newOn = newFlags - fLights.fEnabledFlags;
hsBitIterator iterOn(newOn);
for( iterOn.Begin(); !iterOn.End(); iterOn.Advance() )
fD3DDevice->LightEnable(iterOn.Current(), true);
fLights.fEnabledFlags = newFlags;
}
else
{
fLights.fProjAll.SetCount(0);
fLights.fProjEach.SetCount(0);
for( i = 0; i < onLights.GetCount(); i++ )
{
if( onLights[i]->OverAll() )
fLights.fProjAll.Append(onLights[i]);
else
fLights.fProjEach.Append(onLights[i]);
}
onLights.SetCount(0);
}
}
// IDisableSpanLights /////////////////////////////////////////////////////
// Disable all the enabled lights, remembering which they are for
// quick reenabling.
void plDXPipeline::IDisableSpanLights()
{
int i;
for( i = 0; i < fLights.fLastIndex + 1; i++ )
{
if( fLights.fEnabledFlags.IsBitSet(i) )
{
fD3DDevice->LightEnable(i, false);
fLights.fHoldFlags.SetBit(i);
}
}
fLights.fEnabledFlags.Clear();
}
// IRestoreSpanLights //////////////////////////////////////////////////////
// Re-enable all the lights disabled by the matching IDisableSpanLights.
void plDXPipeline::IRestoreSpanLights()
{
int i;
for( i = 0; i < fLights.fLastIndex + 1; i++ )
{
if( fLights.fHoldFlags.IsBitSet(i) )
{
fD3DDevice->LightEnable(i, true);
fLights.fEnabledFlags.SetBit(i);
}
}
fLights.fHoldFlags.Clear();
}
//// IScaleD3DLight ///////////////////////////////////////////////////////////
// Scale the D3D light by the given scale factor, used for fading lights
// in and out by importance.
void plDXPipeline::IScaleD3DLight( plDXLightRef *ref, hsScalar scale )
{
scale = int(scale * 1.e1f) * 1.e-1f;
if( ref->fScale != scale )
{
D3DLIGHT9 light = ref->fD3DInfo;
light.Diffuse.r *= scale;
light.Diffuse.g *= scale;
light.Diffuse.b *= scale;
light.Ambient.r *= scale;
light.Ambient.g *= scale;
light.Ambient.b *= scale;
light.Specular.r *= scale;
light.Specular.g *= scale;
light.Specular.b *= scale;
fD3DDevice->SetLight( ref->fD3DIndex, &light );
ref->fScale = scale;
}
}
// inlPlToDWORDColor /////////////////////////////////////////////////
// Convert a plasma floating point color to a D3D DWORD color
static inline DWORD inlPlToDWORDColor(const hsColorRGBA& c)
{
return (DWORD(c.a * 255.99f) << 24)
| (DWORD(c.r * 255.99f) << 16)
| (DWORD(c.g * 255.99f) << 8)
| (DWORD(c.b * 255.99f) << 0);
}
// inlPlToD3DColor ////////////////////////////////////////////////////
// Convert a plasma floating point color to a D3D floating point color.
inline D3DCOLORVALUE plDXPipeline::inlPlToD3DColor(const hsColorRGBA& c, float a) const
{
D3DCOLORVALUE ret;
ret.r = c.r;
ret.g = c.g;
ret.b = c.b;
ret.a = a;
return ret;
}
// inlEnsureLightingOn ////////////////////////////////////////////////
// Turn D3D lighting on if it isn't already.
inline void plDXPipeline::inlEnsureLightingOn()
{
if( !fCurrD3DLiteState )
{
fD3DDevice->SetRenderState( D3DRS_LIGHTING, TRUE );
fCurrD3DLiteState = true;
}
}
// inlEnsureLightingOff ///////////////////////////////////////////////
// Turn D3D lighting off if it isn't already.
inline void plDXPipeline::inlEnsureLightingOff()
{
if( fCurrD3DLiteState )
{
fD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE );
fCurrD3DLiteState = false;
}
}
// ColorMul ///////////////////////////////////////////////////////////
// Multiply a D3D floating point color by a plasma floating point color,
// returning the result as a D3D floating point color.
static inline D3DCOLORVALUE ColorMul(const D3DCOLORVALUE& c0, const hsColorRGBA& c1)
{
D3DCOLORVALUE ret;
ret.r = c0.r * c1.r;
ret.g = c0.g * c1.g;
ret.b = c0.b * c1.b;
ret.a = c0.a * c1.a;
return ret;
}
//// ICalcLighting ////////////////////////////////////////////////////////////
// Kind of misnamed. Sets the D3D material lighting model based on what we're
// currently doing.
void plDXPipeline::ICalcLighting( const plLayerInterface *currLayer, const plSpan *currSpan )
{
D3DMATERIAL9 mat;
static hsScalar diffScale = 1.f;
static hsScalar ambScale = 1.f;
UInt32 props;
plProfile_Inc(MatLightState);
/// New (temporary) lighting method:
/// The vertices now include the following:
/// diffuse = maxVertexColor * matDiffuse + matAmbient
/// specular = ( maxLighting + maxIllum ) * matDiffuse + matAmbient
/// And we want the lighting set up like:
/// L = I*v1 + v2 + (sigma)(light stuff * v3 + 0)
/// Where I = 0 for now (will be the environmental light constant eventually),
/// v1 is the diffuse vertex color and v2 is the specular vertex color.
/// So it basically translates into:
/// D3D ambient color = diffuse vertex color
/// D3D ambient constant = environmental light constant (0 for now)
/// D3D emissive color = specular vertex color
/// D3D diffuse color = diffuse vertex color
/// We now provide three lighting equations at the pipeline's disposal:
/// Material: (the one we all know and love)
/// MATd * VTXd + MATa +
/// Vtx preshaded: (particle systems)
/// MATa * VTXd + 0 +
/// Vtx non-preshaded:
/// white * VTXd + MATa +
/// We also have a few more for shadows and such, which are handled individually
memset( &mat, 0, sizeof( mat ) );
/// Normal rendering--select the right lighting equation
if (IsDebugFlagSet(plPipeDbg::kFlagAllBright))
{
inlEnsureLightingOn();
mat.Diffuse.r = mat.Diffuse.g = mat.Diffuse.b = mat.Diffuse.a = 1.f;
mat.Ambient.r = mat.Ambient.g = mat.Ambient.b = mat.Ambient.a = 1.f;
mat.Emissive.r = mat.Emissive.g = mat.Emissive.b = mat.Emissive.a = 1.f;
fD3DDevice->SetMaterial( &mat );
fD3DDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_AMBIENT, 0xffffffff );
return;
}
props = ( currSpan != nil ) ? ( currSpan->fProps & plSpan::kLiteMask ) : plSpan::kLiteMaterial;
if( fLayerState[0].fMiscFlags & hsGMatState::kMiscBumpChans )
{
props = plSpan::kLiteMaterial;
fLayerState[0].fShadeFlags |= hsGMatState::kShadeNoShade | hsGMatState::kShadeWhite;
}
/// Select one of our three lighting methods
switch( props )
{
case plSpan::kLiteMaterial: // Material shading
/// Material: (the one we all know and love)
/// MATd * VTXd + MATa +
inlEnsureLightingOn();
// D3D ambient - give it our material static diffuse, since it will be multiplied by the vertex color
if( fLayerState[0].fShadeFlags & hsGMatState::kShadeWhite )
{
mat.Ambient.r = mat.Ambient.g = mat.Ambient.b = diffScale;
mat.Ambient.a = 1.f;
}
else if (IsDebugFlagSet(plPipeDbg::kFlagNoPreShade))
{
mat.Ambient.r = mat.Ambient.g = mat.Ambient.b = 0;
mat.Ambient.a = 1.f;
}
else
mat.Ambient = inlPlToD3DColor(currLayer->GetPreshadeColor() * diffScale, 1.f);
// D3D diffuse - give it our runtime material diffuse
mat.Diffuse = inlPlToD3DColor(currLayer->GetRuntimeColor() * diffScale, currLayer->GetOpacity());
// D3D emissive - give it our material ambient
mat.Emissive = inlPlToD3DColor(currLayer->GetAmbientColor() * ambScale, 1.f);
// Set specular properties
if( fLayerState[0].fShadeFlags & hsGMatState::kShadeSpecular )
{
mat.Specular = inlPlToD3DColor( currLayer->GetSpecularColor(), 1.f);
mat.Power = currLayer->GetSpecularPower();
}
fD3DDevice->SetMaterial( &mat );
fD3DDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE, D3DMCS_MATERIAL );
if( fLayerState[0].fShadeFlags & hsGMatState::kShadeWhite )
fD3DDevice->SetRenderState( D3DRS_AMBIENT, 0xffffffff );
else
fD3DDevice->SetRenderState( D3DRS_AMBIENT, inlGetD3DColor( *(hsColorRGBA*)&mat.Ambient ) );
if( fLayerState[0].fShadeFlags & hsGMatState::kShadeNoShade )
fD3DDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE, D3DMCS_MATERIAL );
else
fD3DDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE, D3DMCS_COLOR1 );
fCurrLightingMethod = plSpan::kLiteMaterial;
break;
case plSpan::kLiteVtxPreshaded: // Vtx preshaded
// MATa * VTXd + 0 +
// Mapping to: GLa * AMSrc + EMSrc + <.....................DMSrc>
#if 0 // PARTICLESHADE
if( fLayerState[0].fShadeFlags & hsGMatState::kShadeEmissive )
{
inlEnsureLightingOff();
}
else
{
inlEnsureLightingOn();
// Set a black material (we ONLY care about vertex color when doing particles,
// er I mean, vtxPreshaded)
fD3DDevice->SetMaterial( &mat );
fD3DDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE, D3DMCS_COLOR1 );
fD3DDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_AMBIENT, 0 );
fD3DDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE, D3DMCS_MATERIAL );
}
#else // PARTICLESHADE
inlEnsureLightingOn();
// MATa * white + 0 +
fD3DDevice->SetMaterial( &mat );
fD3DDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE, D3DMCS_COLOR1 );
fD3DDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_AMBIENT, 0 );
fD3DDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE, D3DMCS_MATERIAL );
if( fLayerState[0].fShadeFlags & hsGMatState::kShadeEmissive )
fD3DDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE, D3DMCS_COLOR1 );
else
fD3DDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE, D3DMCS_MATERIAL );
#endif // PARTICLESHADE
fCurrLightingMethod = plSpan::kLiteVtxPreshaded;
break;
case plSpan::kLiteVtxNonPreshaded: // Vtx non-preshaded
// white * VTXd + MATa +
// Mapping to: GLa * AMSrc + EMSrc + <.....................DMSrc>
inlEnsureLightingOn();
// D3D emissive - give it our material ambient
mat.Emissive = inlPlToD3DColor(currLayer->GetAmbientColor() * ambScale, 1.f);
// Set specular properties
if( fLayerState[0].fShadeFlags & hsGMatState::kShadeSpecular )
{
mat.Specular = inlPlToD3DColor( currLayer->GetSpecularColor(), 1.f);
mat.Power = currLayer->GetSpecularPower();
}
fD3DDevice->SetMaterial( &mat );
// Lightmaps want WHITE here, otherwise we want BLACK
DWORD preShadeStrength;
preShadeStrength = inlPlToDWORDColor(currLayer->GetPreshadeColor());
fD3DDevice->SetRenderState(D3DRS_AMBIENT, preShadeStrength);
fD3DDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE, D3DMCS_COLOR1 );
fD3DDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE, D3DMCS_COLOR1 );
fD3DDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE, D3DMCS_MATERIAL );
fCurrLightingMethod = plSpan::kLiteVtxNonPreshaded;
break;
default:
hsAssert( false, "Bad lighting type" );
break;
}
}
///////////////////////////////////////////////////////////////////////////////
//// plDXLightSettings Functions /////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
plDXLightSettings::plDXLightSettings()
: fActiveList(nil),
fRefList(nil),
fPipeline(nil)
{
}
//// Reset ////////////////////////////////////////////////////////////////////
// Sets member variables to initial states.
void plDXLightSettings::Reset( plDXPipeline *pipe )
{
Release();
fNextShadowLight = 0;
fUsedFlags.Clear();
fEnabledFlags.Clear();
fHoldFlags.Clear();
fProjEach.Reset();
fProjAll.Reset();
fNextIndex = 1; /// Light 0 is reserved
fLastIndex = 1;
fTime = 0;
fRefList = nil;
fPipeline = pipe;
}
//// Release //////////////////////////////////////////////////////////////////
// Releases/deletes anything associated with these settings.
// This includes unregistering all lights.
void plDXLightSettings::Release()
{
plDXLightRef *ref;
fProjEach.Reset();
fProjAll.Reset();
while( fRefList )
{
ref = fRefList;
ref->Release();
ref->Unlink();
}
// Tell the light infos to unlink themselves
while( fActiveList )
fPipeline->UnRegisterLight( fActiveList );
fShadowLights.SetCount(fShadowLights.GetNumAlloc());
int i;
for( i = 0; i < fShadowLights.GetCount(); i++ )
{
hsRefCnt_SafeUnRef(fShadowLights[i]);
fShadowLights[i] = nil;
}
fShadowLights.SetCount(0);
}
//// ReserveD3DIndex //////////////////////////////////////////////////////////
// Reserve a D3D light index.
UInt32 plDXLightSettings::ReserveD3DIndex()
{
for( ; fNextIndex < (UInt32)-1; fNextIndex++ )
{
if( !fUsedFlags.IsBitSet( fNextIndex ) )
break;
}
fUsedFlags.SetBit( fNextIndex );
fEnabledFlags.ClearBit( fNextIndex ); // Ensure it's cleared
fHoldFlags.ClearBit( fNextIndex );
if( fNextIndex > fLastIndex )
fLastIndex = fNextIndex;
return fNextIndex;
}
//// ReleaseD3DIndex //////////////////////////////////////////////////////////
// Release a reserved D3D light index to be reused.
void plDXLightSettings::ReleaseD3DIndex( UInt32 idx )
{
fUsedFlags.SetBit( idx, false );
if( fNextIndex > idx )
fNextIndex = idx; // Forces search to start here next time
// Dec down fLastIndex
while( fLastIndex > 0 && !fUsedFlags.IsBitSet( fLastIndex ) )
fLastIndex--;
if( fNextIndex > fLastIndex )
fNextIndex = fLastIndex;
}
///////////////////////////////////////////////////////////////////////////////
//// Materials ////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// ISetLayer ////////////////////////////////////////////////////////////////
// Sets whether we're rendering a base layer or upper layer. Upper layer has
// a Z bias to avoid Z fighting.
void plDXPipeline::ISetLayer( UInt32 lay )
{
if( lay )
{
if( fCurrRenderLayer != lay )
{
fCurrRenderLayer = lay;
plCONST(int) kBiasMult = 8;
if( !( fSettings.fD3DCaps & kCapsZBias ) )
IProjectionMatrixToD3D();
else
fD3DDevice->SetRenderState( D3DRS_DEPTHBIAS, kBiasMult * fCurrRenderLayer );
}
}
else
IBottomLayer();
}
//// IBottomLayer /////////////////////////////////////////////////////////////
// Turn off any Z bias.
void plDXPipeline::IBottomLayer()
{
if( fCurrRenderLayer != 0 )
{
fCurrRenderLayer = 0;
if( !( fSettings.fD3DCaps & kCapsZBias ) )
IProjectionMatrixToD3D();
else
fD3DDevice->SetRenderState( D3DRS_DEPTHBIAS, 0 );
}
}
// Special effects /////////////////////////////////////////////////////////////
// IPushOverBaseLayer /////////////////////////////////////////////////////////
// Sets fOverBaseLayer (if any) as a wrapper on top of input layer.
// This allows the OverBaseLayer to intercept and modify queries of
// the real current layer's properties (e.g. color or state).
// fOverBaseLayer is set to only get applied to the base layer during
// multitexturing.
// Must be matched with call to IPopOverBaseLayer.
plLayerInterface* plDXPipeline::IPushOverBaseLayer(plLayerInterface* li)
{
if( !li )
return nil;
fOverLayerStack.Push(li);
if( !fOverBaseLayer )
return fOverBaseLayer = li;
fForceMatHandle = true;
fOverBaseLayer = fOverBaseLayer->Attach(li);
fOverBaseLayer->Eval(fTime, fFrame, 0);
return fOverBaseLayer;
}
// IPopOverBaseLayer /////////////////////////////////////////////////////////
// Removes fOverBaseLayer as wrapper on top of input layer.
// Should match calls to IPushOverBaseLayer.
plLayerInterface* plDXPipeline::IPopOverBaseLayer(plLayerInterface* li)
{
if( !li )
return nil;
fForceMatHandle = true;
plLayerInterface* pop = fOverLayerStack.Pop();
fOverBaseLayer = fOverBaseLayer->Detach(pop);
return pop;
}
// IPushOverAllLayer ///////////////////////////////////////////////////
// Push fOverAllLayer (if any) as wrapper around the input layer.
// fOverAllLayer is set to be applied to each layer during multitexturing.
// Must be matched by call to IPopOverAllLayer
plLayerInterface* plDXPipeline::IPushOverAllLayer(plLayerInterface* li)
{
if( !li )
return nil;
fOverLayerStack.Push(li);
if( !fOverAllLayer )
{
fOverAllLayer = li;
fOverAllLayer->Eval(fTime, fFrame, 0);
return fOverAllLayer;
}
fForceMatHandle = true;
fOverAllLayer = fOverAllLayer->Attach(li);
fOverAllLayer->Eval(fTime, fFrame, 0);
return fOverAllLayer;
}
// IPopOverAllLayer //////////////////////////////////////////////////
// Remove fOverAllLayer as wrapper on top of input layer.
// Should match calls to IPushOverAllLayer.
plLayerInterface* plDXPipeline::IPopOverAllLayer(plLayerInterface* li)
{
if( !li )
return nil;
fForceMatHandle = true;
plLayerInterface* pop = fOverLayerStack.Pop();
fOverAllLayer = fOverAllLayer->Detach(pop);
return pop;
}
// PiggyBacks - used in techniques like projective lighting.
// PiggyBacks are layers appended to each drawprimitive pass.
// For example, if a material has 3 layers which will be drawn
// in 2 passes,
// pass0: layer0+layer1
// pass1: layer2
// Then if a piggyback layer layerPB is active, the actual rendering would be
// pass0: layer0+layer1+layerPB
// pass1: layer2 + layerPB
// ISetNumActivePiggyBacks /////////////////////////////////////////////
// Calculate the number of active piggy backs.
int plDXPipeline::ISetNumActivePiggyBacks()
{
return fActivePiggyBacks = hsMinimum(fSettings.fMaxPiggyBacks, fPiggyBackStack.GetCount());
}
// IPushProjPiggyBack //////////////////////////////////////////////////
// Push a projected texture on as a piggy back.
void plDXPipeline::IPushProjPiggyBack(plLayerInterface* li)
{
if( fView.fRenderState & plPipeline::kRenderNoPiggyBacks )
return;
fPiggyBackStack.Push(li);
fActivePiggyBacks = fPiggyBackStack.GetCount() - fMatPiggyBacks;
fForceMatHandle = true;
}
// IPopProjPiggyBacks /////////////////////////////////////////////////
// Remove a projected texture from use as a piggy back.
void plDXPipeline::IPopProjPiggyBacks()
{
if( fView.fRenderState & plPipeline::kRenderNoPiggyBacks )
return;
fPiggyBackStack.SetCount(fMatPiggyBacks);
ISetNumActivePiggyBacks();
fForceMatHandle = true;
}
// IPushPiggyBacks ////////////////////////////////////////////////////
// Push any piggy backs associated with a material, presumed to
// be a light map because that's all they are used for.
// Matched with IPopPiggyBacks
void plDXPipeline::IPushPiggyBacks(hsGMaterial* mat)
{
hsAssert(!fMatPiggyBacks, "Push/Pop Piggy mismatch");
if( fView.fRenderState & plPipeline::kRenderNoPiggyBacks )
return;
int i;
for( i = 0; i < mat->GetNumPiggyBacks(); i++ )
{
if( !mat->GetPiggyBack(i) )
continue;
if ((mat->GetPiggyBack(i)->GetMiscFlags() & hsGMatState::kMiscLightMap)
&& IsDebugFlagSet(plPipeDbg::kFlagNoLightmaps))
continue;
fPiggyBackStack.Push(mat->GetPiggyBack(i));
fMatPiggyBacks++;
}
ISetNumActivePiggyBacks();
fForceMatHandle = true;
}
// IPopPiggyBacks ///////////////////////////////////////////////////////
// Pop any current piggy backs set from IPushPiggyBacks.
// Matches IPushPiggyBacks.
void plDXPipeline::IPopPiggyBacks()
{
if( fView.fRenderState & plPipeline::kRenderNoPiggyBacks )
return;
fPiggyBackStack.SetCount(fPiggyBackStack.GetCount() - fMatPiggyBacks);
fMatPiggyBacks = 0;
ISetNumActivePiggyBacks();
fForceMatHandle = true;
}
//// IHandleMaterial //////////////////////////////////////////////////////////
// Takes the starting "layer" and uses as many layers as possible in the given
// material and sets up the device to draw with it. Returns the first layer
// index not yet used. (I.e. if we ate layers 0 and 1, it'll return 2).
// A return value of -1 means don't bother rendering.
Int32 plDXPipeline::IHandleMaterial( hsGMaterial *newMat, UInt32 layer, const plSpan *currSpan )
{
// No material means no draw.
if( !newMat && newMat->GetLayer(layer) )
return -1;
// If this is a bump mapping pass but the object isn't currently runtime lit, just skip.
// Note that may change here, if we're skipping past the bump layers but there
// are more layers (passes) to do after that.
if( ISkipBumpMap(newMat, layer, currSpan) )
{
return -1;
}
// Workaround for the ATI Radeon 7500's inability to use uvw coordinates above 1.
// If we have a layer trying to use uvw 2 or higher, skip it and any layers bound to
// it.
while( (layer < newMat->GetNumLayers())
&& newMat->GetLayer(layer)
&& ((newMat->GetLayer(layer)->GetUVWSrc() & 0xf) > fSettings.fMaxUVWSrc) )
{
if( newMat->GetLayer(layer)->GetMiscFlags() & hsGMatState::kMiscBindNext )
layer++;
layer++;
}
if( layer >= newMat->GetNumLayers() )
return -1;
// If nothing has changed, we don't need to recompute and set state.
if( !fForceMatHandle && (newMat == fCurrMaterial && layer == fCurrLayerIdx) )
{
// Before returning, check if we have to redo our lighting
UInt32 lightType = ( currSpan != nil ) ? ( currSpan->fProps & plSpan::kLiteMask ) : plSpan::kLiteMaterial;
if( lightType != fCurrLightingMethod )
ICalcLighting( fCurrLay, currSpan );
if( fLayerState[0].fMiscFlags & (hsGMatState::kMiscBumpDu|hsGMatState::kMiscBumpDw) )
ISetBumpMatrices(fCurrLay, currSpan);
return layer + fCurrNumLayers;
}
fForceMatHandle = false;
fCurrLayerIdx = layer;
// fCurrNumLayers = newMat->GetNumLayers();
if (newMat != fCurrMaterial)
plProfile_Inc(MatChange);
plProfile_Inc(LayChange);
/// Test for fail states
if (IsDebugFlagSet(plPipeDbg::kFlagNoDecals) && (newMat->GetCompositeFlags() & hsGMaterial::kCompDecal))
{
return -1;
}
/// Workaround for a D3D limitation--you're not allowed to render with a texture that you're
/// rendering INTO. Hence we can't have self-reflecting cubicRenderTargets (damn)
if( fSettings.fCurrBaseRenderTarget != nil &&
newMat->GetLayer( layer )->GetTexture() == plBitmap::ConvertNoRef( fSettings.fCurrBaseRenderTarget ) )
{
return -1;
}
/// Figure out our current states
// Start with the base layer.
plLayerInterface *currLay = IPushOverBaseLayer(newMat->GetLayer(layer));
if (IsDebugFlagSet(plPipeDbg::kFlagBumpW) && (currLay->GetMiscFlags() & hsGMatState::kMiscBumpDu) )
currLay = newMat->GetLayer(fCurrLayerIdx = ++layer);
currLay = IPushOverAllLayer(currLay);
/// Save stuff for next time around
ICompositeLayerState(0, currLay);
hsRefCnt_SafeAssign( fCurrMaterial, newMat );
fCurrLayerIdx = layer;
fCurrLay = currLay;
if (IsDebugFlagSet(plPipeDbg::kFlagDisableSpecular))
fLayerState[0].fShadeFlags &= ~hsGMatState::kShadeSpecular;
// ZIncLayer requests Z bias for upper layers.
if( fLayerState[0].fZFlags & hsGMatState::kZIncLayer )
ISetLayer( 1 );
else
IBottomLayer();
/// A few debugging things
if (IsDebugFlagSet(plPipeDbg::kFlagNoAlphaBlending))
fLayerState[0].fBlendFlags &= ~hsGMatState::kBlendMask;
if ((IsDebugFlagSet(plPipeDbg::kFlagBumpUV) || IsDebugFlagSet(plPipeDbg::kFlagBumpW)) && (fLayerState[0].fMiscFlags & hsGMatState::kMiscBumpChans) )
{
switch( fLayerState[0].fMiscFlags & hsGMatState::kMiscBumpChans )
{
case hsGMatState::kMiscBumpDu:
break;
case hsGMatState::kMiscBumpDv:
if( !(fCurrMaterial->GetLayer(layer-2)->GetBlendFlags() & hsGMatState::kBlendAdd) )
{
fLayerState[0].fBlendFlags &= ~hsGMatState::kBlendMask;
fLayerState[0].fBlendFlags |= hsGMatState::kBlendMADD;
}
break;
case hsGMatState::kMiscBumpDw:
if( !(fCurrMaterial->GetLayer(layer-1)->GetBlendFlags() & hsGMatState::kBlendAdd) )
{
fLayerState[0].fBlendFlags &= ~hsGMatState::kBlendMask;
fLayerState[0].fBlendFlags |= hsGMatState::kBlendMADD;
}
break;
default:
break;
}
}
/// Get the # of layers we can draw in this pass into fCurrNumLayers
int oldNumLayers = fCurrNumLayers;
ILayersAtOnce( newMat, layer );
if( oldNumLayers != fCurrNumLayers )
{
// This hack is necessary to cover a hack necessary to cover a "limitation" in the GeForce2 drivers.
// Basically, we have to handle NoTexAlpha/Color differently if it's stage 1 than other stages,
// so even though the BlendFlags haven't changed, the calls to D3D are different. Another
// way to handle this would be to have a different handler based on whether we are 2 TMU limited
// or not, but whatever.
if( fLayerState[1].fBlendFlags & (hsGMatState::kBlendNoTexAlpha | hsGMatState::kBlendNoTexColor) )
fLayerState[1].fBlendFlags = UInt32(-1);
}
// Placed here, since it's material-dependent (or more accurately, current-layer-dependent)
ICalcLighting( currLay, currSpan );
// If we're bump mapping, compute the texture transforms.
if( fLayerState[0].fMiscFlags & (hsGMatState::kMiscBumpDu|hsGMatState::kMiscBumpDw) )
ISetBumpMatrices(currLay, currSpan);
/// Transfer states to D3D now
IHandleFirstTextureStage( currLay );
currLay = IPopOverAllLayer(currLay);
currLay = IPopOverBaseLayer(currLay);
fCurrLay = currLay;
int nextLayer = fCurrLayerIdx + fCurrNumLayers;
if (IsDebugFlagSet(plPipeDbg::kFlagBumpW) && (fLayerState[0].fMiscFlags & hsGMatState::kMiscBumpDw) )
{
// Bump mapping approximation using only the W (normal direction) component of lighting.
plLayerInterface* layPtr = IPushOverAllLayer(newMat->GetLayer(fCurrLayerIdx + 2));
if( !layPtr )
return -1;
ICompositeLayerState(1, layPtr);
IHandleTextureStage( 1, layPtr );
layPtr = IPopOverAllLayer(layPtr);
nextLayer = fCurrLayerIdx + 3;
}
else if (IsDebugFlagSet(plPipeDbg::kFlagBumpUV) && (fLayerState[0].fMiscFlags & hsGMatState::kMiscBumpDu) )
{
// Bump mapping approximation using only the UV (surface tangent directions) component of lighting.
plLayerInterface* layPtr = IPushOverAllLayer(newMat->GetLayer(fCurrLayerIdx + 3));
if( !layPtr )
return -1;
ICompositeLayerState(1, layPtr);
IHandleTextureStage( 1, layPtr );
layPtr = IPopOverAllLayer(layPtr);
nextLayer = fCurrLayerIdx + 2;
}
else
{
// Normal multi texturing.
/// Loop through all multitexturing layers
int i;
if( fView.fRenderState & plPipeline::kRenderBaseLayerOnly )
nextLayer = newMat->GetNumLayers();
for( i = 1; i < fCurrNumLayers; i++ )
{
plLayerInterface* layPtr = newMat->GetLayer( fCurrLayerIdx + i );
if( !layPtr )
return -1;
// Can't render into a render target using same rendertarget as a texture.
if( fSettings.fCurrBaseRenderTarget
&&
layPtr->GetTexture() == (plBitmap*)(fSettings.fCurrBaseRenderTarget) )
{
// Oops, just bail
return -1;
}
layPtr = IPushOverAllLayer(layPtr);
ICompositeLayerState(i, layPtr);
IHandleTextureStage( i, layPtr );
layPtr = IPopOverAllLayer(layPtr);
}
}
// More cleanup for the DX9.0c 2 texture limitation. See ILayersAtOnce()
if (fSettings.fMaxLayersAtOnce == 2)
{
if ((fLayerState[0].fBlendFlags & hsGMatState::kBlendAdd)
&& (newMat->GetNumLayers() > fCurrLayerIdx + 1)
&& (newMat->GetLayer(fCurrLayerIdx + 1)->GetUVWSrc() & plLayerInterface::kUVWPosition))
{
// If we're doing additive blending and the next layer is based on position,
// it's probably a distance fade. We'd rather have our diffuse color.
// ILayersAtOnce will already have told us we can't use it this pass.
// Skip it so it won't draw on its own next pass.
nextLayer++;
}
}
int numActivePiggyBacks = 0;
if( !(fLayerState[0].fMiscFlags & hsGMatState::kMiscBumpChans) && !(fLayerState[0].fShadeFlags & hsGMatState::kShadeEmissive) )
{
/// Tack lightmap onto last stage if we have one
numActivePiggyBacks = fActivePiggyBacks;
if( numActivePiggyBacks > fSettings.fMaxLayersAtOnce - fCurrNumLayers )
numActivePiggyBacks = fSettings.fMaxLayersAtOnce - fCurrNumLayers;
if( numActivePiggyBacks )
{
int i;
for( i = 0; i < numActivePiggyBacks; i++ )
{
// Note that we take piggybacks off the end of fPiggyBackStack.
plLayerInterface* layPtr = IPushOverAllLayer( fPiggyBackStack[fPiggyBackStack.GetCount()-1-i] );
if( !layPtr )
return -1;
ICompositeLayerState(fCurrNumLayers+i, layPtr);
IHandleTextureStage( fCurrNumLayers+i, layPtr );
layPtr = IPopOverAllLayer(layPtr);
}
// If we've got a piggyback, plus two layers that must be drawn together, but
// only two TMU's to work with, we're screwed. Someone has got to get skipped and
// hope no one notices. Typically, the first (base) layer has the color info,
// and the second the opacity. So we'll try using the projection to brighten
// the color, ignoring the opacity.
// if( ((fCurrNumLayers + numActivePiggyBacks) == fSettings.fMaxLayersAtOnce)
// && (fLayerState[0].fMiscFlags & hsGMatState::kMiscBindNext) )
if( (fLayerState[0].fMiscFlags & hsGMatState::kMiscBindNext)
&& (fCurrNumLayers < 2) )
nextLayer++;
}
}
// Declare we won't be using any more texture stages.
IStageStop( fCurrNumLayers + numActivePiggyBacks );
return nextLayer;
}
// ICompositeLayerState /////////////////////////////////////////////////////////////////
// Set the current Plasma state based on the input layer state and the material overrides.
// fMatOverOn overrides to set a state bit whether it is set in the layer or not.
// fMatOverOff overrides to clear a state bit whether it is set in the layer or not.
const hsGMatState& plDXPipeline::ICompositeLayerState(int which, plLayerInterface* layer)
{
fOldLayerState[which] = fLayerState[which];
fLayerState[which].Composite(layer->GetState(), fMatOverOn, fMatOverOff);
if( fOldLayerState[which].fBlendFlags == UInt32(-1) )
fOldLayerState[which].fBlendFlags = ~fLayerState[which].fBlendFlags;
return fLayerState[which];
}
//// IHandleFirstTextureStage /////////////////////////////////////////////////
// Convert internal material state to D3D state for the base layer.
void plDXPipeline::IHandleFirstTextureStage( plLayerInterface *layer )
{
IHandleTextureMode(layer);
IHandleShadeMode();
if( fLayerState[0].Differs( fLayerState[0].fZFlags, fOldLayerState[0].fZFlags, hsGMatState::kZMask ) )
IHandleZMode();
IHandleMiscMode();
IHandleTextureStage( 0, layer );
}
//// IHandleShadeMode /////////////////////////////////////////////////////////
// Convert shade state into D3D settings.
void plDXPipeline::IHandleShadeMode()
{
if( fLayerState[0].Differs( fLayerState[0].fShadeFlags, fOldLayerState[0].fShadeFlags, hsGMatState::kShadeSpecular ) )
{
if( fLayerState[0].fShadeFlags & hsGMatState::kShadeSpecular )
fD3DDevice->SetRenderState( D3DRS_SPECULARENABLE, TRUE );
else
fD3DDevice->SetRenderState( D3DRS_SPECULARENABLE, FALSE );
}
}
//// IHandleZMode /////////////////////////////////////////////////////////////
// Convert Z state into D3D settings.
void plDXPipeline::IHandleZMode()
{
switch( fLayerState[0].fZFlags & hsGMatState::kZMask )
{
case hsGMatState::kZClearZ:
fD3DDevice->SetRenderState( D3DRS_ZFUNC, D3DCMP_ALWAYS );
fD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE );
break;
case hsGMatState::kZNoZRead:
fD3DDevice->SetRenderState( D3DRS_ZFUNC, D3DCMP_ALWAYS );
fD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE );
break;
case hsGMatState::kZNoZWrite:
fD3DDevice->SetRenderState( D3DRS_ZFUNC, D3DCMP_LESSEQUAL );
fD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE );
break;
case hsGMatState::kZNoZRead | hsGMatState::kZClearZ:
fD3DDevice->SetRenderState( D3DRS_ZFUNC, D3DCMP_ALWAYS );
fD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE );
break;
case hsGMatState::kZNoZRead | hsGMatState::kZNoZWrite:
fD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE );
fD3DDevice->SetRenderState( D3DRS_ZFUNC, D3DCMP_ALWAYS );
break;
case 0:
fD3DDevice->SetRenderState( D3DRS_ZFUNC, D3DCMP_LESSEQUAL );
fD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE );
break;
// illegal combinations
case hsGMatState::kZClearZ | hsGMatState::kZNoZWrite:
case hsGMatState::kZClearZ | hsGMatState::kZNoZWrite | hsGMatState::kZNoZRead:
hsAssert(false, "Illegal combination of Z Buffer modes (Clear but don't write)");
break;
}
}
//// IHandleMiscMode //////////////////////////////////////////////////////////
// Convert Misc state into D3D settings.
void plDXPipeline::IHandleMiscMode()
{
if( fLayerState[0].Differs(fLayerState[0].fMiscFlags, fOldLayerState[0].fMiscFlags, hsGMatState::kMiscWireFrame) )
{
if( fLayerState[0].fMiscFlags & hsGMatState::kMiscWireFrame )
fD3DDevice->SetRenderState( D3DRS_FILLMODE, D3DFILL_WIREFRAME );
else
fD3DDevice->SetRenderState( D3DRS_FILLMODE, D3DFILL_SOLID );
}
}
//// IHandleTextureStage //////////////////////////////////////////////////////
// Issue D3D calls to enable rendering the given layer at the given texture stage.
void plDXPipeline::IHandleTextureStage( UInt32 stage, plLayerInterface *layer )
{
hsGDeviceRef *ref = nil;
plBitmap *texture;
// Blend mode
const hsGMatState& layState = fLayerState[stage];
if( fLayerState[ stage ].fBlendFlags ^ fOldLayerState[stage].fBlendFlags )
IHandleStageBlend(stage);
// Texture wrap/clamp mode
if( fLayerState[ stage ].fClampFlags ^ fOldLayerState[stage].fClampFlags )
IHandleStageClamp(stage);
// UVW transform
IHandleStageTransform( stage, layer );
// Create the D3D texture (if necessary) and set it to the device.
if( ( texture = layer->GetTexture() ) != nil )
{
ref = texture->GetDeviceRef();
if( ref == nil || ref->IsDirty() )
{
// Normal textures
plMipmap *mip;
plCubicEnvironmap *cubic;
if( ( mip = plMipmap::ConvertNoRef( texture ) ) != nil )
ref = MakeTextureRef( layer, mip );
// Cubic environment maps
else if( ( cubic = plCubicEnvironmap::ConvertNoRef( texture ) ) != nil )
ref = IMakeCubicTextureRef( layer, cubic );
}
}
if( ref != nil )
IUseTextureRef(stage, ref, layer);
else
{
fD3DDevice->SetTexture( stage, NULL );
hsRefCnt_SafeUnRef( fLayerRef[ stage ] );
fLayerRef[ stage ] = nil;
}
}
// CheckTextureRef //////////////////////////////////////////////////////
// Make sure the given layer's texture has background D3D resources allocated.
void plDXPipeline::CheckTextureRef(plLayerInterface* layer)
{
plBitmap* bitmap = layer->GetTexture();
if( bitmap )
{
hsGDeviceRef* ref = bitmap->GetDeviceRef();
if( !ref )
{
plMipmap* mip = plMipmap::ConvertNoRef(bitmap);
if( mip )
{
MakeTextureRef(layer, mip);
return;
}
plCubicEnvironmap* cubic = plCubicEnvironmap::ConvertNoRef(bitmap);
if( cubic )
{
IMakeCubicTextureRef(layer, cubic);
return;
}
}
}
}
// IHandleBumpEnv //////////////////////////////////////////////////////////////
// D3D settings for BUMPENVMAPLUMINANCE.
// This has never been used in production assets, because I never got
// a good effect out of it, and BUMPENVMAPLUMINANCE isn't universally
// supported in hardware.
void plDXPipeline::IHandleBumpEnv(int stage, UInt32 blendFlags)
{
DWORD current = stage ? D3DTA_CURRENT : D3DTA_DIFFUSE;
UInt32 colorSrc = blendFlags & hsGMatState::kBlendInvertColor ? D3DTA_TEXTURE | D3DTA_COMPLEMENT : D3DTA_TEXTURE;
fD3DDevice->SetTextureStageState(stage, D3DTSS_COLOROP, D3DTOP_BUMPENVMAPLUMINANCE);
fD3DDevice->SetTextureStageState(stage, D3DTSS_COLORARG1, colorSrc);
fD3DDevice->SetTextureStageState(stage, D3DTSS_COLORARG2, current);
fD3DDevice->SetTextureStageState(stage, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2);
fD3DDevice->SetTextureStageState(stage, D3DTSS_ALPHAARG2, D3DTA_CURRENT);
const hsMatrix44& envXfm = fCurrLay->GetBumpEnvMatrix();
fD3DDevice->SetTextureStageState(stage, D3DTSS_BUMPENVMAT00, F2DW(envXfm.fMap[0][0]));
fD3DDevice->SetTextureStageState(stage, D3DTSS_BUMPENVMAT01, F2DW(envXfm.fMap[1][0]));
fD3DDevice->SetTextureStageState(stage, D3DTSS_BUMPENVMAT10, F2DW(envXfm.fMap[0][1]));
fD3DDevice->SetTextureStageState(stage, D3DTSS_BUMPENVMAT11, F2DW(envXfm.fMap[1][1]));
fD3DDevice->SetTextureStageState(stage, D3DTSS_BUMPENVLSCALE, F2DW(envXfm.fMap[2][2]));
fD3DDevice->SetTextureStageState(stage, D3DTSS_BUMPENVLOFFSET, F2DW(envXfm.fMap[2][3]));
}
//// IHandleStageBlend ////////////////////////////////////////////////////////
// Translate current blend state for this stage into D3D settings.
void plDXPipeline::IHandleStageBlend(int stage)
{
const UInt32 blendFlags = fLayerState[stage].fBlendFlags;
// If it's the base layer, handle that differently, because it's not really
// texture stage settings, but frame buffer blend settings.
if( stage == 0 )
{
IHandleFirstStageBlend();
return;
}
UInt32 colorSrc = D3DTA_TEXTURE;
if( blendFlags & hsGMatState::kBlendInvertColor )
colorSrc |= D3DTA_COMPLEMENT ;
// kBlendEnvBumpNext not really used.
if( blendFlags & hsGMatState::kBlendEnvBumpNext )
{
IHandleBumpEnv(stage, blendFlags);
}
else switch( blendFlags & hsGMatState::kBlendMask )
{
// Alpha blending. Complicated by the ability to ignore either
// color or alpha for any given texture. The lower end GeForces
// don't orthogonally support settings, especially when the final
// (3rd) stage is the diffuse color/alpha modulate and the board
// really only wants to support 2 stages.
// So we couldn't just translate our internal plasma stage states
// into D3D states, we had to do some rearranging.
// Note that by the time we get here, we _know_ that this isn't the
// base layer (stage 0), because that's handled elsewhere.
case hsGMatState::kBlendAlpha:
// If the current number of layers is 2, then we've already handled the
// base layer, so this must be layer 1 and the final layer.
// If the base layer has NoTexColor or this layer has NoTexColor, we need
// to do some rearranging.
if( (fCurrNumLayers == 2)
&&((blendFlags | fLayerState[0].fBlendFlags) & hsGMatState::kBlendNoTexColor) )
{
// If this layer AND base layer are NoTexColor, then we just want the diffuse color.
if( (blendFlags & hsGMatState::kBlendNoTexColor)
&&(fLayerState[0].fBlendFlags & hsGMatState::kBlendNoTexColor) )
{
// select diffuse color
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG2, D3DTA_DIFFUSE );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLOROP, D3DTOP_SELECTARG2 );
}
// If the base layer has NoTexColor but this layer doesn't, then we
// want the output to be this texture color times diffuse (ignoring base texture color).
else if( fLayerState[0].fBlendFlags & hsGMatState::kBlendNoTexColor )
{
// diffuse is arg2, modulate
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG1, colorSrc );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG2, D3DTA_DIFFUSE );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLOROP, D3DTOP_MODULATE );
}
// If base layer doesn't have NoTexColor, but this layer does, then
// we want the output to be diffuse times base texture, which is in current.
else if( blendFlags & hsGMatState::kBlendNoTexColor )
{
// diffuse is arg1, modulate
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG1, D3DTA_DIFFUSE );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG2, D3DTA_CURRENT );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLOROP, D3DTOP_MODULATE );
}
}
// If we get here and this layer has NoTexColor, then we MUST be on a layer
// above 1, which means we're on an advanced enough board to handle this orthogonally,
// i.e. one with more than 2 texture stages.
else if( blendFlags & hsGMatState::kBlendNoTexColor )
{
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG2, D3DTA_CURRENT );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLOROP, D3DTOP_SELECTARG2 );
}
// Finally, no NoTexColor in sight, just set it.
else
{
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG1, colorSrc );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG2, D3DTA_CURRENT );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLOROP,
blendFlags & hsGMatState::kBlendInvertAlpha
? D3DTOP_MODULATEINVALPHA_ADDCOLOR
: D3DTOP_BLENDTEXTUREALPHA );
}
// The same ordeal for alpha, and the ability to ignore the alpha on any texture.
// Note the additional logic for how to combine the alphas of multiple textures
// into a final FB alpha.
// This is orthogonal to using the alpha to combine colors of two different textures.
// The default behavior is to use the upper texture alpha to blend the upper layer color
// with the lower texture color, but retain the lower texture alpha (modulated by diffuse)
// for the frame buffer alpha.
switch( blendFlags & ( hsGMatState::kBlendAlphaAdd | hsGMatState::kBlendAlphaMult ) )
{
default:
case 0:
// Using alpha to blend textures, but this layer's alpha doesn't affect final FB
// alpha.
// Two layer setup with one or the other (or both) ignoring alpha.
if( (fCurrNumLayers == 2)
&&((blendFlags | fLayerState[0].fBlendFlags) & hsGMatState::kBlendNoTexAlpha) )
{
// Both ignoring alpha, use diffuse.
if( (blendFlags & hsGMatState::kBlendNoTexAlpha)
&&(fLayerState[0].fBlendFlags & hsGMatState::kBlendNoTexAlpha) )
{
// select diffuse alpha
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2 );
}
// Base ignoring alpha, use diffuse times this texure alpha.
else if( fLayerState[0].fBlendFlags & hsGMatState::kBlendNoTexAlpha )
{
// diffuse is arg2, modulate
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_MODULATE );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG1,
blendFlags & hsGMatState::kBlendInvertAlpha
? D3DTA_TEXTURE | D3DTA_COMPLEMENT
: D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE );
}
// This ignoring alpha, use diffuse times base alpha (in current).
else if( blendFlags & hsGMatState::kBlendNoTexAlpha )
{
// diffuse is arg1, modulate
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_MODULATE );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_CURRENT );
}
}
// Ignoring alpha or not, with more than 2 texture stages,
// Either way, we'll ignore this texture's alpha, because it's an upper layer
// and has already been used (if it's going to get used) to blend this texture's
// color with the lower layers.
else
{
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2 );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_CURRENT );
}
break;
// Alpha coming out of this stage is lower stage alpha plus this texture alpha.
case hsGMatState::kBlendAlphaAdd:
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_ADD );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG1,
blendFlags & hsGMatState::kBlendInvertAlpha
? D3DTA_TEXTURE | D3DTA_COMPLEMENT
: D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_CURRENT );
break;
// Alpha coming out of this stage is lower stage alpha times this texture alpha.
case hsGMatState::kBlendAlphaMult:
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_MODULATE );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG1,
blendFlags & hsGMatState::kBlendInvertAlpha
? D3DTA_TEXTURE | D3DTA_COMPLEMENT
: D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_CURRENT );
break;
}
break;
// Add texture colors, pass through current alpha.
case hsGMatState::kBlendAdd:
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG1, colorSrc );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG2, D3DTA_CURRENT );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLOROP, D3DTOP_ADD );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2 );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_CURRENT );
break;
// Multiply texture colors, pass through current alpha
case hsGMatState::kBlendMult:
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG1, colorSrc );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG2, D3DTA_CURRENT );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLOROP, D3DTOP_MODULATE );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2 );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_CURRENT );
if (fSettings.fMaxLayersAtOnce == 2 && stage == 1)
{
// On these boards, the only way we can do 2 textures plus diffuse is to
// multiply it in during stage 0, but that only gives the same result
// when doing a mult blend, which we won't know when setting up stage 0.
// Now that we know, adjust stage 0 settings.
fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);
fD3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
}
break;
// Dot3 texture colors, pass through current alpha.
case hsGMatState::kBlendDot3:
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG1, colorSrc );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG2, D3DTA_CURRENT );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLOROP, D3DTOP_DOTPRODUCT3 );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2 );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_CURRENT );
break;
// Add signed texture colors, pass through current alpha.
case hsGMatState::kBlendAddSigned:
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG1, colorSrc );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG2, D3DTA_CURRENT );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLOROP, D3DTOP_ADDSIGNED );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2 );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_CURRENT );
break;
// Add signed * 2 texture colors, pass through current alpha.
case hsGMatState::kBlendAddSigned2X:
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG1, colorSrc );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG2, D3DTA_CURRENT );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLOROP, D3DTOP_ADDSIGNED2X );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2 );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_CURRENT );
break;
// kBlendAddColorTimesAlpha is only supported for the base layer.
case hsGMatState::kBlendAddColorTimesAlpha:
hsAssert(false, "Blend mode unsupported on upper layers");
break;
// No blend, select this texture color and pass through current alpha
case 0:
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG1, colorSrc );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLORARG2, D3DTA_CURRENT );
fD3DDevice->SetTextureStageState( stage, D3DTSS_COLOROP, D3DTOP_SELECTARG1 );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2 );
fD3DDevice->SetTextureStageState( stage, D3DTSS_ALPHAARG2, D3DTA_CURRENT );
break;
}
}
//// IHandleFirstStageBlend ///////////////////////////////////////////////////
// Set frame buffer blend mode for blending the base layer
// For the case of rendering to a texture with alpha, the alpha written to
// the render target will be computed exactly as the color (limitation of D3D).
void plDXPipeline::IHandleFirstStageBlend()
{
// No color, just writing out Z values.
if( fLayerState[0].fBlendFlags & hsGMatState::kBlendNoColor )
{
fD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE );
fD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_ZERO );
fD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_ONE );
fLayerState[0].fBlendFlags |= 0x80000000;
}
else
{
switch( fLayerState[0].fBlendFlags & hsGMatState::kBlendMask )
{
// Detail is just a special case of alpha, handled in construction of the texture
// mip chain by making higher levels of the chain more transparent.
case hsGMatState::kBlendDetail:
case hsGMatState::kBlendAlpha:
fD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE );
if( fLayerState[0].fBlendFlags & hsGMatState::kBlendInvertFinalAlpha )
{
fD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_INVSRCALPHA );
fD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_SRCALPHA );
}
else
{
fD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_SRCALPHA );
fD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA );
}
break;
// Multiply the final color onto the frame buffer.
case hsGMatState::kBlendMult:
fD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE );
if( fLayerState[0].fBlendFlags & hsGMatState::kBlendInvertFinalColor )
{
fD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_ZERO );
fD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCCOLOR );
}
else
{
fD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_ZERO );
fD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_SRCCOLOR );
}
break;
// Add final color to FB.
case hsGMatState::kBlendAdd:
fD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE );
fD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_ONE );
fD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_ONE );
break;
// Multiply final color by FB color and add it into the FB.
case hsGMatState::kBlendMADD:
fD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE );
fD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_DESTCOLOR );
fD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_ONE );
break;
// Final color times final alpha, added into the FB.
case hsGMatState::kBlendAddColorTimesAlpha:
fD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE );
if( fLayerState[0].fBlendFlags & hsGMatState::kBlendInvertFinalAlpha )
fD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_INVSRCALPHA );
else
fD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_SRCALPHA );
fD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_ONE );
break;
// Overwrite final color onto FB
case 0:
fD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE );
fD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_ONE );
fD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_ZERO );
break;
default:
{
hsAssert(false, "Too many blend modes specified in material");
plLayer* lay = plLayer::ConvertNoRef(fCurrMaterial->GetLayer(fCurrLayerIdx)->BottomOfStack());
if( lay )
{
if( lay->GetBlendFlags() & hsGMatState::kBlendAlpha )
{
lay->SetBlendFlags((lay->GetBlendFlags() & ~hsGMatState::kBlendMask) | hsGMatState::kBlendAlpha);
}
else
{
lay->SetBlendFlags((lay->GetBlendFlags() & ~hsGMatState::kBlendMask) | hsGMatState::kBlendAdd);
}
}
}
break;
}
}
// Blend ops, not currently used in production.
if( fLayerState[0].Differs( fLayerState[0].fBlendFlags, fOldLayerState[0].fBlendFlags, (hsGMatState::kBlendSubtract | hsGMatState::kBlendRevSubtract) ) )
{
if( fLayerState[0].fBlendFlags & hsGMatState::kBlendSubtract )
fD3DDevice->SetRenderState( D3DRS_BLENDOP, D3DBLENDOP_SUBTRACT );
else if( fLayerState[0].fBlendFlags & hsGMatState::kBlendRevSubtract )
fD3DDevice->SetRenderState( D3DRS_BLENDOP, D3DBLENDOP_REVSUBTRACT );
else
fD3DDevice->SetRenderState( D3DRS_BLENDOP, D3DBLENDOP_ADD );
}
// AlphaTestHigh is used for reducing sort artifacts on textures that are mostly opaque or transparent, but
// have regions of translucency in transition. Like a texture for a bush billboard. It lets there be some
// transparency falloff, but quit drawing before it gets so transparent that draw order problems (halos)
// become apparent.
if( fLayerState[0].Differs( fLayerState[0].fBlendFlags, fOldLayerState[0].fBlendFlags, hsGMatState::kBlendAlphaTestHigh) )
{
plConst(UInt32) kHighAlphaTest(0x40);
if( fLayerState[0].fBlendFlags & hsGMatState::kBlendAlphaTestHigh )
fD3DDevice->SetRenderState(D3DRS_ALPHAREF, kHighAlphaTest);
else
fD3DDevice->SetRenderState(D3DRS_ALPHAREF, 0x00000001);
}
// Set the alpha test function, turn on for alpha blending, else off.
if( fLayerState[0].Differs( fLayerState[0].fBlendFlags, fOldLayerState[0].fBlendFlags, hsGMatState::kBlendAlpha | hsGMatState::kBlendTest | hsGMatState::kBlendAlphaAlways | hsGMatState::kBlendAddColorTimesAlpha) )
{
if( (fLayerState[0].fBlendFlags & (hsGMatState::kBlendAlpha | hsGMatState::kBlendTest | hsGMatState::kBlendAddColorTimesAlpha))
&& !(fLayerState[0].fBlendFlags & hsGMatState::kBlendAlphaAlways) )
fD3DDevice->SetRenderState( D3DRS_ALPHAFUNC, D3DCMP_GREATER );
else
fD3DDevice->SetRenderState( D3DRS_ALPHAFUNC, D3DCMP_ALWAYS );
}
// Adjust the fog color based on the blend mode. Setting fog color to black for additive modes is
// an exact solution, setting it to white for multipication is as close of an approximation to correct
// as you're going to get with DX.
if( fLayerState[0].Differs( fLayerState[0].fBlendFlags, fOldLayerState[0].fBlendFlags, hsGMatState::kBlendAdd | hsGMatState::kBlendMult | hsGMatState::kBlendMADD | hsGMatState::kBlendAddColorTimesAlpha ) )
{
if( fLayerState[0].fBlendFlags & (hsGMatState::kBlendAdd | hsGMatState::kBlendMADD | hsGMatState::kBlendAddColorTimesAlpha) )
fD3DDevice->SetRenderState( D3DRS_FOGCOLOR, 0 );
else if( fLayerState[0].fBlendFlags & hsGMatState::kBlendMult )
fD3DDevice->SetRenderState( D3DRS_FOGCOLOR, 0xffffffff );
else
fD3DDevice->SetRenderState( D3DRS_FOGCOLOR, fCurrFog.fHexColor );
}
}
//// IHandleTextureMode ///////////////////////////////////////////////////////
// Handle the texture stage state for the base layer.
void plDXPipeline::IHandleTextureMode(plLayerInterface* layer)
{
plBitmap *bitmap = layer->GetTexture();
if( bitmap )
{
// EnvBumpNext not used in production.
if( fLayerState[0].fBlendFlags & hsGMatState::kBlendEnvBumpNext )
{
IHandleBumpEnv(0, fLayerState[0].fBlendFlags);
}
// If the texture stage settings have changed. Note that this
// is a bad test, we should just be doing something like keeping
// an array of D3D TextureStageStates as we set them and checking against
// that directly rather than trying to infer from higher level state
// whether we need to make the D3D call.
else if( fSettings.fVeryAnnoyingTextureInvalidFlag
|| !fTexturing
|| ( fLayerState[ 0 ].fBlendFlags ^ fOldLayerState[0].fBlendFlags )
|| ( fCurrNumLayers + fActivePiggyBacks != fLastEndingStage )
)
{
// If we're only doing one layer, just modulate texture color by diffuse and we're done.
if( ( fCurrNumLayers + fActivePiggyBacks ) <= 1 )
{
// See IHandleStageBlend for notes on NoTexColor.
if( fLayerState[0].fBlendFlags & hsGMatState::kBlendNoTexColor )
fD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_SELECTARG2 );
else
fD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_MODULATE );
fD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1,
fLayerState[0].fBlendFlags & hsGMatState::kBlendInvertColor
? D3DTA_TEXTURE | D3DTA_COMPLEMENT
: D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE );
}
else
{
// See the check in IHandleStageBlend for fSettings.fMaxLayersAtOnce == 2.
// It depends on these settings and adjusts what it needs.
// Multitexturing, select texture color to make its way upstream on stages.
fD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_SELECTARG1 );
fD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1,
fLayerState[0].fBlendFlags & hsGMatState::kBlendInvertColor
? D3DTA_TEXTURE | D3DTA_COMPLEMENT
: D3DTA_TEXTURE);
// If our NoTexColor setting has changed, for a refresh of blend state on the next stage
// since it's affected by our NoTexColor state.
if( fLayerState[0].Differs( fLayerState[0].fBlendFlags, fOldLayerState[0].fBlendFlags, hsGMatState::kBlendNoTexColor) )
fLayerState[1].fBlendFlags = UInt32(-1);
}
// Alpha Arg1 is texture alpha (possibly complemented), and Arg2 is diffuse (possibly complemented).
// If we want to ignore vertex alpha, select arg1
// If we want to ignore texture alpha, select arg2
// Otherwise (and normally) multiply the two.
fD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP,
fLayerState[0].fBlendFlags & hsGMatState::kBlendNoVtxAlpha
? D3DTOP_SELECTARG1
: fLayerState[0].fBlendFlags & hsGMatState::kBlendNoTexAlpha
? D3DTOP_SELECTARG2
: D3DTOP_MODULATE );
fD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1,
fLayerState[0].fBlendFlags & hsGMatState::kBlendInvertAlpha
? D3DTA_TEXTURE | D3DTA_COMPLEMENT
: D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE |
( fLayerState[0].fBlendFlags & hsGMatState::kBlendInvertVtxAlpha
? D3DTA_COMPLEMENT
: 0 ) );
fTexturing = true;
}
}
// Here we've no texture for the base layer, but we have more than layer.
// Select diffuse color and alpha, and pretend we have a texture but we're ignoring its
// color and alpha.
else if( fCurrNumLayers + fActivePiggyBacks > 1 )
{
fLayerState[0].fBlendFlags |= hsGMatState::kBlendNoTexColor | hsGMatState::kBlendNoTexAlpha;
fD3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG2);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2);
fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_DIFFUSE);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE);
if( fLayerState[0].Differs( fLayerState[0].fBlendFlags, fOldLayerState[0].fBlendFlags, (hsGMatState::kBlendNoTexColor|hsGMatState::kBlendNoTexAlpha)) )
fLayerState[1].fBlendFlags = UInt32(-1);
fTexturing = false;
}
// Finally, a color only (non-textured) pass. Just select diffuse.
else
{
if( fTexturing || fSettings.fVeryAnnoyingTextureInvalidFlag )
{
fD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_SELECTARG1 );
fD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 );
fD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_DIFFUSE );
fD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE |
( fLayerState[0].fBlendFlags & hsGMatState::kBlendInvertVtxAlpha ? D3DTA_COMPLEMENT : 0 ) );
fTexturing = false;
}
}
fSettings.fVeryAnnoyingTextureInvalidFlag = false;
}
//// IHandleStageClamp ////////////////////////////////////////////////////////
// Translate our current wrap/clamp mode to D3D calls.
void plDXPipeline::IHandleStageClamp(int stage)
{
const UInt32 flags = fLayerState[stage].fClampFlags;
switch( flags )
{
case 0:
fD3DDevice->SetSamplerState( stage, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP );
fD3DDevice->SetSamplerState( stage, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP );
break;
case hsGMatState::kClampTextureU:
fD3DDevice->SetSamplerState( stage, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP );
fD3DDevice->SetSamplerState( stage, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP );
break;
case hsGMatState::kClampTextureV:
fD3DDevice->SetSamplerState( stage, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP );
fD3DDevice->SetSamplerState( stage, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP );
break;
case hsGMatState::kClampTexture:
fD3DDevice->SetSamplerState( stage, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP );
fD3DDevice->SetSamplerState( stage, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP );
break;
}
}
void plDXPipeline::ISetBumpMatrices(const plLayerInterface* layer, const plSpan* span)
{
//#define BUMP_COMPARE_MATH
#ifdef BUMP_COMPARE_MATH
// This section is just debugging, to compute the matrices that will be set.
static hsMatrix44 preMDu;
static hsMatrix44 preMDv;
static hsMatrix44 preMDw;
static int preMInit = false;
if( !preMInit )
{
hsMatrix44 rotAndCollapseToX;
int i, j;
for( i = 0; i < 4; i++ )
{
for( j = 0; j < 4; j++ )
{
rotAndCollapseToX.fMap[i][j] = 0;
}
}
rotAndCollapseToX.fMap[0][2] = 1.f;
rotAndCollapseToX.fMap[3][3] = 1.f;
rotAndCollapseToX.NotIdentity();
hsMatrix44 offset;
offset.Reset();
offset.fMap[0][0] = 0.5f;
offset.fMap[0][3] = 0.5f;
offset.NotIdentity();
preMDu = offset * rotAndCollapseToX;
offset.fMap[1][3] = 0.5f;
preMDv = offset * rotAndCollapseToX;
offset.fMap[1][3] = 1.f;
preMDw = offset * rotAndCollapseToX;
preMInit = true;
}
hsMatrix44 localToLight = span->GetLight(0, false)->GetWorldToLight() * span->fLocalToWorld;
localToLight.fMap[0][3] = localToLight.fMap[1][3] = localToLight.fMap[2][3] = 0;
fBumpDuMatrix = preMDu * localToLight;
fBumpDvMatrix = preMDv * localToLight;
hsMatrix44 c2w = fView.fCameraToWorld;
hsMatrix44 cameraToLight = span->GetLight(0, false)->GetWorldToLight() * c2w;
cameraToLight.fMap[0][3] = cameraToLight.fMap[1][3] = cameraToLight.fMap[2][3] = 0;
fBumpDwMatrix = preMDw * cameraToLight;
// HACK PART - FOR COMPARISON
hsMatrix44 bDu = fBumpDuMatrix;
hsMatrix44 bDv = fBumpDvMatrix;
hsMatrix44 bDw = fBumpDwMatrix;
static hsMatrix44 zeroMatrix;
fBumpDuMatrix = zeroMatrix;
fBumpDvMatrix = zeroMatrix;
fBumpDwMatrix = zeroMatrix;
// HACK PART - FOR COMPARISON
#endif // BUMP_COMPARE_MATH
// Here's the math
// The incoming uv coordinate is either:
// kMiscBumpDu - dPos/dU (in other words, the direction in space from this vertex where U increases and V remains constant) in local space.
// kMiscBumpDv - dPos/dV (in other words, the direction in space from this vertex where V increases and U remains constant) in local space.
// kMiscBumpDw - the normal in camera space.
//
// In each case, we need to transform the vector (uvw coord) into light space, and dot it with the light direction.
// Well, in light space, the light direction is always (0,0,1).
// So really, we just transform the vector into light space, and the z component is what we want.
// Then, for each of these, we take that z value (the dot product) and put it into a color channel.
// R = dPos/dU dot liDir
// G = dPos/dV dot liDir
// B = dPos/dW dot liDir
//
// That's what we want, here's how we get it.
// Here, Li(vec) means the vector in light space, Loc(vec) is local space, Tan(vec) is tangent space
//
// Li(uvw) = local2Light * Loc(uvw) (uvw comes in in local space, ie input uvw == Loc(uvw)
// Then we want to:
// a) Rotate the Z component to be along X (U) axis
// b) Zero out the new Y and Z
// c) Scale and offset our new X (the old Z) so -1 => 0, 1 => 1 (scale by 0.5, add 0.5).
// The following matrix does all this (it's just a concatenation of the above 3 simple matrices).
// M = |0 0 0.5 0.5|
// |0 0 0 0 |
// |0 0 0 0 |
// |0 0 0 1 |
//
// Our lookup texture that these transformed coords will read into has three horizontal bands,
// the bottom 3rd is a ramp along U of 0->red
// middle 3rd is a ramp along U of 0->green
// last third (highest V) is a ramp along U of 0->blue.
// So we can do the conversion from our dot to a color with an appropriate V offset in the above M.
//
// dPos/dU and dPos/dV are both input in local space, so the transform to get them into light space is
// the same for each, and that's obviously WorldToLight * LocalToWorld.
// That's a little inconvenient and inefficient. It's inconvenient, because for an omni light, we
// can easily fake a light direction (span position - light position), but the full matrix is kind
// of arbitrary. We could fake it, but instead we move on. It's inefficient because, looking at the
// form of matrix M, we know we'll be throwing away a lot of it anyway. So we work through the matrix
// math and find that we're going to wind up with:
//
// M1 = | M[0][2] * loc2li[2][0] M[0][2] * loc2li[2][1] M[0][2] * loc2li[2][2] 0.5 |
// | 0 0 0 0 |
// | 0 0 0 0 |
// | 0 0 0 1 |
//
// So all we really need is loc2li[2] (row 2). A little more matrix math gives us:
//
// loc2li[2] = (w2li[2] dot loc2wT[0], w2li[2] dot loc2wT[1], w2li[2] dot loc2wT[2]) (where loc2wT is Transpose(loc2w)
//
// And hey, that's just dependent on the light's direction w2li[2]. The same thing works out for dPos/dW, except
// substitue cam2w for loc2w (since input is in camera space instead of world space).
//
// And that's about it. We don't actually have to multiply all those matrices at run-time, because
// we know what the answer will be anyway. We just construct the matrices, making sure we set the
// appropriate translate for V to get each into the right color channel. The hardware does the three
// uv transforms and lookups, sums the results, and the output is:
// (dPos/dU dot liDir, dPos/dV dot liDir, dPos/dW dot liDir), which also happens to be the light direction
// transformed into tangent space. We dot that with our bump map (which has the normals in tangent space),
// and we've got per-pixel shading for this light direction.
hsPoint3 spanPos = span->fWorldBounds.GetCenter();
hsVector3 liDir(0,0,0);
int i;
const hsTArray& spanLights = span->GetLightList(false);
hsScalar maxStrength = 0;
for( i = 0; i < spanLights.GetCount(); i++ )
{
hsScalar liWgt = span->GetLightStrength(i, false);
// A light strength of 2.f means it's from a light group, and we haven't actually calculated
// the strength. So calculate it now.
if( liWgt == 2.f )
{
hsScalar scale;
spanLights[i]->GetStrengthAndScale(span->fWorldBounds, liWgt, scale);
}
if( liWgt > maxStrength )
maxStrength = liWgt;
liDir += spanLights[i]->GetNegativeWorldDirection(spanPos) * liWgt;
}
hsFastMath::NormalizeAppr(liDir);
static hsScalar kUVWScale = 1.f;
hsScalar uvwScale = kUVWScale;
if( fLayerState[0].fBlendFlags & hsGMatState::kBlendAdd )
{
hsVector3 cam2span(&GetViewPositionWorld(), &spanPos);
hsFastMath::NormalizeAppr(cam2span);
liDir += cam2span;
hsFastMath::NormalizeAppr(liDir);
static hsScalar kSpecularMax = 0.1f;
static hsScalar kSpecularMaxUV = 0.5f;
if (IsDebugFlagSet(plPipeDbg::kFlagBumpUV))
uvwScale *= kSpecularMaxUV;
else
uvwScale *= kSpecularMax;
}
switch( fCurrMaterial->GetLayer(fCurrLayerIdx)->GetMiscFlags() & hsGMatState::kMiscBumpChans )
{
case hsGMatState::kMiscBumpDu:
uvwScale *= fCurrMaterial->GetLayer(fCurrLayerIdx+3)->GetRuntimeColor().r;
break;
case hsGMatState::kMiscBumpDv: // This currently should never happen
uvwScale *= fCurrMaterial->GetLayer(fCurrLayerIdx+1)->GetRuntimeColor().r;
break;
case hsGMatState::kMiscBumpDw:
uvwScale *= fCurrMaterial->GetLayer(fCurrLayerIdx+2)->GetRuntimeColor().r;
break;
}
maxStrength *= 20.f;
if( maxStrength > 1.f )
maxStrength = 1.f;
liDir *= uvwScale * maxStrength;
const hsScalar kUVWOffset = 0.5f;
hsScalar kOffsetToRed;
hsScalar kOffsetToGreen;
hsScalar kOffsetToBlue;
if (IsDebugFlagSet(plPipeDbg::kFlagBumpUV) || IsDebugFlagSet(plPipeDbg::kFlagBumpW))
{
kOffsetToRed = 0.2f;
kOffsetToGreen = 0.6f;
kOffsetToBlue = 1.f;
}
else
{
kOffsetToRed = 0.f;
kOffsetToGreen = 0.4f;
kOffsetToBlue = 0.8f;
}
const hsMatrix44& l2w = span->fLocalToWorld;
fBumpDvMatrix.fMap[0][0] = fBumpDuMatrix.fMap[0][0] = (liDir.fX * l2w.fMap[0][0] + liDir.fY * l2w.fMap[1][0] + liDir.fZ * l2w.fMap[2][0]);
fBumpDvMatrix.fMap[0][1] = fBumpDuMatrix.fMap[0][1] = (liDir.fX * l2w.fMap[0][1] + liDir.fY * l2w.fMap[1][1] + liDir.fZ * l2w.fMap[2][1]);
fBumpDvMatrix.fMap[0][2] = fBumpDuMatrix.fMap[0][2] = (liDir.fX * l2w.fMap[0][2] + liDir.fY * l2w.fMap[1][2] + liDir.fZ * l2w.fMap[2][2]);
fBumpDvMatrix.fMap[0][3] = fBumpDuMatrix.fMap[0][3] = kUVWOffset;
fBumpDuMatrix.fMap[1][3] = kOffsetToRed;
fBumpDvMatrix.fMap[1][3] = kOffsetToGreen;
#ifndef BUMP_COMPARE_MATH
hsMatrix44 c2w = fView.GetCameraToWorld();
#endif // BUMP_COMPARE_MATH
// The bump textures created so far have very strong blue components, which make anything
// bump mapped glow. The ideal fix would be to have the artists adjust the blue component
// to a better (lower) value, so there would be a little extra illumination where the bump
// is straight out into the normal direction, to complement the lateral illumination.
// Attempts so far have been unsuccessful in getting them to get a better understanding
// of bump maps, so I've just zeroed out the contribution in the normal direction.
plConst(int) kBumpUVOnly(true);
if( !kBumpUVOnly )
{
fBumpDwMatrix.fMap[0][0] = (liDir.fX * c2w.fMap[0][0] + liDir.fY * c2w.fMap[1][0] + liDir.fZ * c2w.fMap[2][0]);
fBumpDwMatrix.fMap[0][1] = (liDir.fX * c2w.fMap[0][1] + liDir.fY * c2w.fMap[1][1] + liDir.fZ * c2w.fMap[2][1]);
fBumpDwMatrix.fMap[0][2] = (liDir.fX * c2w.fMap[0][2] + liDir.fY * c2w.fMap[1][2] + liDir.fZ * c2w.fMap[2][2]);
}
else
{
fBumpDwMatrix.fMap[0][0] = 0;
fBumpDwMatrix.fMap[0][1] = 0;
fBumpDwMatrix.fMap[0][2] = 0;
}
fBumpDwMatrix.fMap[0][3] = kUVWOffset;
fBumpDwMatrix.fMap[1][3] = kOffsetToBlue;
}
// IGetBumpMatrix ///////////////////////////////////////////////////////
// Return the correct uvw transform for the bump map channel implied
// in the miscFlags. The matrices have been previously set in ISetBumpMatrices.
const hsMatrix44& plDXPipeline::IGetBumpMatrix(UInt32 miscFlags) const
{
switch( miscFlags & hsGMatState::kMiscBumpChans )
{
case hsGMatState::kMiscBumpDu:
return fBumpDuMatrix;
case hsGMatState::kMiscBumpDv:
return fBumpDvMatrix;
case hsGMatState::kMiscBumpDw:
default:
return fBumpDwMatrix;
}
}
// ISkipBumpMap /////////////////////////////////////////////////////////////////////////
// Determine whether to skip bumpmapping on this object/material/layer combination.
// We skip if the span isn't illuminated by any lights, or bump mapping is disabled.
// If skipping, we advance past the bump layers.
// If there are no more layers after that, we return true (to abort further rendering of currSpan),
// else false to continue rendering.
hsBool plDXPipeline::ISkipBumpMap(hsGMaterial* newMat, UInt32& layer, const plSpan* currSpan) const
{
if( newMat && currSpan )
{
if (newMat->GetLayer(layer)
&&(newMat->GetLayer(layer)->GetMiscFlags() & hsGMatState::kMiscBumpChans)
&&(!currSpan->GetNumLights(false) || IsDebugFlagSet(plPipeDbg::kFlagNoBump)) )
{
layer += 4;
if( layer >= newMat->GetNumLayers() )
return true;
}
}
return false;
}
//// IHandleStageTransform ////////////////////////////////////////////////////
// Compute and set the UVW transform to D3D.
// This only gets interesting if the transform is dependent on on the current camera transform,
// as is the case with Reflection, Projection, or bump mapping.
void plDXPipeline::IHandleStageTransform( int stage, plLayerInterface *layer )
{
if( 1
|| !(layer->GetTransform().fFlags & hsMatrix44::kIsIdent)
|| (fLayerState[stage].fMiscFlags & (hsGMatState::kMiscUseReflectionXform|hsGMatState::kMiscUseRefractionXform|hsGMatState::kMiscProjection|hsGMatState::kMiscBumpChans)) )
{
D3DXMATRIX tXfm;
if( fLayerState[stage].fMiscFlags & (hsGMatState::kMiscUseReflectionXform | hsGMatState::kMiscUseRefractionXform) )
{
// Reflection - this is just the camera to world, with translation removed,
// and rotated to match cube map conventions.
hsMatrix44 c2env = fView.GetCameraToWorld();
c2env = fView.GetCameraToWorld();
c2env.fMap[0][3]
= c2env.fMap[1][3]
= c2env.fMap[2][3]
= 0.f;
if( fLayerState[stage].fMiscFlags & hsGMatState::kMiscUseReflectionXform )
{
// This is just a rotation about X of Pi/2 (y = z, z = -y),
// followed by flipping Z to reflect back towards us (z = -z).
hsScalar t = c2env.fMap[1][0];
c2env.fMap[1][0] = c2env.fMap[2][0];
c2env.fMap[2][0] = t;
t = c2env.fMap[1][1];
c2env.fMap[1][1] = c2env.fMap[2][1];
c2env.fMap[2][1] = t;
t = c2env.fMap[1][2];
c2env.fMap[1][2] = c2env.fMap[2][2];
c2env.fMap[2][2] = t;
}
else // must be kMiscUseRefractionXform
{
// Okay, I know this refraction isn't any where near
// right, so don't sit down and try to figure out the
// math and hook it to the refractive index.
// It's just a hack that will fool anyone that isn't
// really paying attention.
// This is just a rotation about X of Pi/2 (y = z, z = -y),
// followed by NOT flipping Z to reflect back towards us (z = -z).
// In other words, same as reflection, but then c2env = c2env * scaleMatNegateZ.
hsScalar t = c2env.fMap[1][0];
c2env.fMap[1][0] = c2env.fMap[2][0];
c2env.fMap[2][0] = t;
t = c2env.fMap[1][1];
c2env.fMap[1][1] = c2env.fMap[2][1];
c2env.fMap[2][1] = t;
t = c2env.fMap[1][2];
c2env.fMap[1][2] = c2env.fMap[2][2];
c2env.fMap[2][2] = t;
c2env.fMap[0][2] = -c2env.fMap[0][2];
c2env.fMap[1][2] = -c2env.fMap[1][2];
c2env.fMap[2][2] = -c2env.fMap[2][2];
#if 0
const hsScalar kFishEyeScale = 0.5f;
// You can adjust the fish-eye-ness of this by scaling
// X and Y as well. Eventually, you wind up with the same
// as c2env * scaleMatXYAndNegateZ, but this is shorter.
// kFishEyeScale gets pretty fish-eye at about 0.5, and
// like you're looking through the wrong end of a telescope
// at about 1.5.
// Ideally kFishEyeScale would be a parameter of the layer.
c2env.fMap[0][0] *= kFishEyeScale;
c2env.fMap[1][0] *= kFishEyeScale;
c2env.fMap[2][0] *= kFishEyeScale;
c2env.fMap[0][1] *= kFishEyeScale;
c2env.fMap[1][1] *= kFishEyeScale;
c2env.fMap[2][1] *= kFishEyeScale;
#endif
}
IMatrix44ToD3DMatrix( tXfm, c2env );
}
// cam2Screen will also have the kMiscPerspProjection flag set, so this needs
// to go before the regular kMiscProjection check.
else if (fLayerState[stage].fMiscFlags & hsGMatState::kMiscCam2Screen )
{
// Still needs a bit of cleaning...
static hsVector3 camScale(0.5f, -0.5f, 1.f);
static hsVector3 camTrans(0.5f, 0.5f, 0.f);
hsMatrix44 p2s;
p2s.MakeScaleMat(&camScale);
p2s.fMap[0][3] += camTrans.fX;
p2s.fMap[1][3] += camTrans.fY;
// The scale and trans move us from NDC to Screen space. We need to swap
// the Z and W coordinates so that the texture projection will divide by W
// and give us projected 2D coordinates.
hsScalar temp = p2s.fMap[2][2];
p2s.fMap[2][2] = p2s.fMap[3][2];
p2s.fMap[3][2] = temp;
temp = p2s.fMap[2][3];
p2s.fMap[2][3] = p2s.fMap[3][3];
p2s.fMap[3][3] = temp;
IMatrix44ToD3DMatrix(tXfm, p2s * IGetCameraToNDC());
}
else if( fLayerState[stage].fMiscFlags & hsGMatState::kMiscProjection )
{
// For projection, the worldToLight transform is in the layer transform,
// so we append the cameraToWorld, getting cameraToLight
hsMatrix44 c2w = fView.GetCameraToWorld();
if( !(layer->GetUVWSrc() & plLayerInterface::kUVWPosition) )
{
c2w.fMap[0][3] = 0;
c2w.fMap[1][3] = 0;
c2w.fMap[2][3] = 0;
}
// We've already stuffed the worldToLight transform into the layer.
hsMatrix44 c2l = layer->GetTransform() * c2w;
IMatrix44ToD3DMatrix(tXfm, c2l);
}
else if( fLayerState[stage].fMiscFlags & hsGMatState::kMiscBumpChans )
{
// Bump matrices are already set, just get the right one and stuff it in.
hsMatrix44 m = IGetBumpMatrix(fLayerState[stage].fMiscFlags);
IMatrix44ToD3DMatrix(tXfm, m);
}
else
{
// Just put take the layer transform and stuff it in.
IMatrix44ToD3DMatrix( tXfm, layer->GetTransform() );
}
fD3DDevice->SetTransform( sTextureStages[ stage ], &tXfm );
fLayerTransform[ stage ] = true;
}
else if( fLayerTransform[ stage ] )
{
// We'd like to just turn it off, but the Voodoo board freaks if the
// texture coordinates are 3-tuple for no apparent reason.
fD3DDevice->SetTransform( sTextureStages[ stage ], &d3dIdentityMatrix );
fLayerTransform[ stage ] = false;
}
// If there's an lod bias associated with the layer, set it here.
// There usually isn't.
float newBias = fLayerState[stage].fZFlags & hsGMatState::kZLODBias ? layer->GetLODBias() : fTweaks.fDefaultLODBias;
if( newBias != fLayerLODBias[ stage ] )
{
fLayerLODBias[ stage ] = newBias;
fD3DDevice->SetSamplerState( stage, D3DSAMP_MIPMAPLODBIAS, *(DWORD*)(&fLayerLODBias[ stage ]) );
}
}
//// IUseTextureRef ///////////////////////////////////////////////////////////
// Set the texturing flags and texture.
void plDXPipeline::IUseTextureRef( int stage, hsGDeviceRef *dRef, plLayerInterface* layer )
{
plDXTextureRef *ref = (plDXTextureRef *)dRef;
UInt32 xformFlags;
UInt32 uvwSrc = layer->GetUVWSrc();
// Keep track of how much managed memory has been "seen" since the last
// evict, for that NVidia bug. Look for OSVERSIONINFO for more notes.
if( ref->fUseTime <= fEvictTime )
fManagedSeen += ref->fDataSize;
// Also used for the same thing.
if( ref->fUseTime ^ fTextUseTime )
{
plProfile_NewMem(CurrTex, ref->fDataSize);
plProfile_Inc(NumTex);
ref->fUseTime = fTextUseTime;
fTexUsed += ref->fDataSize;
}
// DX pixel shaders require the TEXCOORDINDEX to be equal to the stage,
// even though its ignored.
if( layer->GetPixelShader() && (stage != uvwSrc) )
uvwSrc = stage;
// Update our UVW source
if( fLayerUVWSrcs[ stage ] != uvwSrc )
{
fD3DDevice->SetTextureStageState( stage, D3DTSS_TEXCOORDINDEX, uvwSrc );
fLayerUVWSrcs[ stage ] = uvwSrc;
}
if (!layer->GetVertexShader() && !layer->GetPixelShader())
{
/// Set the transform flags
/// Note: the perspective projection flag must be taken from the layer, since it's layer-specific.
/// Storing it on the texture ref is bad, because the texture ref can be shared among layers whose
/// projection flags might not match. This should probably be cleaned up, but for now this fixes the
/// problem.
if( ref->GetFlags() & plDXTextureRef::kCubicMap )
xformFlags = D3DTTFF_COUNT3;
else if( layer->GetMiscFlags() & hsGMatState::kMiscPerspProjection )
xformFlags = D3DTTFF_COUNT3 | D3DTTFF_PROJECTED;
else
xformFlags = D3DTTFF_COUNT2;
if( xformFlags != fLayerXformFlags[ stage ] )
{
fLayerXformFlags[ stage ] = xformFlags;
fD3DDevice->SetTextureStageState( stage, D3DTSS_TEXTURETRANSFORMFLAGS, xformFlags );
}
}
// Update our current ref
if( !ref->fD3DTexture )
{
if( ref->fData )
IReloadTexture( ref );
}
else if( dRef == fLayerRef[ stage ] )
{
return;
}
hsRefCnt_SafeAssign( fLayerRef[ stage ], dRef );
/// Actually make it active!
fD3DDevice->SetTexture( stage, ref->fD3DTexture );
}
//// IStageStop ///////////////////////////////////////////////////////////////
// Tell the hardware we won't be using any more stages.
// This is more complicated than it sounds. Cases:
// a) single texture stage, we're done (because we've already set
// texture times diffuse), so just disable stage 1.
// b) we have 2 stages active.
// b.0) we're skipping texture color on one of those 2 stages. In that
// case, we've already modulated in our diffuse, so just
// disable stage 2.
// b.1) we're using texture color from both stages 0 and 1, and still need
// to modulate in diffuse. So set stage 2 to modulate in diffuse,
// and disable stage 3.
// c) we have 3 or more stages active. Append a modulation by diffuse
// Note that this only applies to color, because diffuse alpha is always modulated
// in from the start.
void plDXPipeline::IStageStop( UInt32 stage )
{
int disableStage = stage;
// Note: even if we don't have a texture, we handle it similar to if we had one,
// so the only special case we need here is if we only had one stage to set up -mcn
if( ( stage <= 1 ) )
{
fD3DDevice->SetTextureStageState(stage, D3DTSS_COLOROP, D3DTOP_DISABLE);
fD3DDevice->SetTextureStageState(stage, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
fLayerState[ stage ].fBlendFlags = UInt32(-1);
disableStage = stage;
}
else if( stage == 2 )
{
// The fMaxLayersAtOnce == 2 check is for the DX9.0c 2 texture limitation.
// See ILayersAtOnce()
if ((fLayerState[0].fBlendFlags & hsGMatState::kBlendNoTexColor)
|| (fLayerState[1].fBlendFlags & hsGMatState::kBlendNoTexColor)
|| fSettings.fMaxLayersAtOnce == 2)
{
fD3DDevice->SetTextureStageState(2, D3DTSS_COLOROP, D3DTOP_DISABLE);
disableStage = 2;
}
else
{
fD3DDevice->SetTextureStageState(2, D3DTSS_COLOROP, D3DTOP_MODULATE);
fD3DDevice->SetTextureStageState(2, D3DTSS_COLORARG1, D3DTA_DIFFUSE);
fD3DDevice->SetTextureStageState(2, D3DTSS_COLORARG2, D3DTA_CURRENT);
fD3DDevice->SetTextureStageState(3, D3DTSS_COLOROP, D3DTOP_DISABLE);
disableStage = 3;
}
fD3DDevice->SetTextureStageState(2, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
fLayerState[2].fBlendFlags = UInt32(-1);
fLayerState[3].fBlendFlags = UInt32(-1);
}
else
{
// This is directly contrary to the DX documentation, but in line with
// the code generated by MFCTex (which works). The docs say:
// "Alpha operations cannot be disabled when color operations are enabled.
// Setting the alpha operation to D3DTOP_DISABLE when color blending
// is enabled causes undefined behavior."
// But not disabling the earliest possible alpha stage causes the driver
// to choke.
fD3DDevice->SetTextureStageState(stage, D3DTSS_COLOROP, D3DTOP_MODULATE);
fD3DDevice->SetTextureStageState(stage, D3DTSS_COLORARG1, D3DTA_DIFFUSE);
fD3DDevice->SetTextureStageState(stage, D3DTSS_COLORARG2, D3DTA_CURRENT);
fD3DDevice->SetTextureStageState(stage, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
fLayerState[stage].fBlendFlags = UInt32(-1);
fD3DDevice->SetTextureStageState(stage+1, D3DTSS_COLOROP, D3DTOP_DISABLE);
fLayerState[stage+1].fBlendFlags = UInt32(-1);
disableStage = stage+1;
}
fLastEndingStage = stage;
if( fSettings.fIsIntel )
{
int maxUVW = 0;
int k;
for( k = 0; k < fCurrNumLayers; k++ )
{
if( (fCurrMaterial->GetLayer(k + fCurrLayerIdx)->GetUVWSrc() & 0xf) > maxUVW )
maxUVW = fCurrMaterial->GetLayer(k + fCurrLayerIdx)->GetUVWSrc() & 0xf;
}
for( k = disableStage; k <= maxUVW; k++ )
{
fD3DDevice->SetTextureStageState(k, D3DTSS_COLOROP, D3DTOP_SELECTARG2);
fD3DDevice->SetTextureStageState(k, D3DTSS_COLORARG2, D3DTA_CURRENT);
}
fD3DDevice->SetTextureStageState(k, D3DTSS_COLOROP, D3DTOP_DISABLE);
}
}
// IInvalidateState /////////////////////////////////////////////////////////////
// Documentation is unclear on what state persists or becomes invalid on switching
// a render target or finishing a frame. I put into this function things that show
// up as suspect, whether they "ought" to be here or not.
void plDXPipeline::IInvalidateState()
{
fLastEndingStage = 0;
fTexturing = false;
int i;
for( i = 0; i < 8; i++ )
{
hsRefCnt_SafeUnRef( fLayerRef[ i ] );
fLayerRef[ i ] = nil;
fD3DDevice->SetTexture( i, nil );
}
fLayerState[ 0 ].fZFlags = 0;
fD3DDevice->SetRenderState( D3DRS_ZFUNC, D3DCMP_LESSEQUAL );
fD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE );
// This is a workaround for the latest ATI drivers (6.14.10.6422).
// They seem to be caching something on lights (possibly only specular
// lights, but I haven't been able to prove it) the first time they
// are used in a render, and then not letting go when the camera
// is moved for another render in the same frame (same BeginScene/EndScene pair).
// The effect is very incorrect lighting. Moreover, if the multiple renders
// per frame are infrequent (e.g. refreshing an environment map every few
// seconds), you'll get flashes after the double render frames.
// Workaround is to Disable all lights at render target switch, although
// a more correct workaround might be to disable all lights at camera move.
// All of this is strictly conjecture, so I'm going with what works.
// Note also that I'm only disabling lights that are currently enabled
// at the time of the render target switch. Since this is dealing with
// a driver bug, it might be safer to disable them all, but timings
// show that looping through all the lights in a scene like Teledahn exterior,
// with hundreds of active lights, incurs a measurable expense (some milliseconds),
// whereas disabling only the active lights fixes the known problem but costs
// zero.
plProfile_BeginTiming(ClearLights);
hsBitIterator iterOff(fLights.fEnabledFlags);
for( iterOff.Begin(); !iterOff.End(); iterOff.Advance() )
fD3DDevice->LightEnable(iterOff.Current(), false);
fLights.fEnabledFlags.Clear();
fLights.fHoldFlags.Clear();
plProfile_EndTiming(ClearLights);
// This is very annoying. Set fTexturing to false doesn't work if the next layer
// we draw doesn't have a texture. So we have to set this flag instead to force
// a state update. I have an idea about how to do all of this a lot better, but
// it's not time to do it...not yet at least.... --mcn
fSettings.fVeryAnnoyingTextureInvalidFlag = true;
}
//// ILayersAtOnce ////////////////////////////////////////////////////////////
// Compute how many of the upcoming layers we can render in a single pass on the
// current hardware.
UInt32 plDXPipeline::ILayersAtOnce( hsGMaterial *mat, UInt32 which )
{
fCurrNumLayers = 1;
if( fView.fRenderState & plPipeline::kRenderBaseLayerOnly )
return fCurrNumLayers;
plLayerInterface *lay = mat->GetLayer( which );
if (IsDebugFlagSet(plPipeDbg::kFlagNoMultitexture))
return fCurrNumLayers;
if ((IsDebugFlagSet(plPipeDbg::kFlagBumpUV) || IsDebugFlagSet(plPipeDbg::kFlagBumpW)) && (lay->GetMiscFlags() & hsGMatState::kMiscBumpChans) )
return fCurrNumLayers = 2;
if( (lay->GetBlendFlags() & hsGMatState::kBlendNoColor)
||(lay->GetMiscFlags() & hsGMatState::kMiscTroubledLoner)
)
return fCurrNumLayers;
// New DX9.0c limitation for cards that can only do 2 textures per pass.
// We used to be able to set stage 0 and 1 to textures, and set stage 2 to the
// diffuse color. With DX9.0c we just get two texture stages. Period.
// Either we give up a texture or the diffuse color.
if (fSettings.fMaxLayersAtOnce == 2)
{
if ((mat->GetNumLayers() > which + 1)
&& !(mat->GetLayer(which + 1)->GetBlendFlags() & hsGMatState::kBlendNoTexColor))
{
// If we're just using the texture for alpha, we can multiply
// the diffuse color in stage 1. Otherwise, save it for the next pass.
return fCurrNumLayers;
}
}
int i;
int maxLayersAtOnce = fSettings.fMaxLayersAtOnce;
// Now Reserve space for piggy backs, and see if there are
// are any more layers we can pick up.
//
maxLayersAtOnce = fSettings.fMaxLayersAtOnce - fActivePiggyBacks;
if( which + maxLayersAtOnce > mat->GetNumLayers() )
maxLayersAtOnce = mat->GetNumLayers() - which;
for( i = fCurrNumLayers; i < maxLayersAtOnce; i++ )
{
plLayerInterface *lay = mat->GetLayer(which + i);
if( (lay->GetUVWSrc() & 0xf) > fSettings.fMaxUVWSrc )
break;
if( (lay->GetMiscFlags() & hsGMatState::kMiscBindNext)
&&(i+1 >= maxLayersAtOnce) )
break;
if( lay->GetMiscFlags() & hsGMatState::kMiscRestartPassHere )
break;
if( !(mat->GetLayer(which+i-1)->GetMiscFlags() & hsGMatState::kMiscBindNext)
&& !ICanEatLayer(lay) )
break;
fCurrNumLayers++;
}
return fCurrNumLayers;
}
//// ICanEatLayer /////////////////////////////////////////////////////////////
// Determine if this layer can be an upper layer, or if it needs
// to be the base on another pass.
hsBool plDXPipeline::ICanEatLayer( plLayerInterface* lay )
{
if( !lay->GetTexture() )
return false;
if( (lay->GetBlendFlags() & hsGMatState::kBlendNoColor)
||(lay->GetBlendFlags() & hsGMatState::kBlendAddColorTimesAlpha) // has to be base layer
||(lay->GetMiscFlags() & hsGMatState::kMiscTroubledLoner) )
return false;
if( (lay->GetBlendFlags() & hsGMatState::kBlendAlpha )
&&(lay->GetAmbientColor().a < hsScalar1) )
return false;
if( !(lay->GetZFlags() & hsGMatState::kZNoZWrite) )
return false;
return true;
}
///////////////////////////////////////////////////////////////////////////////
//// Textures /////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// IReloadTexture ///////////////////////////////////////////////////////////
// Fills in D3D texture resource, creating it if necessary.
void plDXPipeline::IReloadTexture( plDXTextureRef *ref )
{
if( ref->GetFlags() & plDXTextureRef::kCubicMap )
{
if( ref->fD3DTexture == nil )
ref->fD3DTexture = IMakeD3DCubeTexture( ref, ref->fFormatType );
if( ref->fD3DTexture != nil )
IFillD3DCubeTexture( (plDXCubeTextureRef *)ref );
}
else
{
if( ref->fD3DTexture == nil )
ref->fD3DTexture = IMakeD3DTexture( ref, ref->fFormatType );
if( ref->fD3DTexture != nil )
IFillD3DTexture( ref );
}
}
//// IMakeD3DTexture //////////////////////////////////////////////////////////
// Makes a DX Texture object based on the ref given.
IDirect3DTexture9 *plDXPipeline::IMakeD3DTexture( plDXTextureRef *ref, D3DFORMAT formatType )
{
D3DPOOL poolType = D3DPOOL_MANAGED;
IDirect3DTexture9 *texPtr;
fManagedAlloced = true;
if( FAILED( fSettings.fDXError = fD3DDevice->CreateTexture( ref->fMaxWidth, ref->fMaxHeight,
ref->fMMLvs,
0,
formatType,
poolType,
&texPtr, NULL ) ) )
{
IGetD3DError();
plStatusLog::AddLineS( "pipeline.log", 0xffff0000, "Unable to create texture (%s) Owner: %s "
"Size: %d x %d NumLvls: %d Flags: %x",
fSettings.fErrorStr, ref->fOwner ? ref->fOwner->GetKey() ? ref->fOwner->GetKey()->GetUoid().GetObjectName() : "" : "",
ref->fMaxWidth, ref->fMaxHeight, ref->fMMLvs, ref->GetFlags() );
return nil;
}
PROFILE_POOL_MEM(poolType, ref->fDataSize, true, (ref->fOwner ? ref->fOwner->GetKey() ? ref->fOwner->GetKey()->GetUoid().GetObjectName() : "(UnknownTexture)" : "(UnknownTexture)"));
fTexManaged += ref->fDataSize;
return texPtr;
}
//// IFillD3DTexture //////////////////////////////////////////////////////////
// Copies the data from the ref into the D3D texture, filling in all
// mip levels.
void plDXPipeline::IFillD3DTexture( plDXTextureRef *ref )
{
int i;
UInt8 *pTexDat = (UInt8 *)ref->fData;
if( pTexDat == nil )
{
plStatusLog::AddLineS( "pipeline.log", 0xffff0000, "Unable to fill texture ref (data is nil) Owner: %s",
ref->fOwner ? ref->fOwner->GetKey() ? ref->fOwner->GetKey()->GetUoid().GetObjectName() : "" : "" );
return;
}
IDirect3DTexture9 *lpDst = (IDirect3DTexture9 *)ref->fD3DTexture;
for( i = 0; i < ref->fMMLvs; i++ )
{
D3DLOCKED_RECT lockInfo;
if( FAILED( fSettings.fDXError = lpDst->LockRect( i, &lockInfo, nil, 0 ) ) )
{
IGetD3DError();
plStatusLog::AddLineS( "pipeline.log", 0xffff0000, "Unable to lock texture level %d for filling (%s) Owner: %s "
"Size: %d x %d NumLvls: %d Flags: %x",
i, fSettings.fErrorStr, ref->fOwner ? ref->fOwner->GetKey() ? ref->fOwner->GetKey()->GetUoid().GetObjectName() : "" : "",
ref->fMaxWidth, ref->fMaxHeight, ref->fMMLvs, ref->GetFlags() );
return;
}
memcpy( (char *)lockInfo.pBits, pTexDat, ref->fLevelSizes[ i ] );
pTexDat += ref->fLevelSizes[ i ];
lpDst->UnlockRect( i );
}
}
//// IMakeD3DCubeTexture //////////////////////////////////////////////////////
// Makes a DX Cubic Texture object based on the ref given.
IDirect3DCubeTexture9 *plDXPipeline::IMakeD3DCubeTexture( plDXTextureRef *ref, D3DFORMAT formatType )
{
D3DPOOL poolType = D3DPOOL_MANAGED;
IDirect3DCubeTexture9 *texPtr = nil;
fManagedAlloced = true;
WEAK_ERROR_CHECK(fD3DDevice->CreateCubeTexture( ref->fMaxWidth, ref->fMMLvs, 0, formatType, poolType, &texPtr, NULL));
PROFILE_POOL_MEM(poolType, ref->fDataSize, true, (ref->fOwner ? ref->fOwner->GetKey() ? ref->fOwner->GetKey()->GetUoid().GetObjectName() : "(UnknownTexture)" : "(UnknownTexture)"));
fTexManaged += ref->fDataSize;
return texPtr;
}
//// IFillD3DCubeTexture //////////////////////////////////////////////////////
// Fill in all faces of the D3D cube map from the input reference.
void plDXPipeline::IFillD3DCubeTexture( plDXCubeTextureRef *ref )
{
int i, f;
D3DCUBEMAP_FACES faces[ 6 ] = { D3DCUBEMAP_FACE_NEGATIVE_X, // Left
D3DCUBEMAP_FACE_POSITIVE_X, // Right
D3DCUBEMAP_FACE_POSITIVE_Z, // Front
D3DCUBEMAP_FACE_NEGATIVE_Z, // Back
D3DCUBEMAP_FACE_POSITIVE_Y, // Top
D3DCUBEMAP_FACE_NEGATIVE_Y }; // Bottom
for( f = 0; f < 6; f++ )
{
UInt8 *pTexDat = ( f == 0 ) ? (UInt8 *)ref->fData : (UInt8 *)ref->fFaceData[ f - 1 ];
IDirect3DCubeTexture9 *lpDst = (IDirect3DCubeTexture9 *)ref->fD3DTexture;
for( i = 0; i < ref->fMMLvs; i++ )
{
D3DLOCKED_RECT lockInfo;
lpDst->LockRect( faces[ f ], i, &lockInfo, nil, 0 );
memcpy( (char *)lockInfo.pBits, pTexDat, ref->fLevelSizes[ i ] );
pTexDat += ref->fLevelSizes[ i ];
lpDst->UnlockRect( faces[ f ], i );
}
}
}
//// MakeTextureRef ///////////////////////////////////////////////////////////
// Creates a hsGDeviceRef for a texture.
// May have to decompress the texture if the hardware doesn't support compressed textures (unlikely).
hsGDeviceRef *plDXPipeline::MakeTextureRef( plLayerInterface* layer, plMipmap *b )
{
plMipmap *original = b, *colorized = nil;
// If the hardware doesn't support Luminance maps, we'll just treat as ARGB.
if( !( fSettings.fD3DCaps & kCapsLuminanceTextures ) )
b->SetFlags( b->GetFlags() & ~plMipmap::kIntensityMap );
/// Colorize if we're supposed to (8.21.2000 mcn)
// Debugging only.
if (IsDebugFlagSet(plPipeDbg::kFlagColorizeMipmaps))
{
b = original->Clone();
if( b != nil )
b->Colorize();
else
b = original;
}
if( !( fSettings.fD3DCaps & kCapsCompressTextures ) && b->IsCompressed() )
b = hsCodecManager::Instance().CreateUncompressedMipmap( b, hsCodecManager::k16BitDepth );
/// Set up some stuff
UInt32 mmlvs = 1;
D3DFORMAT formatType = D3DFMT_UNKNOWN; // D3D Format
UInt32 formatSize = 0;
UInt32 totalSize = 0;
UInt32* levelSizes = nil;
UInt32 numPix = 0;
UInt32 externData = false;
void *tData;
hsBool noMip = !(fSettings.fD3DCaps & kCapsMipmap);
/// Convert the bitmap over
// Select a target format
IGetD3DTextureFormat( b, formatType, formatSize );
// Process the texture data into a format that can be directly copied to the D3D texture.
// externData returned as true means that tData just points directly into the mipmap's fImage,
// so don't delete it when deleting the texture device ref. externData false means this is
// a reformatted copy, so the ref owns it.
externData = IProcessMipmapLevels( b, mmlvs, levelSizes, totalSize, numPix, tData, noMip );
// If the texture has a device ref, just re-purpose it, else make one and initialize it.
plDXTextureRef *ref = (plDXTextureRef *)b->GetDeviceRef();
if( !ref )
{
ref = TRACKED_NEW plDXTextureRef( formatType,
mmlvs, b->GetWidth(), b->GetHeight(),
numPix, totalSize, totalSize, levelSizes,
tData, externData );
ref->fOwner = original;
ref->Link( &fTextureRefList );
original->SetDeviceRef( ref );
// Note: this is because SetDeviceRef() will ref it, and at this point,
// only the bitmap should own the ref, not us. We ref/unref it on Use()
hsRefCnt_SafeUnRef( ref );
}
else
ref->Set( formatType, mmlvs, b->GetWidth(), b->GetHeight(),
numPix, totalSize, totalSize, levelSizes, tData, externData );
// Keep the refs in a linked list for easy disposal.
if( !ref->IsLinked() )
{
// Re-linking
ref->Link( &fTextureRefList );
}
/// Copy the data into the ref
IReloadTexture( ref );
ref->fData = nil;
ref->SetDirty( false );
// Set any implied flags.
if (layer)
{
if( layer->GetMiscFlags() & hsGMatState::kMiscPerspProjection )
ref->SetFlags(ref->GetFlags() | plDXTextureRef::kPerspProjection);
else if( layer->GetMiscFlags() & hsGMatState::kMiscOrthoProjection )
ref->SetFlags(ref->GetFlags() | plDXTextureRef::kOrthoProjection);
if( layer->GetMiscFlags() & hsGMatState::kMiscBumpDw )
ref->SetFlags(ref->GetFlags() | plDXTextureRef::kUVWNormal);
}
if( b != original )
delete b; // Delete if we created a new (temporary) one
// Turn this on to delete the plasma system memory copy once we have a D3D managed version.
// Currently disabled, because there are still mipmaps that are read from after their managed
// versions are created, but aren't flagged DontThrowAwayImage or kUserOwnesBitmap.
if( !( original->GetFlags() & ( plMipmap::kUserOwnsBitmap | plMipmap::kDontThrowAwayImage ) )
&& !GetProperty( kPropDontDeleteTextures ) )
{
#ifdef MF_TOSSER
original->Reset();
#endif // MF_TOSSER
}
return ref;
}
//// IMakeCubicTextureRef /////////////////////////////////////////////////////
// Same as MakeTextureRef, except done for the six faces of a cube map.
hsGDeviceRef *plDXPipeline::IMakeCubicTextureRef( plLayerInterface* layer, plCubicEnvironmap *cubic )
{
plDXCubeTextureRef *ref;
plMipmap *faces[ 6 ];
int i;
D3DFORMAT formatType = D3DFMT_UNKNOWN;
UInt32 formatSize = 0;
UInt32 numLevels = 1;
UInt32 totalSize = 0;
UInt32 *levelSizes = nil;
UInt32 numPixels = 0;
UInt32 externData;
void *textureData[ 6 ];
if( cubic == nil || !( fSettings.fD3DCaps & kCapsCubicTextures ) )
return nil;
hsBool noMip = !(fSettings.fD3DCaps & kCapsMipmap) || !(fSettings.fD3DCaps & kCapsCubicMipmap);
/// Get the mips
if( !( fSettings.fD3DCaps & kCapsCompressTextures ) )
{
for( i = 0; i < 6; i++ )
{
faces[ i ] = cubic->GetFace( i );
if( faces[ i ]->IsCompressed() )
faces[ i ] = hsCodecManager::Instance().CreateUncompressedMipmap( faces[ i ], hsCodecManager::k16BitDepth );
}
}
else
{
for( i = 0; i < 6; i++ )
faces[ i ] = cubic->GetFace( i );
}
/// Create the ref
// Get format
IGetD3DTextureFormat( faces[0], formatType, formatSize );
// Process the data.
if( faces[0]->IsCompressed() || ( faces[0]->GetPixelSize() < 32 ) )
{
/// For this, we just take the image data pointers directly, so only call IProcess once
externData = IProcessMipmapLevels( faces[ 0 ], numLevels, levelSizes, totalSize, numPixels, textureData[ 0 ], noMip );
for( i = 1; i < 6; i++ )
textureData[ i ] = faces[ i ]->GetImage();
}
else
{
for( i = 0; i < 6; i++ )
{
/// Some of this will be redundant, but oh well
externData = IProcessMipmapLevels( faces[ i ], numLevels, levelSizes, totalSize, numPixels, textureData[ i ], noMip );
}
}
ref = (plDXCubeTextureRef *)cubic->GetDeviceRef();
if( !ref )
{
ref = TRACKED_NEW plDXCubeTextureRef( formatType,
numLevels, faces[ 0 ]->GetWidth(), faces[ 0 ]->GetHeight(),
numPixels, totalSize, totalSize * 6, levelSizes,
textureData[ 0 ], externData );
ref->fOwner = cubic;
ref->Link( &fTextureRefList ); // So we don't ref later on down
for( i = 0; i < 5; i++ )
ref->fFaceData[ i ] = textureData[ i + 1 ];
cubic->SetDeviceRef( ref );
// Note: this is because SetDeviceRef() will ref it, and at this point,
// only the bitmap should own the ref, not us. We ref/unref it on Use()
hsRefCnt_SafeUnRef( ref );
}
else
{
ref->Set( formatType, numLevels, faces[ 0 ]->GetWidth(), faces[ 0 ]->GetHeight(),
numPixels, totalSize, totalSize * 6, levelSizes, textureData[ 0 ], externData );
for( i = 0; i < 5; i++ )
ref->fFaceData[ i ] = textureData[ i + 1 ];
}
ref->SetFlags( ref->GetFlags() | plDXTextureRef::kCubicMap );
// Put in linked list for easy disposal.
if( !ref->IsLinked() )
{
// Re-linking
ref->Link( &fTextureRefList );
}
/// Copy the data into the ref
IReloadTexture( ref );
ref->SetDirty( false );
/// Cleanup
for( i = 0; i < 6; i++ )
{
if( faces[ i ] != cubic->GetFace( i ) )
delete faces[ i ];
if( !( cubic->GetFace(i)->GetFlags() & (plMipmap::kUserOwnsBitmap | plMipmap::kDontThrowAwayImage) ) && !GetProperty( kPropDontDeleteTextures ) )
{
// Turn this on to delete the plasma system memory copy once we have a D3D managed version.
// Currently disabled, because there are still mipmaps that are read from after their managed
// versions are created, but aren't flagged DontThrowAwayImage or kUserOwnesBitmap.
// cubic->GetFace(i)->Reset();
}
}
return ref;
}
//// IProcessMipmapLevels /////////////////////////////////////////////////////
// Compute proper values for the arguments passed in.
// Return true if the data returned points directly into the mipmap data,
// return false if textureData is a reformatted copy of the mipmap's data.
hsBool plDXPipeline::IProcessMipmapLevels( plMipmap *mipmap, UInt32 &numLevels,
UInt32 *&levelSizes, UInt32 &totalSize,
UInt32 &numPixels, void *&textureData, hsBool noMip )
{
hsBool externData = false;
D3DFORMAT formatType = D3DFMT_UNKNOWN; // D3D Format
UInt32 formatSize;
IGetD3DTextureFormat( mipmap, formatType, formatSize );
// Compressed or 16 bit, we can use directly.
if( mipmap->IsCompressed() || ( mipmap->GetPixelSize() < 32 ) )
{
numPixels = 0;
if( noMip )
{
numLevels = 1;
levelSizes = nil;
totalSize = mipmap->GetLevelSize(0);
}
else
{
UInt32 sizeMask = 0x03;
/// 10.31.2000 - If we have this flag set, we really have to cut out
/// sizes under 8x8. So far only true on the KYRO...
if( fSettings.fD3DCaps & kCapsNoKindaSmallTexs )
sizeMask = 0x07;
int maxLevel = mipmap->GetNumLevels() - 1;
/// 9.7.2000 - Also do this test if the card doesn't support
/// itty bitty textures
if( mipmap->IsCompressed() || !( fSettings.fD3DCaps & kCapsDoesSmallTextures ) )
{
mipmap->SetCurrLevel( maxLevel );
while( ( mipmap->GetCurrWidth() | mipmap->GetCurrHeight() ) & sizeMask )
{
maxLevel--;
hsAssert( maxLevel >= 0, "How was this ever compressed?" );
mipmap->SetCurrLevel( maxLevel );
}
}
mipmap->SetCurrLevel( 0 );
totalSize = 0;
numLevels = maxLevel + 1;
levelSizes = TRACKED_NEW UInt32[ numLevels ];
int i;
for( i = 0; i < numLevels; i++ )
{
levelSizes[ i ] = mipmap->GetLevelSize( i );
totalSize += mipmap->GetLevelSize( i );
}
}
textureData = mipmap->GetImage();
externData = true;
}
else
{
// 32 bit uncompressed data. In general, we reformat to 16 bit if we're running
// 16 bit, or if 32 bit leave it at 32. All subject to what the hardware can do
// and what the texture is for. See IGetD3DTextureFormat.
formatSize >>= 3;
if( !noMip )
{
numPixels = mipmap->GetTotalSize() * 8 / mipmap->GetPixelSize();
numLevels = mipmap->GetNumLevels();
levelSizes = TRACKED_NEW UInt32[ numLevels ];
int i;
UInt32 w, h;
for( i = 0; i < numLevels; i++ )
{
mipmap->GetLevelPtr( i, &w, &h );
levelSizes[ i ] = w * h * formatSize;
}
}
else
{
numPixels = mipmap->GetWidth() * mipmap->GetHeight();
numLevels = 1;
levelSizes = nil;
}
totalSize = numPixels * formatSize;
// Shared scratch space to reformat a texture before it's copied into
// the D3D surface.
textureData = IGetPixelScratch( totalSize );
// Convert it to the requested format.
IFormatTextureData( formatType, numPixels, (hsRGBAColor32 *)mipmap->GetImage(), textureData );
}
return externData;
}
//// IGetPixelScratch /////////////////////////////////////////////////////////
// Return scratch space at least of at least size bytes, to reformat a mipmap into.
void *plDXPipeline::IGetPixelScratch( UInt32 size )
{
static char *sPtr = nil;
static UInt32 sSize = 0;
if( size > sSize )
{
if( sPtr != nil )
delete [] sPtr;
if( size > 0 )
sPtr = TRACKED_NEW char[ sSize = size ];
else
sPtr = nil;
}
else if( size == 0 )
{
if( sPtr != nil )
delete [] sPtr;
sPtr = nil;
sSize = 0;
}
return sPtr;
}
//// IGetD3DTextureFormat /////////////////////////////////////////////////////
// Given a bitmap, finds the matching D3D format.
void plDXPipeline::IGetD3DTextureFormat( plBitmap *b, D3DFORMAT &formatType, UInt32& texSize )
{
hsAssert( b, "Nil input to GetTextureFormat()" );
hsBool prefer32bit = 0 != (b->GetFlags() & plBitmap::kForce32Bit);
if( b->IsCompressed() )
{
hsAssert( plMipmap::kDirectXCompression == b->fCompressionType, "Unsupported compression format" );
texSize = 0;
switch( b->fDirectXInfo.fCompressionType )
{
case plMipmap::DirectXInfo::kDXT1:
formatType = D3DFMT_DXT1;
break;
// case plMipmap::DirectXInfo::kDXT2:
// formatType = D3DFMT_DXT2;
// break;
// case plMipmap::DirectXInfo::kDXT3:
// formatType = D3DFMT_DXT3;
// break;
// case plMipmap::DirectXInfo::kDXT4:
// formatType = D3DFMT_DXT4;
// break;
case plMipmap::DirectXInfo::kDXT5:
formatType = D3DFMT_DXT5;
break;
default:
hsAssert(false, "Unknown DirectX compression format");
}
}
else if( b->GetFlags() & plMipmap::kBumpEnvMap )
{
texSize = 16;
if( b->GetFlags() & plMipmap::kAlphaChannelFlag )
formatType = D3DFMT_L6V5U5;
else
formatType = D3DFMT_V8U8;
}
else if( b->GetPixelSize() == 16 )
{
texSize = 16;
if( b->GetFlags() & plMipmap::kIntensityMap )
{
if( b->GetFlags() & plMipmap::kAlphaChannelFlag )
formatType = D3DFMT_A8L8;
else
formatType = D3DFMT_L8;
}
else
{
if( b->GetFlags() & plMipmap::kAlphaChannelFlag )
formatType = D3DFMT_A4R4G4B4;
else
formatType = D3DFMT_A1R5G5B5;
}
}
else if( b->GetFlags() & plMipmap::kIntensityMap )
{
if( b->GetFlags() & plMipmap::kAlphaChannelFlag )
{
if( ITextureFormatAllowed( D3DFMT_A8L8 ) )
{
formatType = D3DFMT_A8L8;
texSize = 16;
}
else if( !prefer32bit && ( fSettings.fColorDepth == 16 ) && ITextureFormatAllowed( D3DFMT_A4R4G4B4 ) )
{
formatType = D3DFMT_A4R4G4B4;
texSize = 16;
}
else if( ITextureFormatAllowed( D3DFMT_A8R8G8B8 ) )
{
formatType = D3DFMT_A8R8G8B8;
texSize = 32;
}
else if( ITextureFormatAllowed( D3DFMT_A4R4G4B4 ) )
{
formatType = D3DFMT_A4R4G4B4;
texSize = 16;
}
}
else
{
if( ITextureFormatAllowed( D3DFMT_L8 ) )
{
formatType = D3DFMT_L8;
texSize = 8;
}
else if( !prefer32bit && ( fSettings.fColorDepth == 16 ) && ITextureFormatAllowed( D3DFMT_A1R5G5B5 ) )
{
formatType = D3DFMT_A1R5G5B5;
texSize = 16;
}
else if( ITextureFormatAllowed( D3DFMT_A8R8G8B8 ) )
{
formatType = D3DFMT_A8R8G8B8;
texSize = 32;
}
else if( ITextureFormatAllowed( D3DFMT_A1R5G5B5 ) )
{
formatType = D3DFMT_A1R5G5B5;
texSize = 16;
}
}
}
else
{
if( b->GetFlags() & plMipmap::kAlphaChannelFlag )
{
if( !prefer32bit && ( fSettings.fColorDepth == 16 ) && ITextureFormatAllowed( D3DFMT_A4R4G4B4 ) )
{
formatType = D3DFMT_A4R4G4B4;
texSize = 16;
}
else if( ITextureFormatAllowed( D3DFMT_A8R8G8B8 ) )
{
formatType = D3DFMT_A8R8G8B8;
texSize = 32;
}
else if( ITextureFormatAllowed( D3DFMT_A4R4G4B4 ) )
{
formatType = D3DFMT_A4R4G4B4;
texSize = 16;
}
}
else
{
if( !prefer32bit && ( fSettings.fColorDepth == 16 ) && ITextureFormatAllowed( D3DFMT_A1R5G5B5 ) )
{
formatType = D3DFMT_A1R5G5B5;
texSize = 16;
}
else if( ITextureFormatAllowed( D3DFMT_A8R8G8B8 ) )
{
formatType = D3DFMT_A8R8G8B8;
texSize = 32;
}
else if( ITextureFormatAllowed( D3DFMT_A1R5G5B5 ) )
{
formatType = D3DFMT_A1R5G5B5;
texSize = 16;
}
}
}
hsAssert( formatType, "failing to find format type" );
}
//// IFormatTextureData ///////////////////////////////////////////////////////
// Convert the input 32 bit uncompressed RGBA data into the requested format.
void plDXPipeline::IFormatTextureData( UInt32 formatType, UInt32 numPix, hsRGBAColor32* const src, void *dst )
{
switch( formatType )
{
case D3DFMT_L6V5U5:
{
UInt16 *pixels = (UInt16 *)dst;
hsRGBAColor32* p = src;
hsRGBAColor32* end = src + numPix;
while( p < end )
{
*pixels = ((p->a << 8) & 0xfc00)
| ((p->g << 2) & 0x03e0)
| ((p->r >> 3) & 0x001f);
#ifdef HS_DEBUGGING
if( *pixels & 0xfc00 )
pixels++;
else if( *pixels & 0x03e0 )
pixels++;
else if( *pixels & 0x001f )
pixels++;
else
#endif // HS_DEBUGGING
pixels++;
p++;
}
}
break;
case D3DFMT_V8U8:
{
UInt16 *pixels = (UInt16 *)dst;
hsRGBAColor32* p = src;
hsRGBAColor32* end = src + numPix;
while( p < end )
{
*pixels = (p->g << 8)
| (p->r << 0);
pixels++;
p++;
}
}
break;
case D3DFMT_A8L8:
{
UInt16 *pixels = (UInt16 *)dst;
int i;
hsRGBAColor32* const p = src;
for(i =0; i < numPix; i++)
pixels[i]= ((p[i].a & 0xff) << 8) | (p[i].r & 0xff);
}
break;
case D3DFMT_A4R4G4B4:
{
UInt16 *pixels = (UInt16 *)dst;
int i;
hsRGBAColor32* const p = src;
for(i =0; i < numPix; i++)
{
pixels[i]= (((p[i].r>>4) & 0xf) << 8)
| (((p[i].g >> 4) & 0xf) << 4)
| (((p[i].b >> 4) & 0xf) )
| (((p[i].a >> 4) & 0xf) << 12);
}
}
break;
case D3DFMT_A1R5G5B5:
{
UInt16 *pixels = (UInt16 *)dst;
int i;
hsRGBAColor32* const p = src;
for(i =0; i < numPix; i++)
{
pixels[i]= (((p[i].r>>3) & 0x1f) << 10) |
(((p[i].g >> 3) & 0x1f) << 5) |
((p[i].b >> 3) & 0x1f) | ((p[i].a == 0) ? 0 : 0x8000);
}
}
break;
case D3DFMT_L8:
{
UInt8 *pixels = (UInt8 *)dst;
int i;
hsRGBAColor32* const p = src;
for(i =0; i < numPix; i++)
pixels[i]= p[i].r;
}
break;
case D3DFMT_A8R8G8B8:
{
UInt32 *pixels = (UInt32 *)dst;
int i;
hsRGBAColor32* const p = src;
for(i =0; i < numPix; i++)
pixels[i]= ( ( p[i].a << 24 ) | ( p[i].r << 16 ) | ( p[i].g << 8 ) | p[i].b );
}
break;
default:
hsAssert(false, "Unknown texture format selected");
break;
}
}
///////////////////////////////////////////////////////////////////////////////
//// View Stuff ///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// TestVisibleWorld /////////////////////////////////////////////////////////
// Check if the world space bounds are visible within the current view frustum.
hsBool plDXPipeline::TestVisibleWorld( const hsBounds3Ext& wBnd )
{
if( fView.fCullTreeDirty )
IRefreshCullTree();
return fView.fCullTree.BoundsVisible(wBnd);
}
hsBool plDXPipeline::TestVisibleWorld( const plSceneObject* sObj )
{
const plDrawInterface* di = sObj->GetDrawInterface();
if( !di )
return false;
const int numDraw = di->GetNumDrawables();
int i;
for( i = 0; i < numDraw; i++ )
{
plDrawableSpans* dr = plDrawableSpans::ConvertNoRef(di->GetDrawable(i));
if( !dr )
continue;
plDISpanIndex& diIndex = dr->GetDISpans(di->GetDrawableMeshIndex(i));
if( diIndex.IsMatrixOnly() )
continue;
const int numSpan = diIndex.GetCount();
int j;
for( j = 0; j < numSpan; j++ )
{
const plSpan* span = dr->GetSpan(diIndex[j]);
if( span->fProps & plSpan::kPropNoDraw )
continue;
if( !span->GetVisSet().Overlap(plGlobalVisMgr::Instance()->GetVisSet())
|| span->GetVisSet().Overlap(plGlobalVisMgr::Instance()->GetVisNot()) )
continue;
if( !TestVisibleWorld(span->fWorldBounds) )
continue;
return true;
}
}
return false;
}
//// GetViewAxesWorld /////////////////////////////////////////////////////////
// Get the current view direction, up and direction X up.
void plDXPipeline::GetViewAxesWorld(hsVector3 axes[3] /* ac,up,at */ ) const
{
axes[ 0 ] = GetViewAcrossWorld();
axes[ 1 ] = GetViewUpWorld();
axes[ 2 ] = GetViewDirWorld();
}
//// GetFOV ///////////////////////////////////////////////////////////////////
// Get the current FOV in degrees.
void plDXPipeline::GetFOV(hsScalar& fovX, hsScalar& fovY) const
{
fovX = GetViewTransform().GetFovXDeg();
fovY = GetViewTransform().GetFovYDeg();
}
//// SetFOV ///////////////////////////////////////////////////////////////////
// Set the current FOV in degrees. Forces perspective rendering to be true.
void plDXPipeline::SetFOV( hsScalar fovX, hsScalar fovY )
{
IGetViewTransform().SetFovDeg(fovX, fovY);
IGetViewTransform().SetPerspective(true);
}
// Get the orthogonal projection view size in world units (e.g. feet).
void plDXPipeline::GetSize( hsScalar& width, hsScalar& height ) const
{
width = GetViewTransform().GetScreenWidth();
height = GetViewTransform().GetScreenHeight();
}
// Set the orthogonal projection view size in world units (e.g. feet).
// Forces projection to orthogonal if it wasn't.
void plDXPipeline::SetSize( hsScalar width, hsScalar height )
{
IGetViewTransform().SetWidth(width);
IGetViewTransform().SetHeight(height);
IGetViewTransform().SetOrthogonal(true);
}
//// GetDepth /////////////////////////////////////////////////////////////////
// Get the current hither and yon.
void plDXPipeline::GetDepth(hsScalar& hither, hsScalar& yon) const
{
GetViewTransform().GetDepth(hither, yon);
}
//// SetDepth /////////////////////////////////////////////////////////////////
// Set the current hither and yon.
void plDXPipeline::SetDepth(hsScalar hither, hsScalar yon)
{
IGetViewTransform().SetDepth(hither, yon);
}
//// ISavageYonHack ///////////////////////////////////////////////////////////
// Corrects the yon for the *#(&$*#&$(*& Savage4 chipset (ex. Diamond Stealth
// III S540). Let's just say this card SUCKS.
// Obsolete since we don't support the Savage4 chipset any more.
void plDXPipeline::ISavageYonHack()
{
hsScalar yon = GetViewTransform().GetYon();
if( ( yon > 128.f - 5.0f ) && ( yon < 128.f + 1.01f ) )
yon = 128.f + 1.01f;
else if( ( yon > 256.f - 10.0f ) && ( yon < 256.f + 1.02f ) )
yon = 256.f + 1.02f;
else if( ( yon > 512.f - 35.0f ) && ( yon < 512.f + 1.02f ) )
yon = 512.f + 1.02f;
else if( ( yon > 1024.f - 120.0f ) && ( yon < 1024.f + 1.f ) )
yon = 1024.f + 1.f;
}
//// GetWorldToCamera /////////////////////////////////////////////////////////
// Return current world to camera transform.
const hsMatrix44& plDXPipeline::GetWorldToCamera() const
{
return fView.GetWorldToCamera();
}
//// GetCameraToWorld /////////////////////////////////////////////////////////
// Return current camera to world transform.
const hsMatrix44& plDXPipeline::GetCameraToWorld() const
{
return fView.GetCameraToWorld();
}
// IUpdateViewFlags /////////////////////////////////////////////////////////
// Dirty anything cached dependent on the current camera matrix.
void plDXPipeline::IUpdateViewFlags()
{
fView.fCullTreeDirty = true;
fView.fWorldToCamLeftHanded = fView.GetWorldToCamera().GetParity();
}
//// SetWorldToCamera /////////////////////////////////////////////////////////
// Immediate set of camera transform.
void plDXPipeline::SetWorldToCamera(const hsMatrix44& w2c, const hsMatrix44& c2w)
{
IGetViewTransform().SetCameraTransform(w2c, c2w);
IUpdateViewFlags();
IWorldToCameraToD3D();
}
// IWorldToCameraToD3D ///////////////////////////////////////////////////////
// Pass the current camera transform through to D3D.
void plDXPipeline::IWorldToCameraToD3D()
{
D3DXMATRIX mat;
IMatrix44ToD3DMatrix( mat, fView.GetWorldToCamera() );
fD3DDevice->SetTransform( D3DTS_VIEW, &mat );
fView.fXformResetFlags &= ~fView.kResetCamera;
fFrame++;
}
// SetViewTransform ///////////////////////////////////////////////////////////
// ViewTransform encapsulates everything about the current camera, viewport and
// window necessary to render or convert from world space to pixel space. Doesn't
// include the object dependent local to world transform.
// Set plViewTransform.h
void plDXPipeline::SetViewTransform(const plViewTransform& v)
{
fView.fTransform = v;
if( !v.GetScreenWidth() || !v.GetScreenHeight() )
{
fView.fTransform.SetScreenSize((UInt16)(fSettings.fOrigWidth), (UInt16)(fSettings.fOrigHeight));
}
IUpdateViewFlags();
IWorldToCameraToD3D();
}
//// GetWorldToLocal //////////////////////////////////////////////////////////
// Return current World to Local transform. Note that this is only meaningful while an
// object is being rendered, so this function is pretty worthless.
const hsMatrix44& plDXPipeline::GetWorldToLocal() const
{
return fView.fWorldToLocal;
}
//// GetLocalToWorld //////////////////////////////////////////////////////////
// Return current Local to World transform. Note that this is only meaningful while an
// object is being rendered, so this function is pretty worthless.
const hsMatrix44& plDXPipeline::GetLocalToWorld() const
{
return fView.fLocalToWorld;
}
//// ISetLocalToWorld /////////////////////////////////////////////////////////
// Record and pass on to D3D the current local to world transform for the object
// about to be rendered.
void plDXPipeline::ISetLocalToWorld( const hsMatrix44& l2w, const hsMatrix44& w2l )
{
fView.fLocalToWorld = l2w;
fView.fWorldToLocal = w2l;
fView.fViewVectorsDirty = true;
// We keep track of parity for winding order culling.
fView.fLocalToWorldLeftHanded = fView.fLocalToWorld.GetParity();
ILocalToWorldToD3D();
}
// ILocalToWorldToD3D ///////////////////////////////////////////////////////////
// pass the current local to world tranform on to D3D.
void plDXPipeline::ILocalToWorldToD3D()
{
D3DXMATRIX mat;
if( fView.fLocalToWorld.fFlags & hsMatrix44::kIsIdent )
fD3DDevice->SetTransform( D3DTS_WORLD, &d3dIdentityMatrix );
else
{
IMatrix44ToD3DMatrix( mat, fView.fLocalToWorld );
fD3DDevice->SetTransform( D3DTS_WORLD, &mat );
}
fView.fXformResetFlags &= ~fView.kResetL2W;
}
//// IIsViewLeftHanded ////////////////////////////////////////////////////////
// Returns true if the combination of the local2world and world2camera
// matrices is left-handed.
hsBool plDXPipeline::IIsViewLeftHanded()
{
return fView.fTransform.GetOrthogonal() ^ ( fView.fLocalToWorldLeftHanded ^ fView.fWorldToCamLeftHanded ) ? true : false;
}
//// ScreenToWorldPoint ///////////////////////////////////////////////////////
// Given a screen space pixel position, and a world space distance from the camera, return a
// full world space position. I.e. cast a ray through a screen pixel dist feet, and where
// is it.
void plDXPipeline::ScreenToWorldPoint( int n, UInt32 stride, Int32 *scrX, Int32 *scrY, hsScalar dist, UInt32 strideOut, hsPoint3 *worldOut )
{
while( n-- )
{
hsPoint3 scrP;
scrP.Set(float(*scrX++), float(*scrY++), float(dist));
*worldOut++ = GetViewTransform().ScreenToWorld(scrP);
}
}
// IRefreshCullTree ////////////////////////////////////////////////////////////////////
// The cull tree captures the view frustum and any occluders in the scene into a single
// BSP tree. See plCullTree.h. It must be recomputed any time the camera moves.
void plDXPipeline::IRefreshCullTree()
{
if( fView.fCullTreeDirty )
{
plProfile_BeginTiming(DrawOccBuild);
fView.fCullTree.Reset();
fView.fCullTree.SetViewPos(GetViewPositionWorld());
if (fCullProxy && !IsDebugFlagSet(plPipeDbg::kFlagOcclusionSnap))
{
fCullProxy->GetKey()->UnRefObject();
fCullProxy = nil;
SetDrawableTypeMask(GetDrawableTypeMask() & ~plDrawable::kOccSnapProxy);
}
hsBool doCullSnap = IsDebugFlagSet(plPipeDbg::kFlagOcclusionSnap)&& !fCullProxy && !fSettings.fViewStack.GetCount();
if( doCullSnap )
{
fView.fCullTree.BeginCapturePolys();
fView.fCullTree.SetVisualizationYon(GetViewTransform().GetYon());
}
fView.fCullTree.InitFrustum(GetViewTransform().GetWorldToNDC());
fView.fCullTreeDirty = false;
if( fView.fCullMaxNodes )
{
int i;
for( i = 0; i < fCullPolys.GetCount(); i++ )
{
fView.fCullTree.AddPoly(*fCullPolys[i]);
if( fView.fCullTree.GetNumNodes() >= fView.fCullMaxNodes )
break;
}
fCullPolys.SetCount(0);
plProfile_Set(OccPolyUsed, i);
for( i = 0; i < fCullHoles.GetCount(); i++ )
{
fView.fCullTree.AddPoly(*fCullHoles[i]);
}
fCullHoles.SetCount(0);
plProfile_Set(OccNodeUsed, fView.fCullTree.GetNumNodes());
}
if( doCullSnap )
{
fView.fCullTree.EndCapturePolys();
IMakeOcclusionSnap();
}
plProfile_EndTiming(DrawOccBuild);
}
}
// IMakeOcclusionSnap /////////////////////////////////////////////////////////////////////
// Debugging visualization tool only. Takes a snapshot of the current occlusion
// BSP tree and renders it until told to stop.
void plDXPipeline::IMakeOcclusionSnap()
{
hsTArray& pos = fView.fCullTree.GetCaptureVerts();
hsTArray& norm = fView.fCullTree.GetCaptureNorms();
hsTArray& color = fView.fCullTree.GetCaptureColors();
hsTArray& tris = fView.fCullTree.GetCaptureTris();
if( tris.GetCount() )
{
hsMatrix44 ident;
ident.Reset();
hsGMaterial* mat = TRACKED_NEW hsGMaterial;
hsgResMgr::ResMgr()->NewKey( "OcclusionSnapMat", mat, plLocation::kGlobalFixedLoc );
plLayer *lay = mat->MakeBaseLayer();
lay->SetZFlags(hsGMatState::kZNoZWrite);
lay->SetPreshadeColor(hsColorRGBA().Set(1.f, 0.5f, 0.5f, 1.f));
lay->SetRuntimeColor(hsColorRGBA().Set(1.f, 0.5f, 0.5f, 1.f));
lay->SetAmbientColor(hsColorRGBA().Set(0,0,0,1.f));
lay->SetOpacity(0.5f);
lay->SetBlendFlags(lay->GetBlendFlags() | hsGMatState::kBlendAlpha);
fCullProxy = plDrawableGenerator::GenerateDrawable(pos.GetCount(),
pos.AcquireArray(),
norm.AcquireArray(),
nil,
0,
color.AcquireArray(),
true,
nil,
tris.GetCount(),
tris.AcquireArray(),
mat,
ident,
true,
nil,
nil);
if( fCullProxy )
{
fCullProxy->GetKey()->RefObject();
fCullProxy->SetType(plDrawable::kOccSnapProxy);
SetDrawableTypeMask(GetDrawableTypeMask() | plDrawable::kOccSnapProxy);
fCullProxy->PrepForRender(this);
}
}
fView.fCullTree.ReleaseCapture();
}
// SubmitOccluders /////////////////////////////////////////////////////////////
// Add the input polys into the list of polys from which to generate the cull tree.
hsBool plDXPipeline::SubmitOccluders(const hsTArray& polyList)
{
fCullPolys.SetCount(0);
fCullHoles.SetCount(0);
int i;
for( i = 0; i < polyList.GetCount(); i++ )
{
if( polyList[i]->IsHole() )
fCullHoles.Append(polyList[i]);
else
fCullPolys.Append(polyList[i]);
}
fView.fCullTreeDirty = true;
return true;
}
//// RefreshScreenMatrices ////////////////////////////////////////////////////
// Force a refresh of cached state when the projection matrix changes.
void plDXPipeline::RefreshScreenMatrices()
{
fView.fCullTreeDirty = true;
IProjectionMatrixToD3D();
}
//// RefreshMatrices //////////////////////////////////////////////////////////
// Just a wrapper
void plDXPipeline::RefreshMatrices()
{
RefreshScreenMatrices();
}
///////////////////////////////////////////////////////////////////////////////
//// Overrides ////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// PushOverrideMaterial /////////////////////////////////////////////////////
// Push a material to be used instead of the material associated with objects
// for rendering.
// Must be matched with a PopOverrideMaterial.
hsGMaterial *plDXPipeline::PushOverrideMaterial( hsGMaterial *mat )
{
hsGMaterial *ret = GetOverrideMaterial();
hsRefCnt_SafeRef( mat );
fOverrideMat.Push( mat );
fForceMatHandle = true;
return ret;
}
//// PopOverrideMaterial //////////////////////////////////////////////////////
// Stop overriding with the current override material.
// Must match a preceding PushOverrideMaterial.
void plDXPipeline::PopOverrideMaterial( hsGMaterial *restore )
{
hsGMaterial *pop = fOverrideMat.Pop();
hsRefCnt_SafeUnRef( pop );
if( fCurrMaterial == pop )
{
fForceMatHandle = true;
}
}
//// GetOverrideMaterial //////////////////////////////////////////////////////
// Return the current override material, or nil if there isn't any.
hsGMaterial *plDXPipeline::GetOverrideMaterial() const
{
return fOverrideMat.GetCount() ? fOverrideMat.Peek() : nil;
}
//// GetMaterialOverrideOn ////////////////////////////////////////////////////
// Return the current bits set to be always on for the given category (e.g. ZFlags).
UInt32 plDXPipeline::GetMaterialOverrideOn( hsGMatState::StateIdx category ) const
{
return fMatOverOn.Value(category);
}
//// GetMaterialOverrideOff ///////////////////////////////////////////////////
// Return the current bits set to be always off for the given category (e.g. ZFlags).
UInt32 plDXPipeline::GetMaterialOverrideOff( hsGMatState::StateIdx category ) const
{
return fMatOverOff.Value(category);
}
//// PushMaterialOverride /////////////////////////////////////////////////////
// Force material state bits on or off. If you use this, save the return value
// as input to PopMaterialOverride, to restore previous values.
hsGMatState plDXPipeline::PushMaterialOverride( const hsGMatState& state, hsBool on )
{
hsGMatState ret = GetMaterialOverride( on );
if( on )
{
fMatOverOn |= state;
fMatOverOff -= state;
}
else
{
fMatOverOff |= state;
fMatOverOn -= state;
}
fForceMatHandle = true;
return ret;
}
// PushMaterialOverride ///////////////////////////////////////////////////////
// Force material state bits on or off. If you use this, save the return value
// as input to PopMaterialOverride, to restore previous values.
// This version just sets for one category (e.g. Z flags).
hsGMatState plDXPipeline::PushMaterialOverride(hsGMatState::StateIdx cat, UInt32 which, hsBool on)
{
hsGMatState ret = GetMaterialOverride( on );
if( on )
{
fMatOverOn[ cat ] |= which;
fMatOverOff[ cat ] &= ~which;
}
else
{
fMatOverOn[ cat ] &= ~which;
fMatOverOff[ cat ] |= which;
}
fForceMatHandle = true;
return ret;
}
//// PopMaterialOverride //////////////////////////////////////////////////////
// Restore the previous settings returned from the matching PushMaterialOverride.
void plDXPipeline::PopMaterialOverride(const hsGMatState& restore, hsBool on)
{
if( on )
{
fMatOverOn = restore;
fMatOverOff.Clear( restore );
}
else
{
fMatOverOff = restore;
fMatOverOn.Clear( restore );
}
fForceMatHandle = true;
}
//// GetMaterialOverride //////////////////////////////////////////////////////
// Return the current material state bits force to on or off, depending on input .
const hsGMatState& plDXPipeline::GetMaterialOverride(hsBool on) const
{
return on ? fMatOverOn : fMatOverOff;
}
//// PushColorOverride //////////////////////////////////////////////////
// Obsolete and unused.
hsColorOverride plDXPipeline::PushColorOverride(const hsColorOverride& over)
{
hsColorOverride ret = GetColorOverride();
PopColorOverride( over );
return ret;
}
// PopColorOverride ////////////////////////////////////////////////////////
// Obsolete and unused.
void plDXPipeline::PopColorOverride(const hsColorOverride& restore)
{
return;
/*
hsColorOverride cpy = restore;
if( !(cpy.fFlags & hsColorOverride::kModAlpha) )
cpy.fColor.a = 1.f;
if( !(cpy.fFlags & (hsColorOverride::kModAlpha | hsColorOverride::kModColor)) )
fDev->SetColorNormal();
else
fDev->SetColorOverride(cpy.fColor, !(cpy.fFlags & hsColorOverride::kModColor));
*/
}
//// GetColorOverride /////////////////////////////////////////////////////////
// Obsolete and unused.
const hsColorOverride& plDXPipeline::GetColorOverride() const
{
static hsColorOverride ret;
return ret;
/* ret.fFlags = hsColorOverride::kNone;
if( fDev->GetDebugFlags() & hsG3DDevice::kDeviceColor )
ret.fFlags |= hsColorOverride::kModColor;
if( fDev->GetDebugFlags() & hsG3DDevice::kDeviceAlpha )
ret.fFlags |= hsColorOverride::kModAlpha;
ret.fColor = fDev->GetColorOverride();
*/
return ret;
}
///////////////////////////////////////////////////////////////////////////////
//// Transforms ///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// IMatrix44ToD3DMatrix /////////////////////////////////////////////////////
// Make a D3DXMATRIX matching the input plasma matrix. Mostly a transpose.
D3DXMATRIX& plDXPipeline::IMatrix44ToD3DMatrix( D3DXMATRIX& dst, const hsMatrix44& src )
{
if( src.fFlags & hsMatrix44::kIsIdent )
{
dst = d3dIdentityMatrix;
}
else
{
dst(0,0) = src.fMap[0][0];
dst(1,0) = src.fMap[0][1];
dst(2,0) = src.fMap[0][2];
dst(3,0) = src.fMap[0][3];
dst(0,1) = src.fMap[1][0];
dst(1,1) = src.fMap[1][1];
dst(2,1) = src.fMap[1][2];
dst(3,1) = src.fMap[1][3];
dst(0,2) = src.fMap[2][0];
dst(1,2) = src.fMap[2][1];
dst(2,2) = src.fMap[2][2];
dst(3,2) = src.fMap[2][3];
dst(0,3) = src.fMap[3][0];
dst(1,3) = src.fMap[3][1];
dst(2,3) = src.fMap[3][2];
dst(3,3) = src.fMap[3][3];
}
return dst;
}
/////////////////////////////////////////////////////////
// IGetCameraToNDC /////////////////////////////////////////////
// Get the camera to NDC transform. This may be adjusted to create
// a Z bias towards the camera for cases where the D3D Z bias fails us.
hsMatrix44 plDXPipeline::IGetCameraToNDC()
{
hsMatrix44 cam2ndc = GetViewTransform().GetCameraToNDC();
if( fView.IsPerspective() )
{
// Want to scale down W and offset in Z without
// changing values of x/w, y/w. This is just
// minimal math for
// Mproj' * p = Mscaletrans * Mproj * p
// where Mscaletrans =
// [ s 0 0 0 ]
// [ 0 s 0 0 ]
// [ 0 0 s 0 ]
// [ 0 0 t s ]
// Resulting matrix Mproj' is not exactly "Fog Friendly",
// but is close enough.
// Resulting point is [sx, sy, sz + tw, sw] and after divide
// is [x/w, y/w, z/w + t/s, 1/sw]
if( fSettings.fD3DCaps & kCapsWBuffer )
{
// W-buffering is only true w-buffering on 3dfx cards. On everything else,
// they REALLY base it off the Z value. So we want to scale (but NOT translate)
// the Z...
// Note: the base value for perspLayerScale should be 0.001 for w-buffering,
// not the normal 0.00001
float scale = 1.f - float(fCurrRenderLayer) * fTweaks.fPerspLayerScale;
cam2ndc.fMap[0][0] *= scale;
cam2ndc.fMap[1][1] *= scale;
cam2ndc.fMap[2][2] *= scale;
cam2ndc.fMap[3][2] *= scale;
}
else
{
// Z-buffering, so do it the traditional way
float scale = 1.f - float(fCurrRenderLayer) * fTweaks.fPerspLayerScale;
// scale = -1.f;
float zTrans = -scale * float(fCurrRenderLayer) * fTweaks.fPerspLayerTrans;
cam2ndc.fMap[0][0] *= scale;
cam2ndc.fMap[1][1] *= scale;
cam2ndc.fMap[2][2] *= scale;
cam2ndc.fMap[2][2] += zTrans * cam2ndc.fMap[3][2];
cam2ndc.fMap[3][2] *= scale;
}
}
else
{
plConst(float) kZTrans = -1.e-4f;
cam2ndc.fMap[2][3] += kZTrans * fCurrRenderLayer;
}
return cam2ndc;
}
// IProjectionMatrixToD3D //////////////////////////////////////////////////////////
// Send the current camera to NDC transform to D3D.
void plDXPipeline::IProjectionMatrixToD3D()
{
D3DXMATRIX matProjection;
IMatrix44ToD3DMatrix( matProjection, IGetCameraToNDC() );
fD3DDevice->SetTransform( D3DTS_PROJECTION, &matProjection );
fView.fXformResetFlags &= ~fView.kResetProjection;
}
//// ISetCullMode /////////////////////////////////////////////////////////////
// Tests and sets the current winding order cull mode (CW, CCW, or none).
// Will reverse the cull mode as necessary for left handed camera or local to world
// transforms.
void plDXPipeline::ISetCullMode(hsBool flip)
{
D3DCULL newCull = D3DCULL_NONE;
if( !(fLayerState[0].fMiscFlags & hsGMatState::kMiscTwoSided) )
newCull = !IIsViewLeftHanded() ^ !flip ? D3DCULL_CW : D3DCULL_CCW;
if( newCull != fCurrCullMode )
{
fCurrCullMode = newCull;
fD3DDevice->SetRenderState( D3DRS_CULLMODE, fCurrCullMode );
}
}
//// ITransformsToD3D //////////////////////////////////////////////////////////
// Refreshes all transforms. Useful after popping renderTargets :)
void plDXPipeline::ITransformsToD3D()
{
hsBool resetCullMode = fView.fXformResetFlags & (fView.kResetCamera | fView.kResetL2W);
if( fView.fXformResetFlags & fView.kResetCamera )
IWorldToCameraToD3D();
if( fView.fXformResetFlags & fView.kResetL2W )
ILocalToWorldToD3D();
if( fView.fXformResetFlags & fView.kResetProjection )
IProjectionMatrixToD3D();
}
// ISetupVertexBufferRef /////////////////////////////////////////////////////////
// Initialize input vertex buffer ref according to source.
void plDXPipeline::ISetupVertexBufferRef(plGBufferGroup* owner, UInt32 idx, plDXVertexBufferRef* vRef)
{
// Initialize to nil, in case something goes wrong.
vRef->fD3DBuffer = nil;
UInt8 format = owner->GetVertexFormat();
// All indexed skinning is currently done on CPU, so the source data
// will have indices, but we strip them out for the D3D buffer.
if( format & plGBufferGroup::kSkinIndices )
{
format &= ~(plGBufferGroup::kSkinWeightMask | plGBufferGroup::kSkinIndices);
format |= plGBufferGroup::kSkinNoWeights; // Should do nothing, but just in case...
vRef->SetSkinned(true);
vRef->SetVolatile(true);
}
UInt32 vertSize = IGetBufferFormatSize(format); // vertex stride
UInt32 numVerts = owner->GetVertBufferCount(idx);
vRef->fDevice = fD3DDevice;
vRef->fOwner = owner;
vRef->fCount = numVerts;
vRef->fVertexSize = vertSize;
vRef->fFormat = format;
vRef->fRefTime = 0;
vRef->SetDirty(true);
vRef->SetRebuiltSinceUsed(true);
vRef->fData = nil;
vRef->SetVolatile(vRef->Volatile() || owner->AreVertsVolatile());
vRef->fIndex = idx;
owner->SetVertexBufferRef(idx, vRef);
hsRefCnt_SafeUnRef(vRef);
}
// ICheckStaticVertexBuffer ///////////////////////////////////////////////////////////////////////
// Ensure a static vertex buffer has any D3D resources necessary for rendering created and filled
// with proper vertex data.
void plDXPipeline::ICheckStaticVertexBuffer(plDXVertexBufferRef* vRef, plGBufferGroup* owner, UInt32 idx)
{
hsAssert(!vRef->Volatile(), "Creating a managed vertex buffer for a volatile buffer ref");
if( !vRef->fD3DBuffer )
{
// Okay, haven't done this one.
DWORD fvfFormat = IGetBufferD3DFormat(vRef->fFormat);
D3DPOOL poolType = D3DPOOL_MANAGED;
// DWORD usage = D3DUSAGE_WRITEONLY;
DWORD usage = 0;
const int numVerts = vRef->fCount;
const int vertSize = vRef->fVertexSize;
fManagedAlloced = true;
if( FAILED( fD3DDevice->CreateVertexBuffer( numVerts * vertSize,
usage,
fvfFormat,
poolType,
&vRef->fD3DBuffer, NULL) ) )
{
hsAssert( false, "CreateVertexBuffer() call failed!" );
vRef->fD3DBuffer = nil;
return;
}
PROFILE_POOL_MEM(poolType, numVerts * vertSize, true, "VtxBuff");
// Record that we've allocated this into managed memory, in case we're
// fighting that NVidia driver bug. Search for OSVERSION for mor info.
AllocManagedVertex(numVerts * vertSize);
// Fill in the vertex data.
IFillStaticVertexBufferRef(vRef, owner, idx);
// This is currently a no op, but this would let the buffer know it can
// unload the system memory copy, since we have a managed version now.
owner->PurgeVertBuffer(idx);
}
}
// IFillStaticVertexBufferRef //////////////////////////////////////////////////
// BufferRef is set up, just copy the data in.
// This is uglied up hugely by the insane non-interleaved data case with cells
// and whatever else.
void plDXPipeline::IFillStaticVertexBufferRef(plDXVertexBufferRef *ref, plGBufferGroup *group, UInt32 idx)
{
IDirect3DVertexBuffer9* vertexBuff = ref->fD3DBuffer;
if( !vertexBuff )
{
// We most likely already warned about this earlier, best to just quietly return now
return;
}
const UInt32 vertSize = ref->fVertexSize;
const UInt32 vertStart = group->GetVertBufferStart(idx) * vertSize;
const UInt32 size = group->GetVertBufferEnd(idx) * vertSize - vertStart;
if( !size )
return;
/// Lock the buffer
UInt8* ptr;
if( FAILED( vertexBuff->Lock( vertStart, size, (void **)&ptr, group->AreVertsVolatile() ? D3DLOCK_DISCARD : 0 ) ) )
{
hsAssert( false, "Failed to lock vertex buffer for writing" );
}
if( ref->fData )
{
memcpy(ptr, ref->fData + vertStart, size);
}
else
{
hsAssert(0 == vertStart, "Offsets on non-interleaved data not supported");
hsAssert(group->GetVertBufferCount(idx) * vertSize == size, "Trailing dead space on non-interleaved data not supported");
const UInt32 vertSmallSize = group->GetVertexLiteStride() - sizeof( hsPoint3 ) * 2;
UInt8* srcVPtr = group->GetVertBufferData(idx);
plGBufferColor* const srcCPtr = group->GetColorBufferData( idx );
const int numCells = group->GetNumCells(idx);
int i;
for( i = 0; i < numCells; i++ )
{
plGBufferCell *cell = group->GetCell( idx, i );
if( cell->fColorStart == (UInt32)-1 )
{
/// Interleaved, do straight copy
memcpy( ptr, srcVPtr + cell->fVtxStart, cell->fLength * vertSize );
ptr += cell->fLength * vertSize;
}
else
{
/// Separated, gotta interleave
UInt8* tempVPtr = srcVPtr + cell->fVtxStart;
plGBufferColor* tempCPtr = srcCPtr + cell->fColorStart;
int j;
for( j = 0; j < cell->fLength; j++ )
{
memcpy( ptr, tempVPtr, sizeof( hsPoint3 ) * 2 );
ptr += sizeof( hsPoint3 ) * 2;
tempVPtr += sizeof( hsPoint3 ) * 2;
memcpy( ptr, &tempCPtr->fDiffuse, sizeof( UInt32 ) );
ptr += sizeof( UInt32 );
memcpy( ptr, &tempCPtr->fSpecular, sizeof( UInt32 ) );
ptr += sizeof( UInt32 );
memcpy( ptr, tempVPtr, vertSmallSize );
ptr += vertSmallSize;
tempVPtr += vertSmallSize;
tempCPtr++;
}
}
}
}
/// Unlock and clean up
vertexBuff->Unlock();
ref->SetRebuiltSinceUsed(true);
ref->SetDirty(false);
}
// OpenAccess ////////////////////////////////////////////////////////////////////////////////////////
// Lock the managed buffer and setup the accessSpan to point into the buffers data.
hsBool plDXPipeline::OpenAccess(plAccessSpan& dst, plDrawableSpans* drawable, const plVertexSpan* span, hsBool readOnly)
{
plGBufferGroup* grp = drawable->GetBufferGroup(span->fGroupIdx);
hsAssert(!grp->AreVertsVolatile(), "Don't ask for D3DBuffer data on a volatile buffer");
plDXVertexBufferRef* vRef = (plDXVertexBufferRef*)grp->GetVertexBufferRef(span->fVBufferIdx);
if( !vRef )
{
dst.SetType(plAccessSpan::kUndefined);
return false;
}
IDirect3DVertexBuffer9* vertexBuff = vRef->fD3DBuffer;
if( !vertexBuff )
{
dst.SetType(plAccessSpan::kUndefined);
return false;
}
const UInt32 stride = vRef->fVertexSize;
const UInt32 vertStart = span->fVStartIdx * stride;
const UInt32 size = span->fVLength * stride;
if( !size )
{
dst.SetType(plAccessSpan::kUndefined);
return false;
}
DWORD lockFlags = readOnly ? D3DLOCK_READONLY : 0;
UInt8* ptr;
if( FAILED( vertexBuff->Lock(vertStart, size, (void **)&ptr, lockFlags) ) )
{
hsAssert( false, "Failed to lock vertex buffer for writing" );
dst.SetType(plAccessSpan::kUndefined);
return false;
}
plAccessVtxSpan& acc = dst.AccessVtx();
acc.SetVertCount((UInt16)(span->fVLength));
Int32 offset = (-(Int32)(span->fVStartIdx)) * ((Int32)stride);
acc.PositionStream(ptr, (UInt16)stride, offset);
ptr += sizeof(hsPoint3);
int numWgts = grp->GetNumWeights();
if( numWgts )
{
acc.SetNumWeights(numWgts);
acc.WeightStream(ptr, (UInt16)stride, offset);
ptr += numWgts * sizeof(hsScalar);
if( grp->GetVertexFormat() & plGBufferGroup::kSkinIndices )
{
acc.WgtIndexStream(ptr, (UInt16)stride, offset);
ptr += sizeof(UInt32);
}
else
{
acc.WgtIndexStream(nil, 0, offset);
}
}
else
{
acc.SetNumWeights(0);
}
acc.NormalStream(ptr, (UInt16)stride, offset);
ptr += sizeof(hsVector3);
acc.DiffuseStream(ptr, (UInt16)stride, offset);
ptr += sizeof(UInt32);
acc.SpecularStream(ptr, (UInt16)stride, offset);
ptr += sizeof(UInt32);
acc.UVWStream(ptr, (UInt16)stride, offset);
acc.SetNumUVWs(grp->GetNumUVs());
acc.SetVtxDeviceRef(vRef);
return true;
}
// CloseAccess /////////////////////////////////////////////////////////////////////
// Unlock the buffer, invalidating the accessSpan.
hsBool plDXPipeline::CloseAccess(plAccessSpan& dst)
{
if( !dst.HasAccessVtx() )
return false;
plAccessVtxSpan& acc = dst.AccessVtx();
plDXVertexBufferRef* vRef = (plDXVertexBufferRef*)acc.GetVtxDeviceRef();
if( !vRef )
return false;
IDirect3DVertexBuffer9* vertexBuff = vRef->fD3DBuffer;
if( !vertexBuff )
return false;
vertexBuff->Unlock();
return true;
}
// CheckVertexBufferRef /////////////////////////////////////////////////////
// Make sure the buffer group has a valid buffer ref and that it is up to date.
void plDXPipeline::CheckVertexBufferRef(plGBufferGroup* owner, UInt32 idx)
{
// First, do we have a device ref at this index?
plDXVertexBufferRef* vRef = (plDXVertexBufferRef*)owner->GetVertexBufferRef(idx);
// If not
if( !vRef )
{
// Make the blank ref
vRef = TRACKED_NEW plDXVertexBufferRef;
ISetupVertexBufferRef(owner, idx, vRef);
}
if( !vRef->IsLinked() )
vRef->Link( &fVtxBuffRefList );
// One way or another, we now have a vbufferref[idx] in owner.
// Now, does it need to be (re)filled?
// If the owner is volatile, then we hold off. It might not
// be visible, and we might need to refill it again if we
// have an overrun of our dynamic D3D buffer.
if( !vRef->Volatile() )
{
if( fAllocUnManaged )
return;
// If it's a static buffer, allocate a D3D vertex buffer for it. Otherwise, it'll
// be sharing the global D3D dynamic buffer, and marked as volatile.
ICheckStaticVertexBuffer(vRef, owner, idx);
// Might want to remove this assert, and replace it with a dirty check if
// we have static buffers that change very seldom rather than never.
hsAssert(!vRef->IsDirty(), "Non-volatile vertex buffers should never get dirty");
}
else
{
// Make sure we're going to be ready to fill it.
if( !vRef->fData && (vRef->fFormat != owner->GetVertexFormat()) )
{
vRef->fData = TRACKED_NEW UInt8[vRef->fCount * vRef->fVertexSize];
}
}
}
// CheckIndexBufferRef /////////////////////////////////////////////////////
// Make sure the buffer group has an index buffer ref and that its data is current.
void plDXPipeline::CheckIndexBufferRef(plGBufferGroup* owner, UInt32 idx)
{
plDXIndexBufferRef* iRef = (plDXIndexBufferRef*)owner->GetIndexBufferRef(idx);
if( !iRef )
{
// Create one from scratch.
iRef = TRACKED_NEW plDXIndexBufferRef;
ISetupIndexBufferRef(owner, idx, iRef);
}
if( !iRef->IsLinked() )
iRef->Link(&fIdxBuffRefList);
// Make sure it has all D3D resources created.
ICheckIndexBuffer(iRef);
// If it's dirty, refill it.
if( iRef->IsDirty() )
IFillIndexBufferRef(iRef, owner, idx);
}
// IFillIndexBufferRef ////////////////////////////////////////////////////////////
// Refresh the D3D index buffer from the plasma index buffer.
void plDXPipeline::IFillIndexBufferRef(plDXIndexBufferRef* iRef, plGBufferGroup* owner, UInt32 idx)
{
UInt32 startIdx = owner->GetIndexBufferStart(idx);
UInt32 size = (owner->GetIndexBufferEnd(idx) - startIdx) * sizeof(UInt16);
if( !size )
return;
DWORD lockFlags = iRef->Volatile() ? D3DLOCK_DISCARD : 0;
UInt16* destPtr = nil;
if( FAILED( iRef->fD3DBuffer->Lock(startIdx * sizeof(UInt16), size, (void **)&destPtr, lockFlags) ) )
{
hsAssert( false, "Cannot lock index buffer for writing" );
return;
}
memcpy( destPtr, owner->GetIndexBufferData(idx) + startIdx, size );
iRef->fD3DBuffer->Unlock();
iRef->SetDirty( false );
}
// ICheckIndexBuffer ////////////////////////////////////////////////////////
// Make sure index buffer ref has any D3D resources it needs.
void plDXPipeline::ICheckIndexBuffer(plDXIndexBufferRef* iRef)
{
if( !iRef->fD3DBuffer && iRef->fCount )
{
D3DPOOL poolType = fAllocUnManaged ? D3DPOOL_DEFAULT : D3DPOOL_MANAGED;
DWORD usage = D3DUSAGE_WRITEONLY;
iRef->SetVolatile(false);
if( FAILED( fD3DDevice->CreateIndexBuffer( sizeof( UInt16 ) * iRef->fCount,
usage,
D3DFMT_INDEX16,
poolType,
&iRef->fD3DBuffer, NULL) ) )
{
hsAssert( false, "CreateIndexBuffer() call failed!" );
iRef->fD3DBuffer = nil;
return;
}
PROFILE_POOL_MEM(poolType, sizeof(UInt16) * iRef->fCount, true, "IndexBuff");
iRef->fPoolType = poolType;
iRef->SetDirty(true);
iRef->SetRebuiltSinceUsed(true);
}
}
// ISetupIndexBufferRef ////////////////////////////////////////////////////////////////
// Initialize the index buffer ref, but don't create anything for it.
void plDXPipeline::ISetupIndexBufferRef(plGBufferGroup* owner, UInt32 idx, plDXIndexBufferRef* iRef)
{
UInt32 numIndices = owner->GetIndexBufferCount(idx);
iRef->fCount = numIndices;
iRef->fOwner = owner;
iRef->fIndex = idx;
iRef->fRefTime = 0;
iRef->SetDirty(true);
iRef->SetRebuiltSinceUsed(true);
owner->SetIndexBufferRef(idx, iRef);
hsRefCnt_SafeUnRef(iRef);
iRef->SetVolatile(owner->AreIdxVolatile());
}
//// ISoftwareVertexBlend ///////////////////////////////////////////////////////
// Emulate matrix palette operations in software. The big difference between the hardware
// and software versions is we only want to lock the vertex buffer once and blend all the
// verts we're going to in software, so the vertex blend happens once for an entire drawable.
// In hardware, we want the opposite, to break it into managable chunks, manageable meaning
// few enough matrices to fit into hardware registers. So for hardware version, we set up
// our palette, draw a span or few, setup our matrix palette with new matrices, draw, repeat.
hsBool plDXPipeline::ISoftwareVertexBlend( plDrawableSpans* drawable, const hsTArray& visList )
{
if (IsDebugFlagSet(plPipeDbg::kFlagNoSkinning))
return true;
if( drawable->GetSkinTime() == fRenderCnt )
return true;
const hsBitVector &blendBits = drawable->GetBlendingSpanVector();
if( drawable->GetBlendingSpanVector().Empty() )
{
// This sucker doesn't have any skinning spans anyway. Just return
drawable->SetSkinTime( fRenderCnt );
return true;
}
plProfile_BeginTiming(Skin);
// lock the data buffer
// First, figure out which buffers we need to blend.
const int kMaxBufferGroups = 20;
const int kMaxVertexBuffers = 20;
static char blendBuffers[kMaxBufferGroups][kMaxVertexBuffers];
memset(blendBuffers, 0, kMaxBufferGroups * kMaxVertexBuffers * sizeof(**blendBuffers));
hsAssert(kMaxBufferGroups >= drawable->GetNumBufferGroups(), "Bigger than we counted on num groups skin.");
const hsTArray& spans = drawable->GetSpanArray();
int i;
for( i = 0; i < visList.GetCount(); i++ )
{
if( blendBits.IsBitSet( visList[ i ] ) )
{
const plVertexSpan &vSpan = *(plVertexSpan *)spans[visList[i]];
hsAssert(kMaxVertexBuffers > vSpan.fVBufferIdx, "Bigger than we counted on num buffers skin.");
blendBuffers[vSpan.fGroupIdx][vSpan.fVBufferIdx] = 1;
drawable->SetBlendingSpanVectorBit( visList[ i ], false );
}
}
// Now go through each of the group/buffer (= a real vertex buffer) pairs we found,
// and blend into it. We'll lock the buffer once, and then for each span that
// uses it, set the matrix palette and and then do the blend for that span.
// When we've done all the spans for a group/buffer, we unlock it and move on.
int j;
for( i = 0; i < kMaxBufferGroups; i++ )
{
for( j = 0; j < kMaxVertexBuffers; j++ )
{
if( blendBuffers[i][j] )
{
// Found one. Do the lock.
plDXVertexBufferRef* vRef = (plDXVertexBufferRef*)drawable->GetVertexRef(i, j);
hsAssert(vRef->fData, "Going into skinning with no place to put results!");
UInt8* destPtr = vRef->fData;
int k;
for( k = 0; k < visList.GetCount(); k++ )
{
const plIcicle& span = *(plIcicle*)spans[visList[k]];
if( (span.fGroupIdx == i)&&(span.fVBufferIdx == j) )
{
plProfile_Inc(NumSkin);
hsMatrix44* matrixPalette = drawable->GetMatrixPalette(span.fBaseMatrix);
matrixPalette[0] = span.fLocalToWorld;
UInt8* ptr = vRef->fOwner->GetVertBufferData(vRef->fIndex);
ptr += span.fVStartIdx * vRef->fOwner->GetVertexSize();
IBlendVertsIntoBuffer( (plSpan*)&span,
matrixPalette, span.fNumMatrices,
ptr,
vRef->fOwner->GetVertexFormat(),
vRef->fOwner->GetVertexSize(),
destPtr + span.fVStartIdx * vRef->fVertexSize,
vRef->fVertexSize,
span.fVLength,
span.fLocalUVWChans );
vRef->SetDirty(true);
}
}
// Unlock and move on.
}
}
}
plProfile_EndTiming(Skin);
if( drawable->GetBlendingSpanVector().Empty() )
{
// Only do this if we've blended ALL of the spans. Thus, this becomes a trivial
// rejection for all the skinning flags being cleared
drawable->SetSkinTime(fRenderCnt);
}
return true;
}
// IBeginAllocUnmanaged ///////////////////////////////////////////////////////////////////
// Before allocating anything into POOL_DEFAULT, we must evict managed memory.
// See LoadResources.
void plDXPipeline::IBeginAllocUnManaged()
{
// Flush out all managed resources to make room for unmanaged resources.
fD3DDevice->EvictManagedResources();
fEvictTime = fTextUseTime;
fManagedSeen = 0;
fManagedAlloced = false;
fAllocUnManaged = true; // we're currently only allocating POOL_DEFAULT
}
// IEndAllocUnManged.
// Before allocating anything into POOL_DEFAULT, we must evict managed memory.
// See LoadResources.
void plDXPipeline::IEndAllocUnManaged()
{
fAllocUnManaged = false;
// Flush the (should be empty) resource manager to reset its internal allocation pool.
fD3DDevice->EvictManagedResources();
fEvictTime = fTextUseTime;
fManagedSeen = 0;
}
// ICheckTextureUsage ////////////////////////////////////////////////////////////////////
// Obsolete, unused.
// Deletes textures LRU to try to get around NVidia memory manager bug. Found a
// more robust/efficent way. Besides, it didn't help. See OSVERSION.
void plDXPipeline::ICheckTextureUsage()
{
plProfile_IncCount(fTexUsed, fTexUsed);
plProfile_IncCount(fTexManaged, fTexManaged);
plConst(UInt32) kMinTexManaged(5000000);
if( fTexManaged < kMinTexManaged )
return;
plConst(UInt32) kScale(2);
if( fTexUsed * kScale < fTexManaged )
{
// Find the stalest
UInt32 stalest = fTextUseTime;
plDXTextureRef* ref = fTextureRefList;
while( ref )
{
// I don't know if render targets even get put in this list.
if( !(ref->GetFlags() & plDXTextureRef::kRenderTarget) && (ref->fUseTime < stalest) )
stalest = ref->fUseTime;
ref = ref->GetNext();
}
stalest = fTextUseTime - stalest;
// If the stalest is fresh, live with thrashing
plConst(UInt32) kMinAge(60);
if( stalest < kMinAge )
return;
// Kill the stalest, and everything more than half as stale
stalest /= 2;
if( stalest < kMinAge )
stalest = kMinAge;
stalest = fTextUseTime - stalest;
// Go through again slaughtering left and right
ref = fTextureRefList;
while( ref )
{
if( !(ref->GetFlags() & plDXTextureRef::kRenderTarget) && (ref->fUseTime < stalest) )
{
plDXTextureRef* nuke = ref;
ref = ref->GetNext();
nuke->Release();
nuke->Unlink();
}
else
{
ref = ref->GetNext();
}
}
}
}
// ICheckVtxUsage ////////////////////////////////////////////////////////////////////
// Obsolete, unused.
// Deletes textures LRU to try to get around NVidia memory manager bug. Found a
// more robust/efficent way. Besides, it didn't help. See OSVERSION.
void plDXPipeline::ICheckVtxUsage()
{
plProfile_IncCount(fVtxUsed, fVtxUsed);
plProfile_IncCount(fVtxManaged, fVtxManaged);
plConst(UInt32) kMinVtxManaged(5000000);
if( fVtxManaged < kMinVtxManaged )
return;
plConst(UInt32) kScale(2);
if( fVtxUsed * kScale < fVtxManaged )
{
// Find the stalest
UInt32 stalest = fTextUseTime;
plDXVertexBufferRef* ref = fVtxBuffRefList;
while( ref )
{
if( !ref->Volatile() && (ref->fUseTime < stalest) )
stalest = ref->fUseTime;
ref = ref->GetNext();
}
stalest = fTextUseTime - stalest;
// If the stalest is fresh, live with thrashing
plConst(UInt32) kMinAge(60);
if( stalest < kMinAge )
return;
// Kill the stalest, and everything more than half as stale
stalest /= 2;
if( stalest < kMinAge )
stalest = kMinAge;
stalest = fTextUseTime - stalest;
// Go through again slaughtering left and right
ref = fVtxBuffRefList;
while( ref )
{
if( !ref->Volatile() && (ref->fUseTime < stalest) )
{
plDXVertexBufferRef* nuke = ref;
ref = ref->GetNext();
nuke->Release();
nuke->Unlink();
}
else
{
ref = ref->GetNext();
}
}
}
}
hsBool plDXPipeline::CheckResources()
{
if ((fClothingOutfits.GetCount() <= 1 && fAvRTPool.GetCount() > 1) ||
(fAvRTPool.GetCount() >= 16 && (fAvRTPool.GetCount() / 2 >= fClothingOutfits.GetCount())))
{
return (hsTimer::GetSysSeconds() - fAvRTShrinkValidSince > kAvTexPoolShrinkThresh);
}
fAvRTShrinkValidSince = hsTimer::GetSysSeconds();
return (fAvRTPool.GetCount() < fClothingOutfits.GetCount());
}
// LoadResources ///////////////////////////////////////////////////////////////////////
// Basically, we have to load anything that goes into POOL_DEFAULT before
// anything into POOL_MANAGED, or the memory manager gets confused.
// More precisely, we have to evict everything from POOL_MANAGED before we
// can allocate anything into POOL_DEFAULT.
// So, this function frees up everything in POOL_DEFAULT, evicts managed memory,
// calls out for anything needing to be created POOL_DEFAULT to do so,
// Then we're free to load into POOL_MANAGED on demand.
// This is typically called at the beginning of the first render after loading
// a new age.
void plDXPipeline::LoadResources()
{
hsStatusMessageF("Begin Device Reload t=%f",hsTimer::GetSeconds());
plNetClientApp::StaticDebugMsg("Begin Device Reload");
// Just to be safe.
IInitDeviceState(); // 9700 THRASH
// Evict mananged memory.
IBeginAllocUnManaged();
// Release everything we have in POOL_DEFAULT.
IReleaseDynamicBuffers();
IReleaseAvRTPool();
// Create all RenderTargets
plPipeRTMakeMsg* rtMake = TRACKED_NEW plPipeRTMakeMsg(this);
rtMake->Send();
// Create all our shadow render targets and pipeline specific POOL_DEFAULT vertex buffers.
// This includes our single dynamic vertex buffer that we cycle through for software
// skinned, particle systems, etc.
ICreateDynamicBuffers();
// Create all POOL_DEFAULT (sorted) index buffers in the scene.
plPipeGeoMakeMsg* defMake = TRACKED_NEW plPipeGeoMakeMsg(this, true);
defMake->Send();
// This can be a bit of a mem hog and will use more mem if available, so keep it last in the
// POOL_DEFAULT allocs.
IFillAvRTPool();
// We should have everything POOL_DEFAULT we need now.
IEndAllocUnManaged();
// Force a create of all our static D3D vertex buffers.
#define MF_PRELOAD_MANAGEDBUFFERS
#ifdef MF_PRELOAD_MANAGEDBUFFERS
plPipeGeoMakeMsg* manMake = TRACKED_NEW plPipeGeoMakeMsg(this, false);
manMake->Send();
#endif // MF_PRELOAD_MANAGEDBUFFERS
// Forcing a preload of textures turned out to not be so great,
// since there are typically so many in an age, it swamped out
// VM.
#ifdef MF_TOSSER
#define MF_PRELOAD_TEXTURES
#endif // MF_TOSSER
#ifdef MF_PRELOAD_TEXTURES
plPipeTexMakeMsg* texMake = TRACKED_NEW plPipeTexMakeMsg(this);
texMake->Send();
#endif // MF_PRELOAD_TEXTURES
fD3DDevice->EvictManagedResources();
// Okay, we've done it, clear the request.
plPipeResReq::Clear();
plProfile_IncCount(PipeReload, 1);
hsStatusMessageF("End Device Reload t=%f",hsTimer::GetSeconds());
plNetClientApp::StaticDebugMsg("End Device Reload");
}
// Sorry about this, but it really did speed up the skinning.
// Just some macros for the inner loop of IBlendVertsIntoBuffer.
#define MATRIXMULTBEGIN(xfm, wgt) \
register float m00 = xfm.fMap[0][0]; \
register float m01 = xfm.fMap[0][1]; \
register float m02 = xfm.fMap[0][2]; \
register float m03 = xfm.fMap[0][3]; \
register float m10 = xfm.fMap[1][0]; \
register float m11 = xfm.fMap[1][1]; \
register float m12 = xfm.fMap[1][2]; \
register float m13 = xfm.fMap[1][3]; \
register float m20 = xfm.fMap[2][0]; \
register float m21 = xfm.fMap[2][1]; \
register float m22 = xfm.fMap[2][2]; \
register float m23 = xfm.fMap[2][3]; \
register float m_wgt = wgt; \
register float srcX, srcY, srcZ;
#define MATRIXMULTPOINTADD(dst, src) \
srcX = src.fX; \
srcY = src.fY; \
srcZ = src.fZ; \
\
dst.fX += (srcX * m00 + srcY * m01 + srcZ * m02 + m03) * m_wgt; \
dst.fY += (srcX * m10 + srcY * m11 + srcZ * m12 + m13) * m_wgt; \
dst.fZ += (srcX * m20 + srcY * m21 + srcZ * m22 + m23) * m_wgt;
#define MATRIXMULTVECTORADD(dst, src) \
srcX = src.fX; \
srcY = src.fY; \
srcZ = src.fZ; \
\
dst.fX += (srcX * m00 + srcY * m01 + srcZ * m02) * m_wgt; \
dst.fY += (srcX * m10 + srcY * m11 + srcZ * m12) * m_wgt; \
dst.fZ += (srcX * m20 + srcY * m21 + srcZ * m22) * m_wgt;
// inlTESTPOINT /////////////////////////////////////////
// Update mins and maxs if destP is outside.
inline void inlTESTPOINT(const hsPoint3& destP,
hsScalar& minX, hsScalar& minY, hsScalar& minZ,
hsScalar& maxX, hsScalar& maxY, hsScalar& maxZ)
{
if( destP.fX < minX )
minX = destP.fX;
else if( destP.fX > maxX )
maxX = destP.fX;
if( destP.fY < minY )
minY = destP.fY;
else if( destP.fY > maxY )
maxY = destP.fY;
if( destP.fZ < minZ )
minZ = destP.fZ;
else if( destP.fZ > maxZ )
maxZ = destP.fZ;
}
//// IBlendVertsIntoBuffer ////////////////////////////////////////////////////
// Given a pointer into a buffer of verts that have blending data in the D3D
// format, blends them into the destination buffer given without the blending
// info.
void plDXPipeline::IBlendVertsIntoBuffer( plSpan* span,
hsMatrix44* matrixPalette, int numMatrices,
UInt8 *src, UInt8 format, UInt32 srcStride,
UInt8 *dest, UInt32 destStride, UInt32 count,
UInt16 localUVWChans )
{
UInt8 numUVs, numWeights;
UInt32 i, j, indices, color, specColor, uvChanSize;
float weights[ 4 ], weightSum;
hsPoint3 pt, tempPt, destPt;
hsVector3 vec, tempNorm, destNorm;
/// Get some counts
switch( format & plGBufferGroup::kSkinWeightMask )
{
case plGBufferGroup::kSkin1Weight: numWeights = 1; break;
case plGBufferGroup::kSkin2Weights: numWeights = 2; break;
case plGBufferGroup::kSkin3Weights: numWeights = 3; break;
default: hsAssert( false, "Invalid weight count in IBlendVertsIntoBuffer()" );
}
numUVs = plGBufferGroup::CalcNumUVs( format );
uvChanSize = numUVs * sizeof( float ) * 3;
//#define MF_RECALC_BOUNDS
#ifdef MF_RECALC_BOUNDS
hsScalar minX = 1.e33f;
hsScalar minY = 1.e33f;
hsScalar minZ = 1.e33f;
hsScalar maxX = -1.e33f;
hsScalar maxY = -1.e33f;
hsScalar maxZ = -1.e33f;
#endif // MF_RECALC_BOUNDS
// localUVWChans is bump mapping tangent space vectors, which need to
// be skinned like the normal, as opposed to passed through like
// garden variety UVW coordinates.
// There are no localUVWChans that I know of in production assets (i.e.
// the avatar is not skinned).
if( !localUVWChans )
{
/// Copy whilst blending
for( i = 0; i < count; i++ )
{
// Extract data
src = inlExtractPoint( src, pt );
for( j = 0, weightSum = 0; j < numWeights; j++ )
{
src = inlExtractFloat( src, weights[ j ] );
weightSum += weights[ j ];
}
weights[ j ] = 1 - weightSum;
if( format & plGBufferGroup::kSkinIndices )
{
src = inlExtractUInt32( src, indices );
}
else
{
indices = 1 << 8;
}
src = inlExtractPoint( src, vec );
src = inlExtractUInt32( src, color );
src = inlExtractUInt32( src, specColor );
// Blend
destPt.Set( 0, 0, 0 );
destNorm.Set( 0, 0, 0 );
for( j = 0; j < numWeights + 1; j++ )
{
if( weights[ j ] )
{
MATRIXMULTBEGIN(matrixPalette[indices & 0xff], weights[j]);
MATRIXMULTPOINTADD(destPt, pt);
MATRIXMULTVECTORADD(destNorm, vec);
}
indices >>= 8;
}
// Probably don't really need to renormalize this. There errors are
// going to be subtle and "smooth".
// hsFastMath::NormalizeAppr(destNorm);
#ifdef MF_RECALC_BOUNDS
inlTESTPOINT(destPt, minX, minY, minZ, maxX, maxY, maxZ);
#endif // MF_RECALC_BOUNDS
// Slam data into position now
dest = inlStuffPoint( dest, destPt );
dest = inlStuffPoint( dest, destNorm );
dest = inlStuffUInt32( dest, color );
dest = inlStuffUInt32( dest, specColor );
memcpy( dest, src, uvChanSize );
src += uvChanSize;
dest += uvChanSize;
}
}
else
{
UInt8 hiChan = localUVWChans >> 8;
UInt8 loChan = localUVWChans & 0xff;
/// Copy whilst blending
for( i = 0; i < count; i++ )
{
hsVector3 srcUVWs[plGeometrySpan::kMaxNumUVChannels];
hsVector3 dstUVWs[plGeometrySpan::kMaxNumUVChannels];
// Extract data
src = inlExtractPoint( src, pt );
for( j = 0, weightSum = 0; j < numWeights; j++ )
{
src = inlExtractFloat( src, weights[ j ] );
weightSum += weights[ j ];
}
weights[ j ] = 1 - weightSum;
if( format & plGBufferGroup::kSkinIndices )
{
src = inlExtractUInt32( src, indices );
}
else
{
indices = 1 << 8;
}
src = inlExtractPoint( src, vec );
src = inlExtractUInt32( src, color );
src = inlExtractUInt32( src, specColor );
UInt8 k;
for( k = 0; k < numUVs; k++ )
{
src = inlExtractPoint( src, srcUVWs[k] );
}
memcpy( dstUVWs, srcUVWs, uvChanSize);
dstUVWs[loChan].Set(0,0,0);
dstUVWs[hiChan].Set(0,0,0);
// Blend
destPt.Set( 0, 0, 0 );
destNorm.Set( 0, 0, 0 );
for( j = 0; j < numWeights + 1; j++ )
{
if( weights[ j ] )
{
MATRIXMULTBEGIN(matrixPalette[indices & 0xff], weights[j]);
MATRIXMULTPOINTADD(destPt, pt);
MATRIXMULTVECTORADD(destNorm, vec);
MATRIXMULTVECTORADD(dstUVWs[loChan], srcUVWs[loChan]);
MATRIXMULTVECTORADD(dstUVWs[hiChan], srcUVWs[hiChan]);
}
indices >>= 8;
}
// Probably don't really need to renormalize this. There errors are
// going to be subtle and "smooth".
// hsFastMath::NormalizeAppr(destNorm);
// hsFastMath::NormalizeAppr(dstUVWs[loChan]);
// hsFastMath::NormalizeAppr(dstUVWs[hiChan]);
#ifdef MF_RECALC_BOUNDS
inlTESTPOINT(destPt, minX, minY, minZ, maxX, maxY, maxZ);
#endif // MF_RECALC_BOUNDS
// Slam data into position now
dest = inlStuffPoint( dest, destPt );
dest = inlStuffPoint( dest, destNorm );
dest = inlStuffUInt32( dest, color );
dest = inlStuffUInt32( dest, specColor );
memcpy( dest, dstUVWs, uvChanSize );
dest += uvChanSize;
}
}
#ifdef MF_RECALC_BOUNDS
hsBounds3Ext wBnd;
wBnd.Reset(&hsPoint3(minX, minY, minZ));
wBnd.Union(&hsPoint3(maxX, maxY, maxZ));
span->fWorldBounds = wBnd;
#endif // MF_RECALC_BOUNDS
}
// ISetPipeConsts //////////////////////////////////////////////////////////////////
// A shader can request that the pipeline fill in certain constants that are indeterminate
// until the pipeline is about to render the object the shader is applied to. For example,
// the object's local to world. A single shader may be used on multiple objects with
// multiple local to world transforms. This ensures the pipeline will shove the proper
// local to world into the shader immediately before the render.
// See plShader.h for the list of available pipe constants.
// Note that the lighting pipe constants are NOT implemented.
void plDXPipeline::ISetPipeConsts(plShader* shader)
{
int n = shader->GetNumPipeConsts();
int i;
for( i = 0; i < n; i++ )
{
const plPipeConst& pc = shader->GetPipeConst(i);
switch( pc.fType )
{
case plPipeConst::kFogSet:
{
float set[4];
IGetVSFogSet(set);
shader->SetFloat4(pc.fReg, set);
}
break;
case plPipeConst::kLayAmbient:
{
hsColorRGBA col = fCurrLay->GetAmbientColor();
shader->SetColor(pc.fReg, col);
}
break;
case plPipeConst::kLayRuntime:
{
hsColorRGBA col = fCurrLay->GetRuntimeColor();
col.a = fCurrLay->GetOpacity();
shader->SetColor(pc.fReg, col);
}
break;
case plPipeConst::kLaySpecular:
{
hsColorRGBA col = fCurrLay->GetSpecularColor();
shader->SetColor(pc.fReg, col);
}
break;
case plPipeConst::kTex3x4_0:
case plPipeConst::kTex3x4_1:
case plPipeConst::kTex3x4_2:
case plPipeConst::kTex3x4_3:
case plPipeConst::kTex3x4_4:
case plPipeConst::kTex3x4_5:
case plPipeConst::kTex3x4_6:
case plPipeConst::kTex3x4_7:
{
int stage = pc.fType - plPipeConst::kTex3x4_0;
if( stage > fCurrNumLayers )
{
// Ooops. This is bad, means the shader is expecting more layers than
// we actually have (or is just bogus). Assert and quietly continue.
hsAssert(false, "Shader asking for higher stage transform than we have");
continue;
}
const hsMatrix44& xfm = fCurrMaterial->GetLayer(fCurrLayerIdx + stage)->GetTransform();
shader->SetMatrix34(pc.fReg, xfm);
}
break;
case plPipeConst::kTex2x4_0:
case plPipeConst::kTex2x4_1:
case plPipeConst::kTex2x4_2:
case plPipeConst::kTex2x4_3:
case plPipeConst::kTex2x4_4:
case plPipeConst::kTex2x4_5:
case plPipeConst::kTex2x4_6:
case plPipeConst::kTex2x4_7:
{
int stage = pc.fType - plPipeConst::kTex2x4_0;
if( stage > fCurrNumLayers )
{
// Ooops. This is bad, means the shader is expecting more layers than
// we actually have (or is just bogus). Assert and quietly continue.
hsAssert(false, "Shader asking for higher stage transform than we have");
continue;
}
const hsMatrix44& xfm = fCurrMaterial->GetLayer(fCurrLayerIdx + stage)->GetTransform();
shader->SetMatrix24(pc.fReg, xfm);
}
break;
case plPipeConst::kTex1x4_0:
case plPipeConst::kTex1x4_1:
case plPipeConst::kTex1x4_2:
case plPipeConst::kTex1x4_3:
case plPipeConst::kTex1x4_4:
case plPipeConst::kTex1x4_5:
case plPipeConst::kTex1x4_6:
case plPipeConst::kTex1x4_7:
{
int stage = pc.fType - plPipeConst::kTex1x4_0;
if( stage > fCurrNumLayers )
{
// Ooops. This is bad, means the shader is expecting more layers than
// we actually have (or is just bogus). Assert and quietly continue.
hsAssert(false, "Shader asking for higher stage transform than we have");
continue;
}
const hsMatrix44& xfm = fCurrMaterial->GetLayer(fCurrLayerIdx + stage)->GetTransform();
shader->SetFloat4(pc.fReg, xfm.fMap[0]);
}
break;
case plPipeConst::kLocalToNDC:
{
hsMatrix44 cam2ndc = IGetCameraToNDC();
hsMatrix44 world2cam = GetViewTransform().GetWorldToCamera();
hsMatrix44 local2ndc = cam2ndc * world2cam * GetLocalToWorld();
shader->SetMatrix44(pc.fReg, local2ndc);
}
break;
case plPipeConst::kCameraToNDC:
{
hsMatrix44 cam2ndc = IGetCameraToNDC();
shader->SetMatrix44(pc.fReg, cam2ndc);
}
break;
case plPipeConst::kWorldToNDC:
{
hsMatrix44 cam2ndc = IGetCameraToNDC();
hsMatrix44 world2cam = GetViewTransform().GetWorldToCamera();
hsMatrix44 world2ndc = cam2ndc * world2cam;
shader->SetMatrix44(pc.fReg, world2ndc);
}
break;
case plPipeConst::kLocalToWorld:
shader->SetMatrix34(pc.fReg, GetLocalToWorld());
break;
case plPipeConst::kWorldToLocal:
shader->SetMatrix34(pc.fReg, GetWorldToLocal());
break;
case plPipeConst::kWorldToCamera:
{
hsMatrix44 world2cam = GetViewTransform().GetWorldToCamera();
shader->SetMatrix34(pc.fReg, world2cam);
}
break;
case plPipeConst::kCameraToWorld:
{
hsMatrix44 cam2world = GetViewTransform().GetCameraToWorld();
shader->SetMatrix34(pc.fReg, cam2world);
}
break;
case plPipeConst::kLocalToCamera:
{
hsMatrix44 world2cam = GetViewTransform().GetWorldToCamera();
hsMatrix44 local2cam = world2cam * GetLocalToWorld();
shader->SetMatrix34(pc.fReg, local2cam);
}
break;
case plPipeConst::kCameraToLocal:
{
hsMatrix44 cam2world = GetViewTransform().GetCameraToWorld();
hsMatrix44 cam2local = GetWorldToLocal() * cam2world;
shader->SetMatrix34(pc.fReg, cam2local);
}
break;
case plPipeConst::kCamPosWorld:
{
shader->SetVectorW(pc.fReg, GetViewTransform().GetCameraToWorld().GetTranslate(), 1.f);
}
break;
case plPipeConst::kCamPosLocal:
{
hsPoint3 localCam = GetWorldToLocal() * GetViewTransform().GetCameraToWorld().GetTranslate();
shader->SetVectorW(pc.fReg, localCam, 1.f);
}
break;
case plPipeConst::kObjPosWorld:
{
shader->SetVectorW(pc.fReg, GetLocalToWorld().GetTranslate(), 1.f);
}
break;
// UNIMPLEMENTED
case plPipeConst::kDirLight1:
case plPipeConst::kDirLight2:
case plPipeConst::kDirLight3:
case plPipeConst::kDirLight4:
case plPipeConst::kPointLight1:
case plPipeConst::kPointLight2:
case plPipeConst::kPointLight3:
case plPipeConst::kPointLight4:
break;
}
}
}
// ISetShaders /////////////////////////////////////////////////////////////////////////////////////
// Setup to render using the input vertex and pixel shader. Either or both may
// be nil, in which case the fixed function pipeline is indicated.
// Any Pipe Constants the non-FFP shader wants will be set here.
// Lastly, all constants will be set (as a block) for any non-FFP vertex or pixel shader.
HRESULT plDXPipeline::ISetShaders(plShader* vShader, plShader* pShader)
{
IDirect3DVertexShader9 *vsHandle = NULL;
if( vShader )
{
hsAssert(vShader->IsVertexShader(), "Wrong type shader as vertex shader");
ISetPipeConsts(vShader);
plDXVertexShader* vRef = (plDXVertexShader*)vShader->GetDeviceRef();
if( !vRef )
{
vRef = TRACKED_NEW plDXVertexShader(vShader);
hsRefCnt_SafeUnRef(vRef);
}
if( !vRef->IsLinked() )
vRef->Link(&fVShaderRefList);
vsHandle = vRef->GetShader(this);
// This is truly obnoxious, but D3D insists that, while using the progammable pipeline,
// all stages be set up like this, not just the ones we're going to use. We have to
// do this if we have either a vertex or a pixel shader. See below. Whatever. mf
int i;
for( i = 0; i < 8; i++ )
{
fD3DDevice->SetTextureStageState(i, D3DTSS_TEXCOORDINDEX, fLayerUVWSrcs[i] = i);
fD3DDevice->SetTextureStageState(i, D3DTSS_TEXTURETRANSFORMFLAGS, fLayerXformFlags[i] = 0);
}
}
IDirect3DPixelShader9 *psHandle = NULL;
if( pShader )
{
hsAssert(pShader->IsPixelShader(), "Wrong type shader as pixel shader");
ISetPipeConsts(pShader);
plDXPixelShader* pRef = (plDXPixelShader*)pShader->GetDeviceRef();
if( !pRef )
{
pRef = TRACKED_NEW plDXPixelShader(pShader);
hsRefCnt_SafeUnRef(pRef);
}
if( !pRef->IsLinked() )
pRef->Link(&fPShaderRefList);
psHandle = pRef->GetShader(this);
if( !vShader )
{
int i;
for( i = 0; i < 8; i++ )
{
fD3DDevice->SetTextureStageState(i, D3DTSS_TEXCOORDINDEX, fLayerUVWSrcs[i] = i);
fD3DDevice->SetTextureStageState(i, D3DTSS_TEXTURETRANSFORMFLAGS, fLayerXformFlags[i] = 0);
}
}
}
if( vsHandle != fSettings.fCurrVertexShader )
{
HRESULT hr = fD3DDevice->SetVertexShader(fSettings.fCurrVertexShader = vsHandle);
hsAssert(!FAILED(hr), "Error setting vertex shader");
}
if( psHandle != fSettings.fCurrPixelShader )
{
HRESULT hr = fD3DDevice->SetPixelShader(fSettings.fCurrPixelShader = psHandle);
hsAssert(!FAILED(hr), "Error setting pixel shader");
}
// Handle cull mode here, because current cullmode is dependent on
// the handedness of the LocalToCamera AND whether we are twosided.
ISetCullMode();
return S_OK;
}
// IRenderAuxSpan //////////////////////////////////////////////////////////
// Aux spans (auxilliary) are geometry rendered immediately after, and therefore dependent, on
// other normal geometry. They don't have SceneObjects, Drawables, DrawInterfaces or
// any of that, and therefore don't correspond to any object in the scene.
// They are dynamic procedural decals. See plDynaDecal.cpp and plDynaDecalMgr.cpp.
// This is wrapped by IRenderAuxSpans, which makes sure state is restored to resume
// normal rendering after the AuxSpan is rendered.
void plDXPipeline::IRenderAuxSpan(const plSpan& span, const plAuxSpan* aux)
{
// Make sure the underlying resources are created and filled in with current data.
CheckVertexBufferRef(aux->fGroup, aux->fVBufferIdx);
CheckIndexBufferRef(aux->fGroup, aux->fIBufferIdx);
ICheckAuxBuffers(aux);
// Set to render from the aux spans buffers.
plDXVertexBufferRef* vRef = (plDXVertexBufferRef*)aux->fGroup->GetVertexBufferRef(aux->fVBufferIdx);
if( !vRef )
return;
plDXIndexBufferRef* iRef = (plDXIndexBufferRef*)aux->fGroup->GetIndexBufferRef(aux->fIBufferIdx);
if( !iRef )
return;
HRESULT r;
r = fD3DDevice->SetStreamSource( 0, vRef->fD3DBuffer, 0, vRef->fVertexSize );
hsAssert( r == D3D_OK, "Error trying to set the stream source!" );
plProfile_Inc(VertexChange);
fD3DDevice->SetFVF(fSettings.fCurrFVFFormat = IGetBufferD3DFormat(vRef->fFormat));
r = fD3DDevice->SetIndices( iRef->fD3DBuffer );
hsAssert( r == D3D_OK, "Error trying to set the indices!" );
plRenderTriListFunc render(fD3DDevice, iRef->fOffset, aux->fVStartIdx, aux->fVLength, aux->fIStartIdx, aux->fILength/3);
// Now just loop through the aux material, rendering in as many passes as it takes.
hsGMaterial* material = aux->fMaterial;
int j;
for( j = 0; j < material->GetNumLayers(); )
{
int iCurrMat = j;
j = IHandleMaterial( material, iCurrMat, &span );
if (j == -1)
break;
ISetShaders(material->GetLayer(iCurrMat)->GetVertexShader(), material->GetLayer(iCurrMat)->GetPixelShader());
if( aux->fFlags & plAuxSpan::kOverrideLiteModel )
{
static D3DMATERIAL9 mat;
fD3DDevice->SetRenderState(D3DRS_AMBIENT, 0xffffffff);
fD3DDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE, D3DMCS_COLOR1 );
fD3DDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetMaterial( &mat );
}
render.RenderPrims();
}
}
// IRenderAuxSpans ////////////////////////////////////////////////////////////////////////////
// Save and restore render state around calls to IRenderAuxSpan. This lets
// a list of aux spans get rendered with only one save/restore state.
void plDXPipeline::IRenderAuxSpans(const plSpan& span)
{
if (IsDebugFlagSet(plPipeDbg::kFlagNoAuxSpans))
return;
plDXVertexBufferRef* oldVRef = fSettings.fCurrVertexBuffRef;
plDXIndexBufferRef* oldIRef = fSettings.fCurrIndexBuffRef;
ISetLocalToWorld(hsMatrix44::IdentityMatrix(), hsMatrix44::IdentityMatrix());
int i;
for( i = 0; i < span.GetNumAuxSpans(); i++ )
IRenderAuxSpan(span, span.GetAuxSpan(i));
ISetLocalToWorld(span.fLocalToWorld, span.fWorldToLocal);
HRESULT r;
r = fD3DDevice->SetStreamSource( 0, oldVRef->fD3DBuffer, 0, oldVRef->fVertexSize );
hsAssert( r == D3D_OK, "Error trying to set the stream source!" );
plProfile_Inc(VertexChange);
r = fD3DDevice->SetFVF(fSettings.fCurrFVFFormat = IGetBufferD3DFormat(oldVRef->fFormat));
r = fD3DDevice->SetIndices( oldIRef->fD3DBuffer );
hsAssert( r == D3D_OK, "Error trying to set the indices!" );
}
// ICheckVBUsage //////////////////////////////////////////////////////////////
// Keep track of how much managed vertex buffer memory is being used and
// has been used since the last evict.
inline void plDXPipeline::ICheckVBUsage(plDXVertexBufferRef* vRef)
{
if( !vRef->fOwner->AreVertsVolatile() )
{
if( vRef->fUseTime <= fEvictTime )
fManagedSeen += vRef->fVertexSize * vRef->fCount;
if( vRef->fUseTime != fTextUseTime )
{
plProfile_NewMem(CurrVB, vRef->fVertexSize * vRef->fCount);
fVtxUsed += vRef->fVertexSize * vRef->fCount;
vRef->fUseTime = fTextUseTime;
}
}
}
//// IRenderBufferSpan ////////////////////////////////////////////////////////
// Sets up the vertex and index buffers for a span, and then
// renders it in as many passes as it takes in ILoopOverLayers.
void plDXPipeline::IRenderBufferSpan( const plIcicle& span,
hsGDeviceRef *vb, hsGDeviceRef *ib,
hsGMaterial *material, UInt32 vStart, UInt32 vLength,
UInt32 iStart, UInt32 iLength )
{
plProfile_BeginTiming(RenderBuff);
plDXVertexBufferRef *vRef = (plDXVertexBufferRef *)vb;
plDXIndexBufferRef *iRef = (plDXIndexBufferRef *)ib;
HRESULT r;
if( vRef->fD3DBuffer == nil || iRef->fD3DBuffer == nil )
{
plProfile_EndTiming(RenderBuff);
hsAssert( false, "Trying to render a nil buffer pair!" );
return;
}
/// Switch to the vertex buffer we want
if( fSettings.fCurrVertexBuffRef != vRef )
{
hsRefCnt_SafeAssign( fSettings.fCurrVertexBuffRef, vRef );
hsAssert( vRef->fD3DBuffer != nil, "Trying to render a buffer pair without a vertex buffer!" );
vRef->SetRebuiltSinceUsed(true);
}
if( vRef->RebuiltSinceUsed() )
{
r = fD3DDevice->SetStreamSource( 0, vRef->fD3DBuffer, 0, vRef->fVertexSize );
hsAssert( r == D3D_OK, "Error trying to set the stream source!" );
plProfile_Inc(VertexChange);
DWORD fvf = IGetBufferD3DFormat(vRef->fFormat);
if (fSettings.fCurrFVFFormat != fvf)
fD3DDevice->SetFVF(fSettings.fCurrFVFFormat = fvf);
vRef->SetRebuiltSinceUsed(false);
ICheckVBUsage(vRef);
}
// Note: both these stats are the same, since we don't do any culling or clipping on the tris
if( fSettings.fCurrIndexBuffRef != iRef )
{
hsRefCnt_SafeAssign( fSettings.fCurrIndexBuffRef, iRef );
hsAssert( iRef->fD3DBuffer != nil, "Trying to render with a nil index buffer" );
iRef->SetRebuiltSinceUsed(true);
}
if( iRef->RebuiltSinceUsed() )
{
r = fD3DDevice->SetIndices( iRef->fD3DBuffer );
hsAssert( r == D3D_OK, "Error trying to set the indices!" );
plProfile_Inc(IndexChange);
iRef->SetRebuiltSinceUsed(false);
}
plRenderTriListFunc render(fD3DDevice, iRef->fOffset, vStart, vLength, iStart, iLength/3);
plProfile_EndTiming(RenderBuff);
ILoopOverLayers(render, material, span);
}
// ILoopOverLayers /////////////////////////////////////////////////////////////////////////////////
// Render the input span with the input material in as many passes as it takes.
// Also handles rendering projected lights, either onto each pass or
// once onto the FB after all the passes, as appropriate.
hsBool plDXPipeline::ILoopOverLayers(const plRenderPrimFunc& inRender, hsGMaterial* material, const plSpan& span)
{
plProfile_BeginTiming(RenderPrim);
const plRenderPrimFunc& render = IsDebugFlagSet(plPipeDbg::kFlagNoRender) ? (const plRenderPrimFunc&)sRenderNil : inRender;
if( GetOverrideMaterial() )
material = GetOverrideMaterial();
IPushPiggyBacks(material);
hsBool normalLightsDisabled = false;
// Loop across all the layers we need to draw
int j;
for( j = 0; j < material->GetNumLayers(); )
{
int iCurrMat = j;
j = IHandleMaterial( material, iCurrMat, &span );
if (j == -1)
break;
if( (fLayerState[0].fBlendFlags & hsGMatState::kBlendAlpha)
&&(material->GetLayer(iCurrMat)->GetOpacity() <= 0)
&&(fCurrLightingMethod != plSpan::kLiteVtxPreshaded) ) // This opt isn't good for particles, since their
// material opacity is undefined/unused... -mcn
continue;
plProfile_BeginTiming(SpanFog);
ISetFogParameters(&span, material->GetLayer(iCurrMat));
plProfile_EndTiming(SpanFog);
ISetShaders(material->GetLayer(iCurrMat)->GetVertexShader(), material->GetLayer(iCurrMat)->GetPixelShader());
if( normalLightsDisabled )
IRestoreSpanLights();
#ifdef HS_DEBUGGING
DWORD nPass;
fSettings.fDXError = fD3DDevice->ValidateDevice(&nPass);
if( fSettings.fDXError != D3D_OK )
IGetD3DError();
#endif // HS_DEBUGGING
// Do the regular draw.
render.RenderPrims();
// Take care of projections that get applied to each pass.
if( fLights.fProjEach.GetCount() && !(fView.fRenderState & kRenderNoProjection) )
{
// Disable all the normal lights.
IDisableSpanLights();
normalLightsDisabled = true;
IRenderProjectionEach(render, material, iCurrMat, span);
}
if (IsDebugFlagSet(plPipeDbg::kFlagNoUpperLayers))
j = material->GetNumLayers();
}
IPopPiggyBacks();
// If we disabled lighting, re-enable it.
if( normalLightsDisabled )
IRestoreSpanLights();
// Render any aux spans associated.
if( span.GetNumAuxSpans() )
IRenderAuxSpans(span);
// Only render projections and shadows if we successfully rendered the span.
// j == -1 means we aborted render.
if( j >= 0 )
{
// Projections that get applied to the frame buffer (after all passes).
if( fLights.fProjAll.GetCount() && !(fView.fRenderState & kRenderNoProjection) )
IRenderProjections(render);
// Handle render of shadows onto geometry.
if( fShadows.GetCount() )
IRenderShadowsOntoSpan(render, &span, material);
}
// Debug only
if (IsDebugFlagSet(plPipeDbg::kFlagOverlayWire))
{
IRenderOverWire(render, material, span);
}
plProfile_EndTiming(RenderPrim);
return false;
}
// IRenderOverWire ///////////////////////////////////////////////////////////////////////////////
// Debug only, renders wireframe on top of normal render.
void plDXPipeline::IRenderOverWire(const plRenderPrimFunc& render, hsGMaterial* material, const plSpan& span)
{
UInt32 state = fView.fRenderState;
fView.fRenderState |= plPipeline::kRenderBaseLayerOnly;
static plLayerDepth depth;
depth.SetMiscFlags(depth.GetMiscFlags() | hsGMatState::kMiscWireFrame | hsGMatState::kMiscTwoSided);
depth.SetZFlags((depth.GetZFlags() & ~hsGMatState::kZNoZRead) | hsGMatState::kZIncLayer);
AppendLayerInterface(&depth, false);
if( IHandleMaterial( material, 0, &span ) >= 0 )
{
ISetShaders(nil, nil);
render.RenderPrims();
}
RemoveLayerInterface(&depth, false) ;
fView.fRenderState = state;
}
// IRenderProjectionEach ///////////////////////////////////////////////////////////////////////////////////////
// Render any lights that are to be projected onto each pass of the object.
void plDXPipeline::IRenderProjectionEach(const plRenderPrimFunc& render, hsGMaterial* material, int iPass, const plSpan& span)
{
// If this is a bump map pass, forget it, we've already "done" per-pixel lighting.
if( fLayerState[iPass].fMiscFlags & (hsGMatState::kMiscBumpLayer | hsGMatState::kMiscBumpChans) )
return;
// Push the LayerShadowBase override. This sets the blend
// to framebuffer as Add/ZNoWrite and AmbientColor = 0.
static plLayerLightBase layLightBase;
int iNextPass = iPass + fCurrNumLayers;
if( fSettings.fLimitedProj && (material->GetLayer(iPass)->GetUVWSrc() & ~plLayerInterface::kUVWIdxMask) )
return;
// For each projector:
int k;
for( k = 0; k < fLights.fProjEach.GetCount(); k++ )
{
// Push it's projected texture as a piggyback.
plLightInfo* li = fLights.fProjEach[k];
// Lower end boards are iffy on when they'll project correctly.
if( fSettings.fCantProj && !li->GetProperty(plLightInfo::kLPForceProj) )
continue;
plLayerInterface* proj = li->GetProjection();
hsAssert(proj, "A projector with no texture to project?");
IPushProjPiggyBack(proj);
// Enable the projecting light only.
plDXLightRef* ref = (plDXLightRef *)li->GetDeviceRef();
fD3DDevice->LightEnable( ref->fD3DIndex, true );
AppendLayerInterface(&layLightBase, false);
// Render until it's done.
int iRePass = iPass;
while( iRePass < iNextPass )
{
iRePass = IHandleMaterial( material, iRePass, &span );
ISetShaders(nil, nil);
// Do the render with projection.
render.RenderPrims();
}
RemoveLayerInterface(&layLightBase, false);
// Disable the projecting light
fD3DDevice->LightEnable(ref->fD3DIndex, false);
// Pop it's projected texture off piggyback
IPopProjPiggyBacks();
}
}
// IRenderProjections ///////////////////////////////////////////////////////////
// Render any projected lights that want to be rendered a single time after
// all passes on the object are complete.
void plDXPipeline::IRenderProjections(const plRenderPrimFunc& render)
{
IDisableSpanLights();
int i;
for( i = 0; i < fLights.fProjAll.GetCount(); i++ )
{
plLightInfo* li = fLights.fProjAll[i];
if( fSettings.fCantProj && !li->GetProperty(plLightInfo::kLPForceProj) )
continue;
IRenderProjection(render, li);
}
IRestoreSpanLights();
}
// IRenderProjection //////////////////////////////////////////////////////////////
// Render this light's projection onto the frame buffer.
void plDXPipeline::IRenderProjection(const plRenderPrimFunc& render, plLightInfo* li)
{
plDXLightRef* ref = (plDXLightRef *)li->GetDeviceRef();
fD3DDevice->LightEnable(ref->fD3DIndex, true);
plLayerInterface* proj = li->GetProjection();
static D3DMATERIAL9 mat;
mat.Diffuse.r = mat.Diffuse.g = mat.Diffuse.b = mat.Diffuse.a = 1.f;
fD3DDevice->SetMaterial( &mat );
fD3DDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE, D3DMCS_MATERIAL );
fD3DDevice->SetRenderState( D3DRS_AMBIENT, 0xffffffff ); //@@@
// Set the FB blend mode, texture, all that.
ICompositeLayerState(0, proj);
// We should have put ZNoZWrite on during export, but we didn't.
fLayerState[0].fZFlags = hsGMatState::kZNoZWrite;
fCurrNumLayers = 1;
IHandleFirstTextureStage(proj);
if( proj->GetBlendFlags() & hsGMatState::kBlendInvertFinalColor )
{
fD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE | D3DTA_COMPLEMENT);
}
// Seal it up
fLastEndingStage = 1;
fD3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
fD3DDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
fLayerState[1].fBlendFlags = UInt32(-1);
#ifdef HS_DEBUGGING
DWORD nPass;
fSettings.fDXError = fD3DDevice->ValidateDevice(&nPass);
if( fSettings.fDXError != D3D_OK )
IGetD3DError();
#endif // HS_DEBUGGING
// Okay, render it already.
render.RenderPrims();
fD3DDevice->LightEnable(ref->fD3DIndex, false);
}
//// IGetBufferD3DFormat //////////////////////////////////////////////////////
// Convert the dumbest vertex format on the planet (ours) into an FVF code.
// Note the assumption of position, normal, diffuse, and specular.
// We no longer use FVF codes, just shader handles.
long plDXPipeline::IGetBufferD3DFormat( UInt8 format ) const
{
long fmt, i;
switch( format & plGBufferGroup::kSkinWeightMask )
{
case plGBufferGroup::kSkinNoWeights:
fmt = D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_SPECULAR | D3DFVF_NORMAL;
break;
case plGBufferGroup::kSkin1Weight:
fmt = D3DFVF_XYZB1 | D3DFVF_DIFFUSE | D3DFVF_SPECULAR | D3DFVF_NORMAL;
break;
case plGBufferGroup::kSkin2Weights:
fmt = D3DFVF_XYZB2 | D3DFVF_DIFFUSE | D3DFVF_SPECULAR | D3DFVF_NORMAL;
break;
case plGBufferGroup::kSkin3Weights:
fmt = D3DFVF_XYZB3 | D3DFVF_DIFFUSE | D3DFVF_SPECULAR | D3DFVF_NORMAL;
break;
default:
hsAssert( false, "Bad skin weight value in IGetBufferD3DFormat()" );
}
if( format & plGBufferGroup::kSkinIndices )
{
hsAssert(false, "Indexed skinning not supported");
fmt |= D3DFVF_LASTBETA_UBYTE4;
}
switch( plGBufferGroup::CalcNumUVs( format ) )
{
case 0: fmt |= D3DFVF_TEX0; break;
case 1: fmt |= D3DFVF_TEX1; break;
case 2: fmt |= D3DFVF_TEX2; break;
case 3: fmt |= D3DFVF_TEX3; break;
case 4: fmt |= D3DFVF_TEX4; break;
case 5: fmt |= D3DFVF_TEX5; break;
case 6: fmt |= D3DFVF_TEX6; break;
case 7: fmt |= D3DFVF_TEX7; break;
case 8: fmt |= D3DFVF_TEX8; break;
}
for( i = 0; i < plGBufferGroup::CalcNumUVs( format ); i++ )
fmt |= D3DFVF_TEXCOORDSIZE3( i );
return fmt;
}
//// IGetBufferFormatSize /////////////////////////////////////////////////////
// Calculate the vertex stride from the given format.
UInt32 plDXPipeline::IGetBufferFormatSize( UInt8 format ) const
{
UInt32 size = sizeof( float ) * 6 + sizeof( UInt32 ) * 2; // Position and normal, and two packed colors
switch( format & plGBufferGroup::kSkinWeightMask )
{
case plGBufferGroup::kSkinNoWeights:
break;
case plGBufferGroup::kSkin1Weight:
size += sizeof(float);
break;
default:
hsAssert( false, "Invalid skin weight value in IGetBufferFormatSize()" );
}
size += sizeof( float ) * 3 * plGBufferGroup::CalcNumUVs( format );
return size;
}
///////////////////////////////////////////////////////////////////////////////
//// Plate and PlateManager Functions /////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// None of this plate code is mine, so your guess is as good as mine.
// I'll throw in comments where I happen to know what it's doing, but a lot
// of this is just ugly.
// The plates are mostly used for debugging/performance tools, but they do
// unfortunately get used for some production things like the cursor.
// By the way, a Plate is just a screen aligned textured quad that is rendered
// on top of the normal scene. mf
// ICreateGeometry /////////////////////////////////////////////////////////
// Make a quad suitable for rendering as a tristrip.
void plDXPlateManager::ICreateGeometry(plDXPipeline* pipe)
{
UInt32 fvfFormat = PLD3D_PLATEFVF;
D3DPOOL poolType = D3DPOOL_DEFAULT;
hsAssert(!pipe->ManagedAlloced(), "Alloc default with managed alloc'd");
if( FAILED( fD3DDevice->CreateVertexBuffer( 4 * sizeof( plPlateVertex ),
D3DUSAGE_WRITEONLY,
fvfFormat,
poolType, &fVertBuffer, NULL ) ) )
{
hsAssert( false, "CreateVertexBuffer() call failed!" );
fCreatedSucessfully = false;
return;
}
PROFILE_POOL_MEM(poolType, 4 * sizeof(plPlateVertex), true, "PlateMgrVtxBuff");
/// Lock the buffer
plPlateVertex *ptr;
if( FAILED( fVertBuffer->Lock( 0, 0, (void **)&ptr, D3DLOCK_NOSYSLOCK ) ) )
{
hsAssert( false, "Failed to lock vertex buffer for writing" );
fCreatedSucessfully = false;
return;
}
/// Set 'em up
ptr[ 0 ].fPoint.Set( -0.5f, -0.5f, 0.0f );
ptr[ 0 ].fColor = 0xffffffff;
ptr[ 0 ].fUV.Set( 0.0f, 0.0f, 0.0f );
ptr[ 1 ].fPoint.Set( -0.5f, 0.5f, 0.0f );
ptr[ 1 ].fColor = 0xffffffff;
ptr[ 1 ].fUV.Set( 0.0f, 1.0f, 0.0f );
ptr[ 2 ].fPoint.Set( 0.5f, -0.5f, 0.0f );
ptr[ 2 ].fColor = 0xffffffff;
ptr[ 2 ].fUV.Set( 1.0f, 0.0f, 0.0f );
ptr[ 3 ].fPoint.Set( 0.5f, 0.5f, 0.0f );
ptr[ 3 ].fColor = 0xffffffff;
ptr[ 3 ].fUV.Set( 1.0f, 1.0f, 0.0f );
/// Unlock and we're done!
fVertBuffer->Unlock();
fCreatedSucessfully = true;
}
// IReleaseGeometry ////////////////////////////////////////////////////////////
// Let go of any D3D resources created for this.
void plDXPlateManager::IReleaseGeometry()
{
if (fVertBuffer)
{
ReleaseObject(fVertBuffer);
PROFILE_POOL_MEM(D3DPOOL_DEFAULT, 4 * sizeof(plPlateVertex), false, "PlateMgrVtxBuff");
fVertBuffer = nil;
}
}
//// Constructor & Destructor /////////////////////////////////////////////////
plDXPlateManager::plDXPlateManager( plDXPipeline *pipe, IDirect3DDevice9 *device ) : plPlateManager( pipe ),
PLD3D_PLATEFVF( D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE3(0) ),
fD3DDevice(device),
fVertBuffer(nil)
{
}
plDXPlateManager::~plDXPlateManager()
{
IReleaseGeometry();
}
//// IDrawPlate ///////////////////////////////////////////////////////////////
// Render all currently enabled plates to the screen.
void plDXPlateManager::IDrawToDevice( plPipeline *pipe )
{
plDXPipeline *dxPipe = (plDXPipeline *)pipe;
plPlate *plate;
UInt32 scrnWidthDiv2 = fOwner->Width() >> 1;
UInt32 scrnHeightDiv2 = fOwner->Height() >> 1;
D3DXMATRIX mat;
D3DCULL oldCullMode;
if( !fVertBuffer )
return;
// Make sure skinning is disabled.
fD3DDevice->SetRenderState(D3DRS_VERTEXBLEND, D3DVBF_DISABLE);
fD3DDevice->SetVertexShader( dxPipe->fSettings.fCurrVertexShader = NULL);
fD3DDevice->SetFVF(dxPipe->fSettings.fCurrFVFFormat = PLD3D_PLATEFVF);
fD3DDevice->SetStreamSource( 0, fVertBuffer, 0, sizeof( plPlateVertex ) );
plProfile_Inc(VertexChange);
fD3DDevice->SetTransform( D3DTS_VIEW, &d3dIdentityMatrix );
oldCullMode = dxPipe->fCurrCullMode;
for( plate = fPlates; plate != nil; plate = plate->GetNext() )
{
if( plate->IsVisible() )
{
dxPipe->IDrawPlate( plate );
const char *title = plate->GetTitle();
if( plDebugText::Instance().IsEnabled() && title[ 0 ] != 0 )
{
hsPoint3 pt;
pt.Set( 0, -0.5, 0 );
pt = plate->GetTransform() * pt;
pt.fX = pt.fX * scrnWidthDiv2 + scrnWidthDiv2;
pt.fY = pt.fY * scrnHeightDiv2 + scrnHeightDiv2;
pt.fX -= plDebugText::Instance().CalcStringWidth( title ) >> 1;
plDebugText::Instance().DrawString( (UInt16)pt.fX, (UInt16)pt.fY + 1, title, 255, 255, 255, 255, plDebugText::kStyleBold );
}
if( plate->GetFlags() & plPlate::kFlagIsAGraph )
{
plGraphPlate *graph = (plGraphPlate *)plate;
hsPoint3 pt, pt2;
int i;
if( graph->GetLabelText( 0 )[ 0 ] != 0 )
{
/// Draw key
const char *str;
pt.Set( -0.5, -0.5, 0 );
pt = plate->GetTransform() * pt;
pt.fX = pt.fX * scrnWidthDiv2 + scrnWidthDiv2;
pt.fY = pt.fY * scrnHeightDiv2 + scrnHeightDiv2;
pt.fY += plDebugText::Instance().GetFontHeight();
UInt32 numLabels = graph->GetNumLabels();
if (numLabels > graph->GetNumColors())
numLabels = graph->GetNumColors();
for( i = 0; i < numLabels; i++ )
{
str = graph->GetLabelText( i );
if( str[ 0 ] == 0 )
break;
pt2 = pt;
pt2.fX -= plDebugText::Instance().CalcStringWidth( str );
plDebugText::Instance().DrawString( (UInt16)pt2.fX, (UInt16)pt2.fY, str,
graph->GetDataColor( i ), plDebugText::kStyleBold );
pt.fY += plDebugText::Instance().GetFontHeight();
}
}
}
}
}
dxPipe->fCurrCullMode = ( dxPipe->fLayerState[0].fMiscFlags & hsGMatState::kMiscTwoSided ) ? D3DCULL_NONE : oldCullMode;
fD3DDevice->SetRenderState( D3DRS_CULLMODE, dxPipe->fCurrCullMode );
}
// IDrawPlate ///////////////////////////////////////////////////////////////////////
// Render this plate, in as many passes as it takes.
void plDXPipeline::IDrawPlate( plPlate *plate )
{
int i;
hsGMaterial *material = plate->GetMaterial();
D3DXMATRIX mat;
/// Set up the D3D transform directly
IMatrix44ToD3DMatrix( mat, plate->GetTransform() );
fD3DDevice->SetTransform( D3DTS_WORLD, &mat );
mat = d3dIdentityMatrix;
mat(1,1) = -1.0f;
mat(2,2) = 2.0f;
mat(2,3) = 1.0f;
mat(3,2) = -2.0f;
mat(3,3) = 0.0f;
IPushPiggyBacks(material);
/// Draw the vertex buffer once for each material pass
for( i = 0; i < material->GetNumLayers(); )
{
// Stat gather adjust: since IHandleMaterial will count this in the stat gather,
// artificially decrement here so that the plates don't skew the stat gathering
// Taking this out. If the plates are causing more material changes, they should
// show up in the stats. mf
i = IHandleMaterial( material, i, nil );
ISetShaders(nil, nil);
// To override the transform done by the z-bias
fD3DDevice->SetTransform( D3DTS_PROJECTION, &mat );
// And this to override cullmode set based on material 2-sidedness.
fD3DDevice->SetRenderState( D3DRS_CULLMODE, fCurrCullMode = D3DCULL_CW );
WEAK_ERROR_CHECK( fD3DDevice->DrawPrimitive( D3DPT_TRIANGLESTRIP, 0, 2 ) );
}
IPopPiggyBacks();
}
///////////////////////////////////////////////////////////////////////////////
//// Error Message Stuff //////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// IAddErrorMessage ////////////////////////////////////////////////////
// Append the error string to the current error string.
void plDXPipeline::IAddErrorMessage( char *errStr )
{
static char str[ 512 ];
if( errStr && strlen( errStr ) + strlen( fSettings.fErrorStr ) < sizeof( fSettings.fErrorStr ) - 4 )
{
strcpy( str, fSettings.fErrorStr );
sprintf( fSettings.fErrorStr, "%s\n(%s)", errStr, str );
plStatusLog::AddLineS("pipeline.log", fSettings.fErrorStr);
}
}
// ISetErrorMessage //////////////////////////////////////////////////////////
// Clear the current error string to the input string.
void plDXPipeline::ISetErrorMessage( char *errStr )
{
if( errStr )
{
strcpy( fSettings.fErrorStr, errStr );
plStatusLog::AddLineS("pipeline.log", fSettings.fErrorStr);
}
else
fSettings.fErrorStr[ 0 ] = nil;
}
// IGetD3DError /////////////////////////////////////////////////////////////////
// Convert the last D3D error code to a string (probably "Conflicting Render State").
void plDXPipeline::IGetD3DError()
{
sprintf( fSettings.fErrorStr, "D3DError : %s", (char *)DXGetErrorString9( fSettings.fDXError ) );
}
// IShowErrorMessage /////////////////////////////////////////////////////////////
// Append the string to the running error string.
void plDXPipeline::IShowErrorMessage( char *errStr )
{
if( errStr != nil )
IAddErrorMessage( errStr );
// hsAssert( false, fSettings.fErrorStr );
}
// ICreateFail ////////////////////////////////////////////////////////////////////
// Called on unrecoverable error during device creation. Frees up anything
// allocated so far, sets the error string, and returns true.
hsBool plDXPipeline::ICreateFail( char *errStr )
{
// Don't overwrite any error string we already had
if( fSettings.fErrorStr[ 0 ] == 0 )
IGetD3DError();
if( errStr && *errStr )
{
IAddErrorMessage( errStr );
}
else if( !*fSettings.fErrorStr )
IAddErrorMessage( "unknown" );
IReleaseDeviceObjects();
return true;
}
// GetErrorString ///////////////////////////////////////////////////////////////////////////
// Return the current error string.
const char *plDXPipeline::GetErrorString()
{
if( fSettings.fErrorStr[ 0 ] == 0 )
return nil;
return fSettings.fErrorStr;
}
///////////////////////////////////////////////////////////////////////////////
//// Miscellaneous Utility Functions //////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// GetDXBitDepth //////////////////////////////////////////////////////////
//
// From a D3DFORMAT enumeration, return the bit depth associated with it.
short plDXPipeline::GetDXBitDepth( D3DFORMAT format )
{
if( format == D3DFMT_UNKNOWN )
return 0;
else if( format == D3DFMT_R8G8B8 )
return 24;
else if( format == D3DFMT_A8R8G8B8 )
return 32;
else if( format == D3DFMT_X8R8G8B8 )
return 32;
else if( format == D3DFMT_R5G6B5 )
return 16;
else if( format == D3DFMT_X1R5G5B5 )
return 16;
else if( format == D3DFMT_A1R5G5B5 )
return 16;
else if( format == D3DFMT_A4R4G4B4 )
return 16;
else if( format == D3DFMT_R3G3B2 )
return 8;
else if( format == D3DFMT_A8 )
return 8;
else if( format == D3DFMT_A8R3G3B2 )
return 16;
else if( format == D3DFMT_X4R4G4B4 )
return 16;
else if( format == D3DFMT_A8P8 )
return 16;
else if( format == D3DFMT_P8 )
return 8;
else if( format == D3DFMT_L8 )
return 8;
else if( format == D3DFMT_A8L8 )
return 16;
else if( format == D3DFMT_A4L4 )
return 8;
else if( format == D3DFMT_V8U8 )
return 16;
else if( format == D3DFMT_L6V5U5 )
return 16;
else if( format == D3DFMT_X8L8V8U8 )
return 32;
else if( format == D3DFMT_Q8W8V8U8 )
return 32;
else if( format == D3DFMT_V16U16 )
return 32;
// else if( format == D3DFMT_W11V11U10 )
// return 32;
/* /// These formats really don't have bit depths associated with them
D3DFMT_UYVY
D3DFMT_YUY2
D3DFMT_DXT1
D3DFMT_DXT2
D3DFMT_DXT3
D3DFMT_DXT4
D3DFMT_DXT5
D3DFMT_VERTEXDATA
*/
else if( format == D3DFMT_D16_LOCKABLE )
return 16;
else if( format == D3DFMT_D32 )
return 32;
else if( format == D3DFMT_D15S1 )
return 16;
else if( format == D3DFMT_D24S8 )
return 32;
else if( format == D3DFMT_D16 )
return 16;
else if( format == D3DFMT_D24X8 )
return 32;
else if( format == D3DFMT_D24X4S4 )
return 32;
else if( format == D3DFMT_INDEX16 )
return 16;
else if( format == D3DFMT_INDEX32 )
return 32;
// Unsupported translation format--return 0
return 0;
}
//// IGetDXFormatName ////////////////////////////////////////////////////////
//
// From a D3DFORMAT enumeration, return the string for it.
const char *plDXPipeline::IGetDXFormatName( D3DFORMAT format )
{
switch( format )
{
case D3DFMT_UNKNOWN: return "D3DFMT_UNKNOWN";
case D3DFMT_R8G8B8: return "D3DFMT_R8G8B8";
case D3DFMT_A8R8G8B8: return "D3DFMT_A8R8G8B8";
case D3DFMT_X8R8G8B8: return "D3DFMT_X8R8G8B8";
case D3DFMT_R5G6B5: return "D3DFMT_R5G6B5";
case D3DFMT_X1R5G5B5: return "D3DFMT_X1R5G5B5";
case D3DFMT_A1R5G5B5: return "D3DFMT_A1R5G5B5";
case D3DFMT_A4R4G4B4: return "D3DFMT_A4R4G4B4";
case D3DFMT_R3G3B2: return "D3DFMT_R3G3B2";
case D3DFMT_A8: return "D3DFMT_A8";
case D3DFMT_A8R3G3B2: return "D3DFMT_A8R3G3B2";
case D3DFMT_X4R4G4B4: return "D3DFMT_X4R4G4B4";
case D3DFMT_A8P8: return "D3DFMT_A8P8";
case D3DFMT_P8: return "D3DFMT_P8";
case D3DFMT_L8: return "D3DFMT_L8";
case D3DFMT_A8L8: return "D3DFMT_A8L8";
case D3DFMT_A4L4: return "D3DFMT_A4L4";
case D3DFMT_V8U8: return "D3DFMT_V8U8";
case D3DFMT_L6V5U5: return "D3DFMT_L6V5U5";
case D3DFMT_X8L8V8U8: return "D3DFMT_X8L8V8U8";
case D3DFMT_Q8W8V8U8: return "D3DFMT_Q8W8V8U8";
case D3DFMT_V16U16: return "D3DFMT_V16U16";
//case D3DFMT_W11V11U10: return "D3DFMT_W11V11U10";
case D3DFMT_UYVY: return "D3DFMT_UYVY";
case D3DFMT_YUY2: return "D3DFMT_YUY2";
case D3DFMT_DXT1: return "D3DFMT_DXT1";
// case D3DFMT_DXT2: return "D3DFMT_DXT2";
// case D3DFMT_DXT3: return "D3DFMT_DXT3";
// case D3DFMT_DXT4: return "D3DFMT_DXT4";
case D3DFMT_DXT5: return "D3DFMT_DXT5";
case D3DFMT_VERTEXDATA: return "D3DFMT_VERTEXDATA";
case D3DFMT_D16_LOCKABLE: return "D3DFMT_D16_LOCKABLE";
case D3DFMT_D32: return "D3DFMT_D32";
case D3DFMT_D15S1: return "D3DFMT_D15S1";
case D3DFMT_D24S8: return "D3DFMT_D24S8";
case D3DFMT_D16: return "D3DFMT_D16";
case D3DFMT_D24X8: return "D3DFMT_D24X8";
case D3DFMT_D24X4S4: return "D3DFMT_D24X4S4";
case D3DFMT_INDEX16: return "D3DFMT_INDEX16";
case D3DFMT_INDEX32: return "D3DFMT_INDEX32";
default: return "Bad format";
}
}
//// IFPUCheck ////////////////////////////////////////////////////////////////
// Checks the FPU to make sure it's in the right mode
// This should return wSave to allow it to be restored after rendering.
// This is obsolete as of DX8
void plDXPipeline::IFPUCheck()
{
WORD wSave, wTemp;
__asm fstcw wSave
if (wSave & 0x300 || // Not single mode
0x3f != (wSave & 0x3f) || // Exceptions enabled
wSave & 0xC00) // Not round to nearest mode
{
__asm
{
mov ax, wSave
and ax, not 0x300 ;; single mode
or ax, 0x3f ;; disable all exceptions
and ax, not 0xC00 ;; round to nearest mode
mov wTemp, ax
fldcw wTemp
}
}
}
// PushPiggyBackLayer /////////////////////////////////////////////////////
// Push a piggy back onto the stack.
plLayerInterface* plDXPipeline::PushPiggyBackLayer(plLayerInterface* li)
{
fPiggyBackStack.Push(li);
ISetNumActivePiggyBacks();
fForceMatHandle = true;
return li;
}
// PopPiggyBackLayer ///////////////////////////////////////////////////////////////////
// Pull the piggy back out of the stack (if it's there).
plLayerInterface* plDXPipeline::PopPiggyBackLayer(plLayerInterface* li)
{
int idx = fPiggyBackStack.Find(li);
if( fPiggyBackStack.kMissingIndex == idx )
return nil;
fPiggyBackStack.Remove(idx);
ISetNumActivePiggyBacks();
fForceMatHandle = true;
return li;
}
// AppendLayerInterface ///////////////////////////////////////////////////////////////////
// Setup a layer wrapper to wrap around either all layers rendered with or just the base layers.
// Note that a single material has multiple base layers if it takes mutliple passes to render.
// Stays in effect until removed by RemoveLayerInterface.
plLayerInterface* plDXPipeline::AppendLayerInterface(plLayerInterface* li, hsBool onAllLayers)
{
fForceMatHandle = true;
if( onAllLayers )
return fOverAllLayer = li->Attach(fOverAllLayer);
else
return fOverBaseLayer = li->Attach(fOverBaseLayer);
}
// RemoveLayerInterface //////////////////////////////////////////////////////////////////
// Removes a layer wrapper installed by AppendLayerInterface.
plLayerInterface* plDXPipeline::RemoveLayerInterface(plLayerInterface* li, hsBool onAllLayers)
{
fForceMatHandle = true;
if( onAllLayers )
{
if( !fOverAllLayer )
return nil;
return fOverAllLayer = fOverAllLayer->Remove(li);
}
if( !fOverBaseLayer )
return nil;
return fOverBaseLayer = fOverBaseLayer->Remove(li);
}
///////////////////////////////////////////////////////////////////////////////
//// ShadowSection
//// Shadow specific internal functions
///////////////////////////////////////////////////////////////////////////////
// See plGLight/plShadowMaster.cpp for more notes.
// IAttachShadowsToReceivers ///////////////////////////////////////////////////////////
// For each active shadow map (in fShadows), attach it to all of the visible spans in drawable
// that it affects. Shadows explicitly attached via light groups are handled separately in ISetShadowFromGroup.
void plDXPipeline::IAttachShadowsToReceivers(plDrawableSpans* drawable, const hsTArray& visList)
{
int i;
for( i = 0; i < fShadows.GetCount(); i++ )
IAttachSlaveToReceivers(i, drawable, visList);
}
// IAttachSlaveToReceivers /////////////////////////////////////////////////////
// Find all the visible spans in this drawable affected by this shadow map,
// and attach it to them.
void plDXPipeline::IAttachSlaveToReceivers(int which, plDrawableSpans* drawable, const hsTArray& visList)
{
plShadowSlave* slave = fShadows[which];
// Whether the drawable is a character affects which lights/shadows affect it.
hsBool isChar = drawable->GetNativeProperty(plDrawable::kPropCharacter);
// If the shadow is part of a light group, it gets handled in ISetShadowFromGroup.
// Unless the drawable is a character (something that moves around indeterminately,
// like the avatar or a physical object), and the shadow affects all characters.
if( slave->ObeysLightGroups() && !(slave->IncludesChars() && isChar) )
return;
// Do a space tree harvest looking for spans that are visible and whose bounds
// intercect the shadow volume.
plSpaceTree* space = drawable->GetSpaceTree();
static hsBitVector cache;
cache.Clear();
space->EnableLeaves(visList, cache);
static hsTArray hitList;
hitList.SetCount(0);
space->HarvestEnabledLeaves(slave->fIsect, cache, hitList);
// For the visible spans that intercect the shadow volume, attach the shadow
// to all appropriate for receiving this shadow map.
int i;
for( i = 0; i < hitList.GetCount(); i++ )
{
const plSpan* span = drawable->GetSpan(hitList[i]);
hsGMaterial* mat = drawable->GetMaterial(span->fMaterialIdx);
// Check that the span isn't flagged as unshadowable, or has
// a material that we can't shadow onto.
if( !IReceivesShadows(span, mat) )
continue;
// Check for self shadowing. If the shadow doesn't want self shadowing,
// and the span is part of the shadow caster, then skip.
if( !IAcceptsShadow(span, slave) )
continue;
// Add it to this span's shadow list for this frame.
span->AddShadowSlave(fShadows[which]->fIndex);
}
}
// ISetShadowFromGroup ////////////////////////////////////////////////////////////////////////
// The light casting this shadow has been explicitly attached to this span, so no need
// for checking bounds, but we do anyway because the artists aren't very conservative
// along those lines. The light has a bitvector indicating which of the current shadows
// are from it (there will be a shadow map for each shadow-light/shadow-caster pair),
// so we look through those shadow maps and if they are acceptable, attach them to
// the span.
// Note that a shadow slave corresponds to a shadow map.
void plDXPipeline::ISetShadowFromGroup(plDrawableSpans* drawable, const plSpan* span, plLightInfo* liInfo)
{
hsGMaterial* mat = drawable->GetMaterial(span->fMaterialIdx);
// Check that this span/material combo can receive shadows at all.
if( !IReceivesShadows(span, mat) )
return;
const hsBitVector& slaveBits = liInfo->GetSlaveBits();
int i;
for( i = 0; i < fShadows.GetCount(); i++ )
{
if( slaveBits.IsBitSet(fShadows[i]->fIndex) )
{
// Check self shadowing.
if( IAcceptsShadow(span, fShadows[i]) )
{
// Check for overlapping bounds.
if( fShadows[i]->fIsect->Test(span->fWorldBounds) != kVolumeCulled )
span->AddShadowSlave(fShadows[i]->fIndex);
}
}
}
}
// SubmitShadowSlave ////////////////////////////////////////////////////////
// Puts the slave in a list valid for this frame only. The list will
// be preprocessed at BeginRender. See IPreprocessShadows.
void plDXPipeline::SubmitShadowSlave(plShadowSlave* slave)
{
// Check that it's a valid slave.
if( !(slave && slave->fCaster && slave->fCaster->GetKey()) )
return;
// A board with limited projection capability (i.e. GeForce1) can't
// do perspective shadows (from point source lights) because it
// requires a count3 uvw on 2 texture units (0,1) simultaneously. Just skip.
if( (fSettings.fLimitedProj || fSettings.fCantProj) && slave->fView.GetPerspective() )
return;
// Ref the shadow caster so we're sure it will still be around when we go to
// render it.
slave->fCaster->GetKey()->RefObject();
// Keep the shadow slaves in a priority sorted list. For performance reasons,
// we may want only the strongest N or those of a minimum priority.
int i;
for( i = 0; i < fShadows.GetCount(); i++ )
{
if( slave->fPriority <= fShadows[i]->fPriority )
break;
}
// Note that fIndex is no longer the index in the fShadows list, but
// is still used as a unique identifier for this slave.
slave->fIndex = fShadows.GetCount();
fShadows.Insert(i, slave);
}
hsScalar blurScale = -1.f;
static const int kL2NumSamples = 3; // Log2(4)
// IBlurShadowMap //////////////////////////////////////////////////////////////////
// For a shadow map, we've got a specific (non-general) blurring in mind.
// This could be used as a loose model for more general blurring, but you
// wouldn't want to run a generic texture or render target through this.
// Specifically, we assume:
// Input:
// An RGBA rendertarget with an alpha we want to preserve, and color
// going from black (unused) to white (written).
// A blur factor
// Output:
// The rendertarget with alpha preserved, and the color channel blurred
// appropriately.
// We'll want to minimize our render target changes, so
// we clear our scratch render target to black/white (color/alpha), then
// render additively the color of our input with a zero alpha. The scratch
// accumulates the color sum, but the alpha starts and stays saturated to 100%.
// Then we modulate that back into the input, so the alpha is unchanged, the
// color (within the white region) falls off at the edges. The color outside the
// white region is black and stays black, but we don't care because we'll be ignoring
// that anyway.
// Notice that this depends on the input, each pixel having been all black or all "white".
// Also depends on "white" having 1/N premodulated in, where N is the number of samples.
// That's why we can just sum up the colors, without needing to do a divide. Otherwise
// we'd saturate at 255 during the sum, and the divide would be pointless.
// One other thing we're counting on here, is that we've just been rendering to an
// offscreen, we're done, and we're about to pop our rendertarget, which is going
// to reset a lot of render state that we would otherwise be responsible for here.
// We're hoping that this blur function (if efficient enough) can get called enough times
// per frame to warrant the sins described above.
void plDXPipeline::IBlurShadowMap(plShadowSlave* slave)
{
plRenderTarget* smap = (plRenderTarget*)slave->fPipeData;
hsScalar scale = slave->fBlurScale;
// Find a scratch rendertarget which matches the input.
int which = IGetScratchRenderTarget(smap);
plRenderTarget* scratchRT = fBlurScratchRTs[which];
if( !scratchRT )
return;
plRenderTarget* destRT = fBlurDestRTs[which];
if( !destRT )
return;
// Set up to render into it.
IBlurSetRenderTarget(scratchRT);
// Clear it appropriately
fD3DDevice->Clear(0, nil, D3DCLEAR_TARGET, 0xff000000L, 1.0f, 0L);
// Setup our quad for rendering
ISetBlurQuadToRender(smap);
// Render the input image into the scratch image, creating the blur.
IRenderBlurFromShadowMap(scratchRT, smap, scale);
// Set the rendertarget back to src
// Setup renderstate to render it back modulating.
// Render the scratch back into the input.
IRenderBlurBackToShadowMap(smap, scratchRT, destRT);
// dst is now now slave's rendertarget and smap is the new scratch dst
// for this size.
slave->fPipeData = (void*)destRT;
fBlurDestRTs[which] = smap;
}
// IGetScratchRenderTarget ////////////////////////////////////////////
// Look for a render target for as scratch space for blurring the input render target.
// Note that the whole blur process requires 3 render targets, the source,
// an intermediate, and the destination (which gets swapped with the source).
// But that's only an extra 2 render targets for all shadow maps of a given
// size.
// Note also that the intermediate is one size smaller than the source,
// to get better blurring through bilerp magnification.
int plDXPipeline::IGetScratchRenderTarget(plRenderTarget* smap)
{
int which = -1;
switch(smap->GetHeight())
{
case 512:
which = 9;
break;
case 256:
which = 8;
break;
case 128:
which = 7;
break;
case 64:
which = 6;
break;
case 32:
which = 5;
break;
default:
return false;
}
if( !fBlurScratchRTs[which] )
{
// We may or may not get back the size we requested here, but if we didn't,
// we aren't going to later, so we might as well stuff the smaller render target
// into the bigger slot. Bad thing is that we might want a smaller render target
// later, and we won't know to look in the bigger slot for it, so we could wind
// up using say two 128x128's (one in the 256 slot, one in the 128 slot).
// This intermediate is one power of 2 smaller than the source.
UInt32 width = smap->GetWidth();
UInt32 height = smap->GetHeight();
if( width > 32 )
{
width >>= 1;
height >>= 1;
}
fBlurScratchRTs[which] = IFindRenderTarget(width, height, smap->GetFlags() & plRenderTarget::kIsOrtho);
}
if( !fBlurDestRTs[which] )
{
// Destination is same size as source.
UInt32 width = smap->GetWidth();
UInt32 height = smap->GetHeight();
fBlurDestRTs[which] = IFindRenderTarget(width, height, smap->GetFlags() & plRenderTarget::kIsOrtho);
}
#ifdef MF_ENABLE_HACKOFF
if( hackOffscreens.kMissingIndex == hackOffscreens.Find(fBlurScratchRTs[which]) )
hackOffscreens.Append(fBlurScratchRTs[which]);
if( hackOffscreens.kMissingIndex == hackOffscreens.Find(fBlurDestRTs[which]) )
hackOffscreens.Append(fBlurDestRTs[which]);
#endif // MF_ENABLE_HACKOFF
return which;
}
// IBlurSetRenderTarget /////////////////////////////////////////////////////////////////////
// Set the input render target up to be rendered into. This abbreviated version
// of PushRenderTarget is possible because of the special case of the state coming
// in, and that we know we're going to immediately pop the previous render target
// when we're done.
void plDXPipeline::IBlurSetRenderTarget(plRenderTarget* rt)
{
plDXRenderTargetRef* ref = (plDXRenderTargetRef *)rt->GetDeviceRef();
// Set the rendertarget
IDirect3DSurface9* main = ref->GetColorSurface();
IDirect3DSurface9* depth = ref->fD3DDepthSurface;
fSettings.fCurrD3DMainSurface = main;
fSettings.fCurrD3DDepthSurface = depth;
fD3DDevice->SetRenderTarget(0, main);
fD3DDevice->SetDepthStencilSurface(depth);
// Now set the correct viewport
D3DVIEWPORT9 vp = { 0,
0,
rt->GetWidth(),
rt->GetHeight(),
0.f, 1.f };
WEAK_ERROR_CHECK( fD3DDevice->SetViewport( &vp ) );
}
// IRenderBlurFromShadowMap ////////////////////////////////////////////////////////////////////////////////
// Render a shadow map into a scratch render target multiple times offset slightly to create a blur
// in the color, preserving alpha exactly. It's just rendering a single quad with slight offsets
// in the UVW transform.
void plDXPipeline::IRenderBlurFromShadowMap(plRenderTarget* scratchRT, plRenderTarget* smap, hsScalar scale)
{
// Quad is set up in camera space.
fD3DDevice->SetTransform(D3DTS_VIEW, &d3dIdentityMatrix);
fD3DDevice->SetTransform(D3DTS_WORLD, &d3dIdentityMatrix);
fD3DDevice->SetTransform(D3DTS_PROJECTION, &d3dIdentityMatrix);
// Figure out how many passes we'll need.
// const int kNumSamples = 1 << kL2NumSamples; // HACKSAMPLE
const int kNumSamples = mfCurrentTest > 101 ? 8 : 4;
int nPasses = (int)hsCeil(float(kNumSamples) / fSettings.fMaxLayersAtOnce);
int nSamplesPerPass = kNumSamples / nPasses;
// Attenuate by number of passes, to average as we sum.
DWORD atten = 255 / nPasses;
plConst(float) kAtten(1.f);
atten = DWORD(atten * kAtten);
atten = (atten << 24)
| (atten << 16)
| (atten << 8)
| (atten << 0);
// Disable skinning
fD3DDevice->SetRenderState(D3DRS_VERTEXBLEND, D3DVBF_DISABLE);
//
// AlphaEnable = true
// AlphaTest OFF
fD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
fD3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
fD3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
fD3DDevice->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_ALWAYS);
// ZBUFFER disabled
fD3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
fD3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
fLayerState[0].fZFlags &= ~hsGMatState::kZMask;
fLayerState[0].fZFlags |= hsGMatState::kZNoZWrite | hsGMatState::kZNoZRead;
//
// Cullmode is NONE
fCurrCullMode = D3DCULL_NONE;
fD3DDevice->SetRenderState( D3DRS_CULLMODE, fCurrCullMode );
plDXTextureRef* ref = (plDXTextureRef*)smap->GetDeviceRef();
hsAssert(ref, "Shadow map ref should have been made when it was rendered");
if( !ref )
return;
// TFactor contains the attenuation
fD3DDevice->SetRenderState(D3DRS_TEXTUREFACTOR, atten);
// Set the N texture stages all to use the same
// src rendertarget texture.
// Blend modes are:
// Stage0:
// Color
// Arg1 = texture
// Op = selectArg1
// Alpha
// Arg1 = TFACTOR = white
// Op = selectArg1
// Stage[1..n-1]
// Color
// Arg1 = texture
// Arg2 = current
// Op = AddSigned
// Alpha
// Arg1 = texture
// Arg2 = current
// Op = SelectArg2
// StageN
// Color/Alpha
// Op = disable
//
// Frame buffer blend is
// SRCBLEND = ONE
// DSTBLEND = ONE
// All texture stages are clamped
//
// Set stage0, then loop over the rest
fD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
fD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
fLayerState[0].fClampFlags = hsGMatState::kClampTexture;
fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
fLayerState[0].fBlendFlags = UInt32(-1);
hsRefCnt_SafeAssign( fLayerRef[0], ref );
fD3DDevice->SetTexture( 0, ref->fD3DTexture );
if( D3DTTFF_COUNT2 != fLayerXformFlags[0] )
{
fLayerXformFlags[0] = D3DTTFF_COUNT2;
fD3DDevice->SetTextureStageState(0, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT2);
}
fD3DDevice->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX, 0);
fLayerUVWSrcs[0] = 0;
int i;
for( i = 1; i < nSamplesPerPass; i++ )
{
fD3DDevice->SetSamplerState(i, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
fD3DDevice->SetSamplerState(i, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
fLayerState[i].fClampFlags = hsGMatState::kClampTexture;
fD3DDevice->SetTextureStageState(i, D3DTSS_COLORARG1, D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState(i, D3DTSS_COLORARG2, D3DTA_CURRENT);
fD3DDevice->SetTextureStageState(i, D3DTSS_COLOROP, D3DTOP_ADDSIGNED);
fD3DDevice->SetTextureStageState(i, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState(i, D3DTSS_ALPHAARG2, D3DTA_CURRENT);
fD3DDevice->SetTextureStageState(i, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2);
fLayerState[i].fBlendFlags = UInt32(-1);
hsRefCnt_SafeAssign( fLayerRef[i], ref );
fD3DDevice->SetTexture( i, ref->fD3DTexture );
if( D3DTTFF_COUNT2 != fLayerXformFlags[i] )
{
fLayerXformFlags[i] = D3DTTFF_COUNT2;
fD3DDevice->SetTextureStageState(i, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT2);
}
fD3DDevice->SetTextureStageState(i, D3DTSS_TEXCOORDINDEX, 0);
fLayerUVWSrcs[i] = 0;
}
fD3DDevice->SetTextureStageState(nSamplesPerPass, D3DTSS_COLOROP, D3DTOP_DISABLE);
fD3DDevice->SetTextureStageState(nSamplesPerPass, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
// N offsets are { (-1,-1), (1, -1), (1, 1), (-1, 1) } * offsetScale / size, with
// useful offsetScales probably going from 0.5 to 1.5, but we'll just have
// to experiment and see. Larger values likely to require more than the current
// 4 samples
struct offsetStruct
{
float fU;
float fV;
};
offsetStruct offsetScale = { scale / scratchRT->GetWidth(), scale / scratchRT->GetHeight() };
static offsetStruct offsets[8] = {
{-1.f, -1.f},
{1.f, -1.f},
{1.f, 1.f},
{-1.f, 1.f},
{0.f, -0.5f},
{0.f, 0.5f},
{-0.5f, 0.f},
{0.5f, 0.f}
};
int iSample = 0;
// For each pass,
for( i = 0; i < nPasses; i++ )
{
// Set the N texture stage uv transforms to the
// next N offsets.
int j;
for( j = 0; j < nSamplesPerPass; j++ )
{
D3DXMATRIX offXfm = d3dIdentityMatrix;
offXfm(2,0) = offsets[iSample].fU * offsetScale.fU;
offXfm(2,1) = offsets[iSample].fV * offsetScale.fV;
fD3DDevice->SetTransform(sTextureStages[j], &offXfm);
fLayerTransform[j] = true;
iSample++;
}
// Render our quad
fD3DDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
// fD3DDevice->SetRenderState(D3DRS_TEXTUREFACTOR, 0L);
// fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
// fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_TFACTOR);
// fD3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_ADDSIGNED);
// fD3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG2);
}
}
// IRenderBlurBackToShadowMap /////////////////////////////////////////////////////////////////////
// Render our intermediate blurred map back into a useable shadow map.
void plDXPipeline::IRenderBlurBackToShadowMap(plRenderTarget* smap, plRenderTarget* scratch, plRenderTarget* dst)
{
// Set the rendertarget
IBlurSetRenderTarget(dst);
// Clear it appropriately. This might not be necessary, since we're just going to overwrite.
fD3DDevice->Clear(0, nil, D3DCLEAR_TARGET, 0xff000000L, 1.0f, 0L);
// Scratch has an all white alpha, and the blurred color from smap. But the color
// is a signed biased color. We need to remap [128..255] from scratch into [0..255]
// on dst. Plus, we need to copy the alpha as is from smap into dst.
// So, scratch is texture0, smap is texture1. TFACTOR is 0.
// Color is ADDSIGNED2X(TFACTOR, texture0).
// Alpha is SELECTARG1(texture1, current).
// Then FB blend is just opaque copy.
// Set Stage0 texture transform
// Clamp still on (from RBFSM)
D3DXMATRIX offXfm = d3dIdentityMatrix;
fD3DDevice->SetTransform(sTextureStages[0], &offXfm);
fD3DDevice->SetTransform(sTextureStages[1], &offXfm);
fLayerTransform[0] = false;
fLayerTransform[1] = false;
plDXTextureRef* ref = (plDXTextureRef*)scratch->GetDeviceRef();
hsAssert(ref, "Blur scratch map ref should have been made when it was rendered");
if( !ref )
return;
hsRefCnt_SafeAssign( fLayerRef[0], ref );
fD3DDevice->SetTexture( 0, ref->fD3DTexture );
ref = (plDXTextureRef*)smap->GetDeviceRef();
hsAssert(ref, "Blur src map ref should have been made when it was rendered");
if( !ref )
return;
hsRefCnt_SafeAssign( fLayerRef[1], ref );
fD3DDevice->SetTexture( 1, ref->fD3DTexture );
// Stage0:
// Color
// Arg1 = TFACTOR = black
// Arg2 = texture
// Op = ADDSIGNED2X
// Alpha
// Arg1 = texture
// Op = selectArg1
// Texture = scratch
// Stage1:
// Color
// Arg1 = texture
// Arg2 = current
// Op = selectArg2
// Alpha
// Arg1 = texture
// Op = selectArg1
// Texture = smap
// FB blend
// SRCBLEND = ONE
// DSTBLEND = ZERO
fD3DDevice->SetRenderState(D3DRS_TEXTUREFACTOR, 0L);
fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR);
fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_ADDSIGNED2X);
// This alpha will be ignored, because in the next stage we select texture alpha.
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
fLayerState[0].fBlendFlags = UInt32(-1);
fD3DDevice->SetTextureStageState(1, D3DTSS_COLORARG2, D3DTA_CURRENT);
fD3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_SELECTARG2);
fD3DDevice->SetTextureStageState(1, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
fLayerState[1].fBlendFlags = UInt32(-1);
fD3DDevice->SetTextureStageState(2, D3DTSS_COLOROP, D3DTOP_DISABLE);
fD3DDevice->SetTextureStageState(2, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
fLastEndingStage = 2;
fD3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
fD3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO);
// Our quad should still be setup to go.
fD3DDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
}
struct plShadowVertStruct
{
float fPos[3];
float fUv[2];
};
// IReleaseBlurVBuffers //////////////////////////////////////////////////////////
// Free up our blur quad vertex buffers. Note these are in POOL_DEFAULT
void plDXPipeline::IReleaseBlurVBuffers()
{
const UInt32 kVSize = sizeof(plShadowVertStruct);
int i;
for( i = 0; i < kMaxRenderTargetNext; i++ )
{
if (fBlurVBuffers[i])
{
ReleaseObject(fBlurVBuffers[i]);
PROFILE_POOL_MEM(D3DPOOL_DEFAULT, 4 * kVSize, false, "BlurVtxBuff");
fBlurVBuffers[i] = nil;
}
}
}
// ICreateBlurVBuffers //////////////////////////////////////////////////////////////////
// We need a quad for each size of shadow map, because there's a slight dependency
// of UVW coordinates on size of render target. Sucks but it's true.
hsBool plDXPipeline::ICreateBlurVBuffers()
{
// vertex size is 4 verts, with 4 floats each for position, and 2 floats each for uv.
const UInt32 kVSize = sizeof(plShadowVertStruct);
const UInt32 kVFormat = D3DFVF_XYZ | D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE2(0) ;
int i;
for( i = 0; i < kMaxRenderTargetNext; i++ )
{
int width = 0;
int height = 0;
int which = -1;
switch( i )
{
default:
case 0:
case 1:
case 2:
case 3:
case 4:
break;
case 5:
width = height = 1 << i;
which = i;
break;
case 6:
width = height = 1 << i;
which = i;
break;
case 7:
width = height = 1 << i;
which = i;
break;
case 8:
width = height = 1 << i;
which = i;
break;
case 9:
width = height = 1 << i;
which = i;
break;
}
if( which < 0 )
continue;
// positions are { (-0.5,-0.5,0,1), (w-0.5,-0.5,0,1), (w-0.5,h-0.5,0,1), (-0.5,h-0.5,0,1) }
// UVs are { (0,0), (1,0), (1,1), (0,1) }
// So we won't have to bother with indices, we'll put them in as
// p1, p2, p0, p3 and render tristrip
// Create the buffer.
IDirect3DVertexBuffer9* vBuffer = nil;
UInt32 fvfFormat = kVFormat;
hsAssert(!ManagedAlloced(), "Alloc default with managed alloc'd");
if( FAILED( fD3DDevice->CreateVertexBuffer( 4 * kVSize,
D3DUSAGE_WRITEONLY,
fvfFormat,
D3DPOOL_DEFAULT,
&vBuffer, NULL) ) )
{
hsAssert( false, "CreateVertexBuffer() call failed!" );
return false;
}
plShadowVertStruct* ptr = nil;
/// Lock the buffer and fill it in.
if( FAILED( vBuffer->Lock( 0, 0, (void **)&ptr, 0 ) ) )
{
hsAssert( false, "Failed to lock vertex buffer for writing" );
vBuffer->Release();
return false;
}
PROFILE_POOL_MEM(D3DPOOL_DEFAULT, 4 * kVSize, true, "BlurVtxBuff");
plShadowVertStruct vert;
vert.fPos[0] = -1.f;
vert.fPos[1] = -1.f;
vert.fPos[2] = 0.5f;
vert.fUv[0] = 0.5f / width;
vert.fUv[1] = 1.f + 0.5f / height;
// P0
ptr[2] = vert;
// P1
ptr[0] = vert;
ptr[0].fPos[0] += 2.f;
ptr[0].fUv[0] += 1.f;
// P2
ptr[1] = vert;
ptr[1].fPos[0] += 2.f;
ptr[1].fUv[0] += 1.f;
ptr[1].fPos[1] += 2.f;
ptr[1].fUv[1] -= 1.f;
// P3
ptr[3] = vert;
ptr[3].fPos[1] += 2.f;
ptr[3].fUv[1] -= 1.f;
vBuffer->Unlock();
fBlurVBuffers[which] = vBuffer;
}
return true;
}
// ISetBlurQuadToRender ////////////////////////////////////////////////////
// Select the appropriate blur quad (based on size of shadow map) and set it up to render.
hsBool plDXPipeline::ISetBlurQuadToRender(plRenderTarget* smap)
{
const UInt32 kVSize = sizeof(plShadowVertStruct);
const UInt32 kVFormat = D3DFVF_XYZ | D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE2(0) ;
// Each vb will be rendertarget size specific, so select one based on input rendertarget
int which = -1;
switch(smap->GetHeight())
{
case 512:
which = 9;
break;
case 256:
which = 8;
break;
case 128:
which = 7;
break;
case 64:
which = 6;
break;
case 32:
which = 5;
break;
default:
return false;
}
// If we haven't created (or have lost) our d3d resources, make them
IDirect3DVertexBuffer9* vBuffer = fBlurVBuffers[which];
if( !vBuffer )
{
ICreateBlurVBuffers();
vBuffer = fBlurVBuffers[which];
hsAssert(vBuffer, "AllocBlurVBuffers failed");
}
HRESULT r = fD3DDevice->SetVertexShader(fSettings.fCurrVertexShader = NULL);
fD3DDevice->SetFVF(fSettings.fCurrFVFFormat = kVFormat);
hsAssert( r == D3D_OK, "Error trying to set the vertex shader!" );
hsRefCnt_SafeUnRef(fSettings.fCurrVertexBuffRef);
fSettings.fCurrVertexBuffRef = nil;
r = fD3DDevice->SetStreamSource(0, vBuffer, 0, kVSize);
plProfile_Inc(VertexChange);
// No SetIndices, we'll do a direct DrawPrimitive (not DrawIndexedPrimitive)
// No transforms, we're supplying screen ready verts.
return true;
}
// IRenderShadowCasterSpan //////////////////////////////////////////////////////////////////////
// Render the span into a rendertarget of the correct size, generating
// a depth map from this light to that span.
void plDXPipeline::IRenderShadowCasterSpan(plShadowSlave* slave, plDrawableSpans* drawable, const plIcicle& span)
{
// Check that it's ready to render.
plProfile_BeginTiming(CheckDyn);
ICheckDynBuffers(drawable, drawable->GetBufferGroup(span.fGroupIdx), &span);
plProfile_EndTiming(CheckDyn);
plDXVertexBufferRef* vRef = (plDXVertexBufferRef *)drawable->GetVertexRef(span.fGroupIdx, span.fVBufferIdx);
plDXIndexBufferRef* iRef = (plDXIndexBufferRef *)drawable->GetIndexRef(span.fGroupIdx, span.fIBufferIdx);
HRESULT r;
if( vRef->fD3DBuffer == nil || iRef->fD3DBuffer == nil )
{
hsAssert( false, "Trying to render a nil buffer pair!" );
return;
}
/// Switch to the vertex buffer we want
if( fSettings.fCurrVertexBuffRef != vRef )
{
hsRefCnt_SafeAssign( fSettings.fCurrVertexBuffRef, vRef );
hsAssert( vRef->fD3DBuffer != nil, "Trying to render a buffer pair without a vertex buffer!" );
vRef->SetRebuiltSinceUsed(true);
}
if( vRef->RebuiltSinceUsed() )
{
r = fD3DDevice->SetStreamSource( 0, vRef->fD3DBuffer, 0, vRef->fVertexSize );
hsAssert( r == D3D_OK, "Error trying to set the stream source!" );
plProfile_Inc(VertexChange);
fSettings.fCurrFVFFormat = IGetBufferD3DFormat(vRef->fFormat);
r = fD3DDevice->SetVertexShader(fSettings.fCurrVertexShader = NULL);
fD3DDevice->SetFVF(fSettings.fCurrFVFFormat);
hsAssert( r == D3D_OK, "Error trying to set the vertex shader!" );
vRef->SetRebuiltSinceUsed(false);
}
if( fSettings.fCurrIndexBuffRef != iRef )
{
hsRefCnt_SafeAssign( fSettings.fCurrIndexBuffRef, iRef );
hsAssert( iRef->fD3DBuffer != nil, "Trying to render with a nil index buffer" );
iRef->SetRebuiltSinceUsed(true);
}
if( iRef->RebuiltSinceUsed() )
{
r = fD3DDevice->SetIndices( iRef->fD3DBuffer );
hsAssert( r == D3D_OK, "Error trying to set the indices!" );
plProfile_Inc(IndexChange);
iRef->SetRebuiltSinceUsed(false);
}
UInt32 vStart = span.fVStartIdx;
UInt32 vLength = span.fVLength;
UInt32 iStart = span.fIPackedIdx;
UInt32 iLength= span.fILength;
plRenderTriListFunc render(fD3DDevice, iRef->fOffset, vStart, vLength, iStart, iLength/3);
static hsMatrix44 emptyMatrix;
hsMatrix44 m = emptyMatrix;
ISetupTransforms(drawable, span, m);
hsBool flip = slave->ReverseCull();
ISetCullMode(flip);
render.RenderPrims();
}
// IGetULutTextureRef ///////////////////////////////////////////////////////////
// The ULut just translates a U coordinate in range [0..1] into
// color and alpha of U * 255.9f. We just have the one we keep
// lying around.
plDXTextureRef* plDXPipeline::IGetULutTextureRef()
{
const int width = 256;
const int height = 1;
if( !fULutTextureRef )
{
UInt32* tData = TRACKED_NEW UInt32[width * height];
UInt32* pData = tData;
int j;
for( j = 0; j < height; j++ )
{
int i;
for( i = 0; i < width; i++ )
{
*pData = (i << 24)
| (i << 16)
| (i << 8)
| (i << 0);
pData++;
}
}
plDXTextureRef* ref = TRACKED_NEW plDXTextureRef( D3DFMT_A8R8G8B8,
1, // Num mip levels
width, height, // width by height
width * height, // numpix
width*height*sizeof(UInt32), // totalsize
width*height*sizeof(UInt32),
nil, // levels data
tData,
false // externData
);
ref->Link(&fTextureRefList);
fULutTextureRef = ref;
}
return fULutTextureRef;
}
// IFindRenderTarget //////////////////////////////////////////////////////////////////
// Find a matching render target from the pools. We prefer the requested size, but
// will look for a smaller size if there isn't one available.
// Param ortho indicates whether it will be used for orthogonal projection as opposed
// to perspective (directional light vs. point light), but is no longer used.
plRenderTarget* plDXPipeline::IFindRenderTarget(UInt32& width, UInt32& height, hsBool ortho)
{
hsTArray* pool = nil;
UInt32* iNext = nil;
// NOT CURRENTLY SUPPORTING NON-SQUARE SHADOWS. IF WE DO, CHANGE THIS.
switch(height)
{
case 512:
pool = &fRenderTargetPool512;
iNext = &fRenderTargetNext[9];
break;
case 256:
pool = &fRenderTargetPool256;
iNext = &fRenderTargetNext[8];
break;
case 128:
pool = &fRenderTargetPool128;
iNext = &fRenderTargetNext[7];
break;
case 64:
pool = &fRenderTargetPool64;
iNext = &fRenderTargetNext[6];
break;
case 32:
pool = &fRenderTargetPool32;
iNext = &fRenderTargetNext[5];
break;
default:
return nil;
}
plRenderTarget* rt = (*pool)[*iNext];
if( !rt )
{
// We didn't find one, try again the next size down.
if( height > 32 )
return IFindRenderTarget(width >>= 1, height >>= 1, ortho);
// We must be totally out. Oh well.
return nil;
}
(*iNext)++;
return rt;
}
// IPushShadowCastState ////////////////////////////////////////////////////////////////////////////////
// Push all the state necessary to start rendering this shadow map, but independent of the
// actual shadow caster to be rendered into the map.
hsBool plDXPipeline::IPushShadowCastState(plShadowSlave* slave)
{
plRenderTarget* renderTarg = IFindRenderTarget(slave->fWidth, slave->fHeight, slave->fView.GetOrthogonal());
if( !renderTarg )
return false;
// Let the slave setup the transforms, viewport, etc. necessary to render it's shadow
// map. This just goes into a plViewTransform, we translate that into D3D state ourselves below.
if (!slave->SetupViewTransform(this))
return false;
// Turn off fogging and specular.
fD3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE);
fCurrFog.fEnvPtr = nil;
fD3DDevice->SetRenderState(D3DRS_SPECULARENABLE, FALSE);
fLayerState[0].fShadeFlags &= ~hsGMatState::kShadeSpecular;
// Push the shadow slave's view transform as our current render state.
fSettings.fViewStack.Push(fView);
fView.fCullMaxNodes = 0;
SetViewTransform(slave->fView);
IProjectionMatrixToD3D();
// Push the shadow map as the current render target
PushRenderTarget(renderTarg);
// We'll be rendering the light space distance to the span fragment into
// alpha (color is white), so our camera space position, transformed into light space
// and then converted to [0..255] via our ULut.
// For stage 0:
// Set uvw src
if( fLayerUVWSrcs[0] != D3DTSS_TCI_CAMERASPACEPOSITION )
{
fD3DDevice->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX, D3DTSS_TCI_CAMERASPACEPOSITION);
fLayerUVWSrcs[0] = D3DTSS_TCI_CAMERASPACEPOSITION;
}
UInt32 xformFlags = D3DTTFF_COUNT3;
if( xformFlags != fLayerXformFlags[0] )
{
fLayerXformFlags[0] = xformFlags;
fD3DDevice->SetTextureStageState(0, D3DTSS_TEXTURETRANSFORMFLAGS, xformFlags);
}
// Set texture transform to slave's lut transform. See plShadowMaster::IComputeLUT().
hsMatrix44 castLUT = slave->fCastLUT;
if( slave->fFlags & plShadowSlave::kCastInCameraSpace )
{
hsMatrix44 c2w = GetCameraToWorld();
castLUT = castLUT * c2w;
}
D3DXMATRIX tXfm;
IMatrix44ToD3DMatrix(tXfm, castLUT);
fD3DDevice->SetTransform( sTextureStages[0], &tXfm );
fLayerTransform[0] = true;
// Set texture to clamp
fD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
fD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
fLayerState[0].fClampFlags = hsGMatState::kClampTexture;
DWORD clearColor = 0xff000000L;
// const int l2NumSamples = kL2NumSamples; // HACKSAMPLE
const int l2NumSamples = mfCurrentTest > 101 ? 3 : 2;
DWORD intens;
if( slave->fBlurScale > 0 )
{
const int kNumSamples = mfCurrentTest > 101 ? 8 : 4;
int nPasses = (int)hsCeil(float(kNumSamples) / fSettings.fMaxLayersAtOnce);
int nSamplesPerPass = kNumSamples / nPasses;
DWORD k = int(128.f / float(nSamplesPerPass));
intens = (0xff << 24)
| ((128 + k) << 16)
| ((128 + k) << 8)
| ((128 + k) << 0);
clearColor = (0xff << 24)
| ((128 - k) << 16)
| ((128 - k) << 8)
| ((128 - k) << 0);
}
else
intens = 0xffffffff;
// Note that we discard the shadow caster's alpha here, although we don't
// need to. Even on a 2 texture stage system, we could include the diffuse
// alpha and the texture alpha from the base texture. But we don't.
// Set color to white. We could accomplish this easier by making the color
// in our ULut white.
fD3DDevice->SetRenderState(D3DRS_TEXTUREFACTOR, intens);
fSettings.fVeryAnnoyingTextureInvalidFlag = true;
fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR);
fD3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
fLayerState[0].fBlendFlags = UInt32(-1);
// For stage 1 - disable
fLastEndingStage = 1;
fD3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
fD3DDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
fLayerState[1].fBlendFlags = UInt32(-1);
// Set texture to U_LUT
plDXTextureRef* ref = IGetULutTextureRef();
if( !ref->fD3DTexture )
{
if( ref->fData )
IReloadTexture( ref );
}
hsRefCnt_SafeAssign( fLayerRef[0], ref );
fD3DDevice->SetTexture( 0, ref->fD3DTexture );
fD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
fD3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
fD3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO);
fD3DDevice->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_ALWAYS);
slave->fPipeData = renderTarg;
// Enable ZBuffering w/ write
fD3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);
fLayerState[0].fZFlags &= ~hsGMatState::kZMask;
// Clear the render target:
// alpha to white ensures no shadow where there's no caster
// color to black in case we ever get blurring going
// Z to 1
// Stencil ignored
if( slave->ReverseZ() )
{
fD3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_GREATEREQUAL);
fD3DDevice->Clear(0, nil, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, clearColor, 0.0f, 0L);
}
else
{
fD3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESSEQUAL);
fD3DDevice->Clear(0, nil, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, clearColor, 1.0f, 0L);
}
// Bring the viewport in (AFTER THE CLEAR) to protect the alpha boundary.
fView.fTransform.SetViewPort(1, 1, (float)(slave->fWidth-2), (float)(slave->fHeight-2), false);
ISetViewport();
inlEnsureLightingOff();
// See ISetupShadowLight below for how the shadow light is used.
// The shadow light isn't used in generating the shadow map, it's used
// in projecting the shadow map onto the scene.
ISetupShadowLight(slave);
return true;
}
// ISetupShadowLight //////////////////////////////////////////////////////////////////
// We use the shadow light to modulate the shadow effect in two ways while
// projecting the shadow map onto the scene.
// First, the intensity of the shadow follows the N dot L of the light on
// the surface being projected onto. So on a sphere, the darkening effect
// of the shadow will fall off as the normals go from pointing to the light to
// pointing 90 degrees off.
// Second, we attenuate the whole shadow effect through the lights diffuse color.
// We attenuate for different reasons, like the intensity of the light, or
// to fade out a shadow as it gets too far in the distance to matter.
void plDXPipeline::ISetupShadowLight(plShadowSlave* slave)
{
plDXLightRef* lRef = INextShadowLight(slave);
lRef->fD3DInfo.Diffuse.r
= lRef->fD3DInfo.Diffuse.g
= lRef->fD3DInfo.Diffuse.b
= slave->fPower;
slave->fSelfShadowOn = false;
if( slave->Positional() )
{
hsPoint3 position = slave->fLightPos;
lRef->fD3DInfo.Position.x = position.fX;
lRef->fD3DInfo.Position.y = position.fY;
lRef->fD3DInfo.Position.z = position.fZ;
const float maxRange = 32767.f;
lRef->fD3DInfo.Range = maxRange;
lRef->fD3DInfo.Attenuation0 = 1.f;
lRef->fD3DInfo.Attenuation1 = 0;
lRef->fD3DInfo.Attenuation2 = 0;
lRef->fD3DInfo.Type = D3DLIGHT_POINT;
}
else
{
hsVector3 dir = slave->fLightDir;
lRef->fD3DInfo.Direction.x = dir.fX;
lRef->fD3DInfo.Direction.y = dir.fY;
lRef->fD3DInfo.Direction.z = dir.fZ;
lRef->fD3DInfo.Type = D3DLIGHT_DIRECTIONAL;
}
fD3DDevice->SetLight( lRef->fD3DIndex, &lRef->fD3DInfo );
slave->fLightIndex = lRef->fD3DIndex;
}
// INextShadowLight /////////////////////////////////////////////////////
// Get a scratch light for this shadow slave and assign it. The slave
// only keeps it for this render frame.
plDXLightRef* plDXPipeline::INextShadowLight(plShadowSlave* slave)
{
fLights.fShadowLights.ExpandAndZero(fLights.fNextShadowLight+1);
if( !fLights.fShadowLights[fLights.fNextShadowLight] )
{
plDXLightRef *lRef = TRACKED_NEW plDXLightRef();
/// Assign stuff and update
lRef->fD3DIndex = fLights.ReserveD3DIndex();
lRef->fOwner = nil;
lRef->fD3DDevice = fD3DDevice;
lRef->Link( &fLights.fRefList );
fLights.fShadowLights[fLights.fNextShadowLight] = lRef;
// Neutralize it until we need it.
fD3DDevice->LightEnable(lRef->fD3DIndex, false);
// Some things never change.
memset(&lRef->fD3DInfo, 0, sizeof(lRef->fD3DInfo));
lRef->fD3DInfo.Ambient.r = lRef->fD3DInfo.Ambient.g = lRef->fD3DInfo.Ambient.b = 0;
lRef->fD3DInfo.Specular.r = lRef->fD3DInfo.Specular.g = lRef->fD3DInfo.Specular.b = 0;
}
slave->fLightRefIdx = fLights.fNextShadowLight;
return fLights.fShadowLights[fLights.fNextShadowLight++];
}
// IPopShadowCastState ///////////////////////////////////////////////////
// Pop the state set to render this shadow caster, so we're ready to render
// a different shadow caster, or go on to our main render.
hsBool plDXPipeline::IPopShadowCastState(plShadowSlave* slave)
{
fView = fSettings.fViewStack.Pop();
PopRenderTarget();
fView.fXformResetFlags = fView.kResetProjection | fView.kResetCamera;
return true;
}
// IMakeRenderTargetPools /////////////////////////////////////////////////////////////
// These are actually only used as shadow map pools, but they could be used for other
// render targets.
// All these are created here in a single call because they go in POOL_DEFAULT, so they
// must be created before we start creating things in POOL_MANAGED.
void plDXPipeline::IMakeRenderTargetPools()
{
hsAssert(!fManagedAlloced, "Allocating rendertargets with managed resources alloced");
IReleaseRenderTargetPools(); // Just to be sure.
// Numbers of render targets to be created for each size.
// These numbers were set with multi-player in mind, so should be reconsidered.
// But do keep in mind that there are many things in production assets that cast
// shadows besides the avatar.
plConst(hsScalar) kCount[kMaxRenderTargetNext] = {
0, // 1x1
0, // 2x2
0, // 4x4
0, // 8x8
0, // 16x16
32, // 32x32
16, // 64x64
8, // 128x128
4, // 256x256
0 // 512x512
};
int i;
for( i = 0; i < kMaxRenderTargetNext; i++ )
{
hsTArray* pool = nil;
switch( i )
{
default:
case 0:
case 1:
case 2:
case 3:
case 4:
break;
case 5:
pool = &fRenderTargetPool32;
break;
case 6:
pool = &fRenderTargetPool64;
break;
case 7:
pool = &fRenderTargetPool128;
break;
case 8:
pool = &fRenderTargetPool256;
break;
case 9:
pool = &fRenderTargetPool512;
break;
}
if( pool )
{
pool->SetCount((int)(kCount[i]+1));
(*pool)[0] = nil;
(*pool)[(int)(kCount[i])] = nil;
int j;
for( j = 0; j < kCount[i]; j++ )
{
UInt16 flags = plRenderTarget::kIsTexture | plRenderTarget::kIsProjected;
UInt8 bitDepth = 32;
UInt8 zDepth = 24;
UInt8 stencilDepth = 0;
// If we ever allow non-square shadows, change this.
int width = 1 << i;
int height = width;
plRenderTarget* rt = TRACKED_NEW plRenderTarget(flags, width, height, bitDepth, zDepth, stencilDepth);
// If we've failed to create our render target ref, we're probably out of
// video memory. We'll return nil, and this guy just doesn't get a shadow
// until more video memory turns up (not likely).
if( !SharedRenderTargetRef((*pool)[0], rt) )
{
delete rt;
pool->SetCount(j+1);
(*pool)[j] = nil;
break;
}
(*pool)[j] = rt;
}
}
}
}
// IResetRenderTargetPools /////////////////////////////////////////////////////////////////
// No release of resources, this just resets for the start of a frame. So if a shadow
// slave gets a render target from a pool, once this is called (conceptually at the
// end of the frame), the slave no longer owns that render target.
void plDXPipeline::IResetRenderTargetPools()
{
int i;
for( i = 0; i < kMaxRenderTargetNext; i++ )
{
fRenderTargetNext[i] = 0;
fBlurScratchRTs[i] = nil;
fBlurDestRTs[i] = nil;
}
fLights.fNextShadowLight = 0;
}
// IPrepShadowCaster ////////////////////////////////////////////////////////////////////////
// Make sure all the geometry in this shadow caster is ready to be rendered.
// Keep in mind the single shadow caster may be multiple spans possibly in
// multiple drawables.
// The tricky part here is that we need to prep each drawable involved,
// but only prep it once. Say the caster is composed of:
// drawableA, span0
// drawableA, span1
// drawableB, span0
// Then we need to call plDrawable::PrepForRender() ONCE on drawableA,
// and once on drawableB. Further, we need to do any necessary CPU
// skinning with ISofwareVertexBlend(drawableA, visList={0,1}) and
// ISofwareVertexBlend(drawableB, visList={1}).
hsBool plDXPipeline::IPrepShadowCaster(const plShadowCaster* caster)
{
static hsBitVector done;
done.Clear();
const hsTArray& castSpans = caster->Spans();
int i;
for( i = 0; i < castSpans.GetCount(); i++ )
{
if( !done.IsBitSet(i) )
{
// We haven't already done this castSpan
plDrawableSpans* drawable = castSpans[i].fDraw;
// Start a visList with this index.
static hsTArray visList;
visList.SetCount(0);
visList.Append((Int16)(castSpans[i].fIndex));
// We're about to have done this castSpan.
done.SetBit(i);
// Look forward through castSpans for any other spans
// with the same drawable, and add them to visList.
// We'll handle all the spans from this drawable at once.
int j;
for( j = i+1; j < castSpans.GetCount(); j++ )
{
if( !done.IsBitSet(j) && (castSpans[j].fDraw == drawable) )
{
// Add to list
visList.Append((Int16)(castSpans[j].fIndex));
// We're about to have done this castSpan.
done.SetBit(j);
}
}
// That's all, prep the drawable.
drawable->PrepForRender( this );
// Do any software skinning.
if( !ISoftwareVertexBlend(drawable, visList) )
return false;
}
}
return true;
}
// IRenderShadowCaster ////////////////////////////////////////////////
// Render the shadow caster into the slave's render target, creating a shadow map.
hsBool plDXPipeline::IRenderShadowCaster(plShadowSlave* slave)
{
const plShadowCaster* caster = slave->fCaster;
// Setup to render into the slave's render target.
if( !IPushShadowCastState(slave) )
return false;
// Get the shadow caster ready to render.
if( !IPrepShadowCaster(slave->fCaster) )
return false;
// for each shadowCaster.fSpans
int iSpan;
for( iSpan = 0; iSpan < caster->Spans().GetCount(); iSpan++ )
{
plDrawableSpans* dr = caster->Spans()[iSpan].fDraw;
const plSpan* sp = caster->Spans()[iSpan].fSpan;
UInt32 spIdx = caster->Spans()[iSpan].fIndex;
hsAssert(sp->fTypeMask & plSpan::kIcicleSpan, "Shadow casting from non-trimeshes not currently supported");
// render shadowcaster.fSpans[i] to rendertarget
if( !(sp->fProps & plSpan::kPropNoShadowCast) )
IRenderShadowCasterSpan(slave, dr, *(const plIcicle*)sp);
// Keep track of which shadow slaves this span was rendered into.
// If self-shadowing is off, we use that to determine not to
// project the shadow map onto its source geometry.
sp->SetShadowBit(slave->fIndex); //index set in SubmitShadowSlave
}
// Debug only.
if( blurScale >= 0.f )
slave->fBlurScale = blurScale;
// If this shadow requests being blurred, do it.
if( slave->fBlurScale > 0.f )
IBlurShadowMap(slave);
// Finished up, restore previous state.
IPopShadowCastState(slave);
#if MCN_BOUNDS_SPANS
if (IsDebugFlagSet(plPipeDbg::kFlagShowShadowBounds))
{
/// Add a span to our boundsIce to show this
IAddBoundsSpan(fBoundsSpans, &slave->fWorldBounds);
}
#endif // MCN_BOUNDS_SPANS
return true;
}
// We have a (possibly empty) list of shadows submitted for this frame.
// At BeginRender, we need to accomplish:
// Find render targets for each shadow request of the requested size.
// Render the associated spans into the render targets. Something like the following:
void plDXPipeline::IPreprocessShadows()
{
plProfile_BeginTiming(PrepShadows);
// Mark our shared resources as free to be used.
IResetRenderTargetPools();
// Some board (possibly the Parhelia) freaked if anistropic filtering
// was enabled when rendering to a render target. We never need it for
// shadow maps, and it is slower, so we just kill it here.
ISetAnisotropy(false);
// Generate a shadow map for each submitted shadow slave.
// Shadow slave corresponds to one shadow caster paired
// with one shadow light that affects it. So a single caster
// may be in multiple slaves (from different lights), or a
// single light may be in different slaves (affecting different
// casters). The overall number is low in spite of the possible
// permutation explosion, because a slave is only generated
// for a caster being affected (in range etc.) by a light.
int iSlave;
for( iSlave = 0; iSlave < fShadows.GetCount(); iSlave++ )
{
plShadowSlave* slave = fShadows[iSlave];
// Any trouble, remove it from the list for this frame.
if( !IRenderShadowCaster(slave) )
{
fShadows.Remove(iSlave);
iSlave--;
continue;
}
}
// Restore
ISetAnisotropy(true);
plProfile_EndTiming(PrepShadows);
}
// IClearShadowSlaves ///////////////////////////////////////////////////////////////////////////
// At EndRender(), we need to clear our list of shadow slaves. They are only valid for one frame.
void plDXPipeline::IClearShadowSlaves()
{
int i;
for( i = 0; i < fShadows.GetCount(); i++ )
{
const plShadowCaster* caster = fShadows[i]->fCaster;
caster->GetKey()->UnRefObject();
}
fShadows.SetCount(0);
}
// IRenderShadowsOntoSpan /////////////////////////////////////////////////////////////////////
// After doing the usual render for a span (all passes), we call the following.
// If the span accepts shadows, this will loop over all the shadows active this
// frame, and apply the ones that intersect this spans bounds. See below for details.
void plDXPipeline::IRenderShadowsOntoSpan(const plRenderPrimFunc& render, const plSpan* span, hsGMaterial* mat)
{
// We've already computed which shadows affect this span. That's recorded in slaveBits.
const hsBitVector& slaveBits = span->GetShadowSlaves();
hsBool first = true;
int i;
for( i = 0; i < fShadows.GetCount(); i++ )
{
if( slaveBits.IsBitSet(fShadows[i]->fIndex) )
{
// This slave affects this span.
if( first )
{
// On the first, we do all the setup that is independent of
// the shadow slave, so state that needs to get set once before
// projecting any number of shadow maps.
ISetupShadowRcvTextureStages(mat);
first = false;
}
// Now setup any state specific to this shadow slave.
ISetupShadowSlaveTextures(fShadows[i]);
int selfShadowNow = span->IsShadowBitSet(fShadows[i]->fIndex);
// We vary the shadow intensity when self shadowing (see below),
// so we cache whether the shadow light is set for regular or
// self shadowing intensity. If what we're doing now is different
// than what we're currently set for, set it again.
if( selfShadowNow != fShadows[i]->fSelfShadowOn )
{
plDXLightRef* lRef = fLights.fShadowLights[fShadows[i]->fLightRefIdx];
// We lower the power on self shadowing, because the artists like to
// crank up the shadow strength to huge values to get a darker shadow
// on the environment, which causes the shadow on the avatar to get
// way too dark. Another way to look at it is when self shadowing,
// the surface being projected onto is going to be very close to
// the surface casting the shadow (because they are the same object).
if( selfShadowNow )
{
plConst(hsScalar) kMaxSelfPower = 0.3f;
hsScalar power = fShadows[i]->fPower > kMaxSelfPower ? kMaxSelfPower : fShadows[i]->fPower;
lRef->fD3DInfo.Diffuse.r
= lRef->fD3DInfo.Diffuse.g
= lRef->fD3DInfo.Diffuse.b
= power;
}
else
{
lRef->fD3DInfo.Diffuse.r
= lRef->fD3DInfo.Diffuse.g
= lRef->fD3DInfo.Diffuse.b
= fShadows[i]->fPower;
}
fD3DDevice->SetLight(lRef->fD3DIndex, &lRef->fD3DInfo);
// record which our intensity is now set for.
fShadows[i]->fSelfShadowOn = selfShadowNow;
}
// Enable the light.
fD3DDevice->LightEnable(fShadows[i]->fLightIndex, true);
#ifdef HS_DEBUGGING
DWORD nPass;
fSettings.fDXError = fD3DDevice->ValidateDevice(&nPass);
if( fSettings.fDXError != D3D_OK )
IGetD3DError();
#endif // HS_DEBUGGING
#ifndef PLASMA_EXTERNAL_RELEASE
if (!IsDebugFlagSet(plPipeDbg::kFlagNoShadowApply))
#endif // PLASMA_EXTERNAL_RELEASE
render.RenderPrims();
// Disable it again.
fD3DDevice->LightEnable(fShadows[i]->fLightIndex, false);
}
}
}
// ISetupShadowRcvTextureStages ////////////////////////////////////////////
// Set the generic stage states. We'll fill in the specific textures
// for each slave later.
void plDXPipeline::ISetupShadowRcvTextureStages(hsGMaterial* mat)
{
// Setup for nil shaders to get us back to fixed function pipeline.
ISetShaders(nil, nil);
// We're whacking about with renderstate independent of current material,
// so make sure the next span processes it's material, even if it's the
// same one.
fForceMatHandle = true;
// Set the D3D lighting/material model
ISetShadowLightState(mat);
// Zbuffering on read-only
fD3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESSEQUAL);
fD3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
fLayerState[0].fZFlags &= ~hsGMatState::kZMask;
fLayerState[0].fZFlags |= hsGMatState::kZNoZWrite;
// Stage 0:
// Texture is slave specific
// Texture transform is slave specific
// ColorArg1 = texture
// ColorArg2 = diffuse
// ColorOp = modulate
// AlphaArg1 = texture
// AlphaOp = SelectArg1
fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);
fD3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
if( fLayerUVWSrcs[0] != D3DTSS_TCI_CAMERASPACEPOSITION )
{
fD3DDevice->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX, D3DTSS_TCI_CAMERASPACEPOSITION);
fLayerUVWSrcs[0] = D3DTSS_TCI_CAMERASPACEPOSITION;
}
// Set texture to clamp
fD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
fD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
fLayerState[0].fClampFlags = hsGMatState::kClampTexture;
// Stage 1:
// Set texture to ULut
// Texture transform is slave specific
// *** With the optional texture blurring, the state here becomes
// *** partially slave dependent. Specifically, if we've done a blur,
// *** then we want to modulate the lut color value by current (which is
// *** the blurred color), else just select the lut. So we'll just move
// *** the ColorOp down to the slave specific section.
// %%% Okay, get this. The GeForce2 won't take a SelectArg1 on Stage1 if
// %%% we're also trying to use Stage2 to modulate in the diffuse. But
// %%% it WILL let us do a modulate on Stage1. So we're going to make sure
// %%% that our shadowmap texture is white, then we can just modulate them
// %%% with no effect. If we're blurring, we already wanted to modulate, so
// %%% no change there. This means we can set the ColorOp now, rather than
// %%% having to wait for the Slave specific section later.
// ColorArg1 = 1 - ULut
// ColorArg2 = Current
// ColorOp = Modulate
// AlphaArg1 = ULut
// AlphaArg2 = Current
// AlphaOp = Subtract
plDXTextureRef* ref = IGetULutTextureRef();
if( !ref->fD3DTexture )
{
if( ref->fData )
IReloadTexture(ref);
}
hsRefCnt_SafeAssign(fLayerRef[1], ref);
fD3DDevice->SetTexture(1, ref->fD3DTexture);
// The following commented out block is kind of cool, because it
// bases the darkness of the shadow on the distance between the
// shadow caster and the point receiving the shadow. So, for example,
// the hand's shadow would get darker as it reaches for the lever.
// Unfortunately, it doesn't guarantee that the shadow will completely
// attenuate out at the fAttenDist (in fact, it pretty much guarantees
// that it won't), so shadows will pop in and out. So instead, we'll
// base the color on the distance from the start of the slave. The
// difference is subtle, and usually unnoticable, and we get no popping.
fD3DDevice->SetTextureStageState(1, D3DTSS_COLORARG1, D3DTA_TEXTURE | D3DTA_COMPLEMENT);
fD3DDevice->SetTextureStageState(1, D3DTSS_COLORARG2, D3DTA_CURRENT);
fD3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_MODULATE);
fD3DDevice->SetTextureStageState(1, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState(1, D3DTSS_ALPHAARG2, D3DTA_CURRENT);
fD3DDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_SUBTRACT);
fLayerState[1].fBlendFlags = UInt32(-1);
if( fLayerUVWSrcs[1] != D3DTSS_TCI_CAMERASPACEPOSITION )
{
fD3DDevice->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX, D3DTSS_TCI_CAMERASPACEPOSITION);
fLayerUVWSrcs[1] = D3DTSS_TCI_CAMERASPACEPOSITION;
}
if( D3DTTFF_COUNT3 != fLayerXformFlags[1] )
{
fLayerXformFlags[1] = D3DTTFF_COUNT3;
fD3DDevice->SetTextureStageState(1, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT3);
}
// Set texture to clamp
fD3DDevice->SetSamplerState(1, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
fD3DDevice->SetSamplerState(1, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
fLayerState[1].fClampFlags = hsGMatState::kClampTexture;
int iNextStage = 2;
// If mat's base layer is alpha'd, and we have > 3 TMU's factor
// in the base layer's alpha.
if( (fSettings.fMaxLayersAtOnce > 3) && mat->GetLayer(0)->GetTexture() && (mat->GetLayer(0)->GetBlendFlags() & hsGMatState::kBlendAlpha) )
{
plLayerInterface* layer = mat->GetLayer(0);
// If the following conditions are met, it means that layer 1 is a better choice to
// get the transparency from. The specific case we're looking for is vertex alpha
// simulated by an invisible second layer alpha LUT (known as the alpha hack).
if( (layer->GetMiscFlags() & hsGMatState::kMiscBindNext)
&& mat->GetLayer(1)
&& !(mat->GetLayer(1)->GetMiscFlags() & hsGMatState::kMiscNoShadowAlpha)
&& !(mat->GetLayer(1)->GetBlendFlags() & hsGMatState::kBlendNoTexAlpha)
&& mat->GetLayer(1)->GetTexture() )
layer = mat->GetLayer(1);
// Take the texture alpha and modulate the color so far with it. In
// the final shadow map, black will have no effect, white will be maximal
// darkening.
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_COLORARG1, D3DTA_TEXTURE | D3DTA_ALPHAREPLICATE);
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_COLORARG2, D3DTA_CURRENT);
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_COLOROP, D3DTOP_MODULATE);
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_ALPHAARG2, D3DTA_CURRENT);
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2);
// Blend flags to layer blend (alpha +- complement)
fLayerState[iNextStage].fBlendFlags = UInt32(-1);
// Clamp to whatever the texture wants.
if( fLayerState[iNextStage].fClampFlags ^ layer->GetClampFlags() )
{
fLayerState[iNextStage].fClampFlags = layer->GetClampFlags();
IHandleStageClamp(iNextStage);
}
// Shade to 0
fLayerState[iNextStage].fShadeFlags = 0;
// ZFlags to ZNoZWrite
fLayerState[iNextStage].fZFlags = hsGMatState::kZNoZWrite;
// MiscFlags to layer's misc flags
fLayerState[iNextStage].fMiscFlags = layer->GetMiscFlags();
// Set up whatever UVW transform the layer normally uses.
IHandleStageTransform(iNextStage, layer);
// Normal UVW source.
UInt32 uvwSrc = layer->GetUVWSrc();
if( fLayerUVWSrcs[ iNextStage ] != uvwSrc )
{
fD3DDevice->SetTextureStageState( iNextStage, D3DTSS_TEXCOORDINDEX, uvwSrc );
fLayerUVWSrcs[ iNextStage ] = uvwSrc;
}
UInt32 xformFlags;
if( layer->GetMiscFlags() & hsGMatState::kMiscPerspProjection )
xformFlags = D3DTTFF_COUNT3 | D3DTTFF_PROJECTED;
else if( uvwSrc & (plLayerInterface::kUVWNormal | plLayerInterface::kUVWPosition | plLayerInterface::kUVWReflect) )
xformFlags = D3DTTFF_COUNT3;
else
xformFlags = D3DTTFF_COUNT2;
if( xformFlags != fLayerXformFlags[iNextStage] )
{
fLayerXformFlags[iNextStage] = xformFlags;
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_TEXTURETRANSFORMFLAGS, xformFlags);
}
// This ref should be pretty safe to use, because we just rendered it.
ref = (plDXTextureRef*)layer->GetTexture()->GetDeviceRef();
hsRefCnt_SafeAssign( fLayerRef[iNextStage], ref );
fD3DDevice->SetTexture( iNextStage, ref->fD3DTexture );
iNextStage++;
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_COLORARG1, D3DTA_DIFFUSE | D3DTA_ALPHAREPLICATE);
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_COLORARG2, D3DTA_CURRENT);
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_COLOROP, D3DTOP_MODULATE);
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
fLayerState[iNextStage].fBlendFlags = UInt32(-1);
iNextStage++;
}
fLayerState[iNextStage].fBlendFlags = UInt32(-1);
// And seal it up
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_COLOROP, D3DTOP_DISABLE);
fD3DDevice->SetTextureStageState(iNextStage, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
fLayerState[iNextStage].fBlendFlags = UInt32(-1);
fLastEndingStage = 0;
// Now set the frame buffer blend
// Remember that white darkens and black is no effect.
// Form is Src * SrcBlend + Dst * DstBlend
// We want inverse Src * Dst, so
// Src * ZERO + Dst * InvSrc
fD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
fD3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
fD3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCCOLOR);
fLayerState[0].fBlendFlags = UInt32(-1);
// Turn on alpha test. Alpha of zero means the shadow map depth
// is greater or equal to the surface depth, i.e. the surface
// is between the shadow caster and the light and doesn't receive
// shadow.
fD3DDevice->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL);
fD3DDevice->SetRenderState(D3DRS_ALPHAREF, 0x00000001);
fLayerState[0].fBlendFlags |= hsGMatState::kBlendTest;
fD3DDevice->SetRenderState(D3DRS_SPECULARENABLE, FALSE);
fLayerState[0].fShadeFlags &= ~hsGMatState::kShadeSpecular;
// Set fog color to black
// We should automatically reset it, because our blend mode is -1'd.
fD3DDevice->SetRenderState(D3DRS_FOGCOLOR, 0);
#ifdef HS_DEBUGGING
DWORD nPass;
fSettings.fDXError = fD3DDevice->ValidateDevice(&nPass);
if( fSettings.fDXError != D3D_OK )
IGetD3DError();
#endif // HS_DEBUGGING
}
// ISetupShadowSlaveTextures //////////////////////////////////////////////
// Set any state specific to this shadow slave for projecting the slave's
// shadow map onto the surface.
void plDXPipeline::ISetupShadowSlaveTextures(plShadowSlave* slave)
{
D3DXMATRIX tXfm;
hsMatrix44 c2w = GetCameraToWorld();
// Stage 0:
// Set Stage 0's texture to the slave's rendertarget.
// Set texture transform to slave's camera to texture transform
plRenderTarget* renderTarg = (plRenderTarget*)slave->fPipeData;
hsAssert(renderTarg, "Processing a slave that hasn't been rendered");
if( !renderTarg )
return;
plDXTextureRef* ref = (plDXTextureRef*)renderTarg->GetDeviceRef();
hsAssert(ref, "Shadow map ref should have been made when it was rendered");
if( !ref )
return;
hsRefCnt_SafeAssign( fLayerRef[0], ref );
fD3DDevice->SetTexture( 0, ref->fD3DTexture );
hsMatrix44 cameraToTexture = slave->fWorldToTexture * c2w;
IMatrix44ToD3DMatrix(tXfm, cameraToTexture);
fD3DDevice->SetTransform( sTextureStages[0], &tXfm );
fLayerTransform[0] = true;
// Directional lights (ortho projection) just use COUNT2, point lights use COUNT3|PROJECTED.
UInt32 xformFlags = slave->fView.GetOrthogonal() ? D3DTTFF_COUNT2 : D3DTTFF_COUNT3 | D3DTTFF_PROJECTED;
if( xformFlags != fLayerXformFlags[0] )
{
fLayerXformFlags[0] = xformFlags;
fD3DDevice->SetTextureStageState(0, D3DTSS_TEXTURETRANSFORMFLAGS, xformFlags);
}
// Stage 1: the lut
// Set the texture transform to slave's fRcvLUT
hsMatrix44 cameraToLut = slave->fRcvLUT * c2w;
IMatrix44ToD3DMatrix(tXfm, cameraToLut);
fD3DDevice->SetTransform( sTextureStages[1], &tXfm );
fLayerTransform[1] = true;
}
// ISetShadowLightState //////////////////////////////////////////////////////////////////
// Set the D3D lighting/material model for projecting the shadow map onto this material.
void plDXPipeline::ISetShadowLightState(hsGMaterial* mat)
{
IDisableLightsForShadow();
inlEnsureLightingOn();
fCurrLightingMethod = plSpan::kLiteShadow;
static D3DMATERIAL9 d3dMat;
if( mat && mat->GetNumLayers() && mat->GetLayer(0) )
d3dMat.Diffuse.r = d3dMat.Diffuse.g = d3dMat.Diffuse.b = mat->GetLayer(0)->GetOpacity();
else
d3dMat.Diffuse.r = d3dMat.Diffuse.g = d3dMat.Diffuse.b = 1.f;
d3dMat.Diffuse.a = 1.f;
fD3DDevice->SetMaterial(&d3dMat);
fD3DDevice->SetRenderState( D3DRS_AMBIENT, 0 );
}
// IDisableLightsForShadow ///////////////////////////////////////////////////////////
// Disable any lights that are enabled. We'll only want the shadow light illuminating
// the surface.
void plDXPipeline::IDisableLightsForShadow()
{
int i;
for( i = 0; i < fLights.fLastIndex + 1; i++ )
{
if( fLights.fEnabledFlags.IsBitSet(i) )
{
fD3DDevice->LightEnable(i, false);
}
}
fLights.fEnabledFlags.Clear();
}
// IEnableShadowLight ///////////////////////////////////////////////
// Enable this shadow slave's light.
// NOT USED.
void plDXPipeline::IEnableShadowLight(plShadowSlave* slave)
{
fD3DDevice->LightEnable(slave->fLightIndex, true);
}
// IAcceptsShadow ////////////////////////////////////////////////////////////////
// Only allow self shadowing if requested.
hsBool plDXPipeline::IAcceptsShadow(const plSpan* span, plShadowSlave* slave)
{
// The span's shadow bits records which shadow maps that span was rendered
// into.
return slave->SelfShadow() || !span->IsShadowBitSet(slave->fIndex);
}
// IReceivesShadows ////////////////////////////////////////////////////////////////////
// Want artists to be able to just disable shadows for spans where they'll either
// look goofy, or won't contribute.
// Also, if we have less than 3 simultaneous textures, we want to skip anything with
// an alpha'd base layer, unless it's been overriden.
hsBool plDXPipeline::IReceivesShadows(const plSpan* span, hsGMaterial* mat)
{
if( span->fProps & plSpan::kPropNoShadow )
return false;
if( span->fProps & plSpan::kPropForceShadow )
return true;
if( span->fProps & (plSpan::kPropSkipProjection | plSpan::kPropProjAsVtx) )
return false;
if( (fSettings.fMaxLayersAtOnce < 3)
&& mat->GetLayer(0)->GetTexture()
&& (mat->GetLayer(0)->GetBlendFlags() & hsGMatState::kBlendAlpha) )
return false;
#ifdef ENABLE_INTEL_SHADOWS
// Shouldn't hit this, since we're disabling shadows on the Intel chips,
// but just in case.
// To enable this, you'll need to start passing in the drawable as well.
if( fSettings.fIsIntel )
{
const plVertexSpan* vertSpan = static_cast(span);
plGBufferGroup* group = drawable->GetBufferGroup(vertSpan->fGroupIdx);
if( !group->GetNumUVs() )
return false;
}
#endif // ENABLE_INTEL_SHADOWS
return true;
}
void plDXPipeline::SubmitClothingOutfit(plClothingOutfit* co)
{
if (fClothingOutfits.Find(co) == fClothingOutfits.kMissingIndex)
{
fClothingOutfits.Append(co);
if (!fPrevClothingOutfits.RemoveItem(co))
co->GetKey()->RefObject();
}
}
void plDXPipeline::IClearClothingOutfits(hsTArray* outfits)
{
int i;
for (i = outfits->GetCount() - 1; i >= 0; i--)
{
plClothingOutfit *co = outfits->Get(i);
outfits->Remove(i);
IFreeAvRT((plRenderTarget*)co->fTargetLayer->GetTexture());
co->fTargetLayer->SetTexture(nil);
co->GetKey()->UnRefObject();
}
}
void plDXPipeline::IFillAvRTPool()
{
fAvNextFreeRT = 0;
fAvRTShrinkValidSince = hsTimer::GetSysSeconds();
int numRTs = 1;
if (fClothingOutfits.GetCount() > 1)
{
// Just jump to 8 for starters so we don't have to refresh for the 2nd, 4th, AND 8th player
numRTs = 8;
while (numRTs < fClothingOutfits.GetCount())
numRTs *= 2;
}
// I could see a 32MB video card going down to 64x64 RTs in extreme cases
// (over 100 players onscreen at once), but really, if such hardware is ever trying to push
// that, the low texture resolution is not going to be your major concern.
for (fAvRTWidth = 1024 >> plMipmap::GetGlobalLevelChopCount(); fAvRTWidth >= 32; fAvRTWidth /= 2)
{
if (IFillAvRTPool(numRTs, fAvRTWidth))
return;
// Nope? Ok, lower the resolution and try again.
}
}
hsBool plDXPipeline::IFillAvRTPool(UInt16 numRTs, UInt16 width)
{
fAvRTPool.SetCount(numRTs);
int i;
for (i = 0; i < numRTs; i++)
{
UInt16 flags = plRenderTarget::kIsTexture | plRenderTarget::kIsProjected;
UInt8 bitDepth = 32;
UInt8 zDepth = 0;
UInt8 stencilDepth = 0;
fAvRTPool[i] = TRACKED_NEW plRenderTarget(flags, width, width, bitDepth, zDepth, stencilDepth);
// If anyone fails, release everyone we've created.
if (!MakeRenderTargetRef(fAvRTPool[i]))
{
int j;
for (j = 0; j <= i; j++)
{
delete fAvRTPool[j];
}
return false;
}
}
return true;
}
void plDXPipeline::IReleaseAvRTPool()
{
int i;
for (i = 0; i < fClothingOutfits.GetCount(); i++)
{
fClothingOutfits[i]->fTargetLayer->SetTexture(nil);
}
for (i = 0; i < fPrevClothingOutfits.GetCount(); i++)
{
fPrevClothingOutfits[i]->fTargetLayer->SetTexture(nil);
}
for (i = 0; i < fAvRTPool.GetCount(); i++)
{
delete(fAvRTPool[i]);
}
fAvRTPool.Reset();
}
plRenderTarget *plDXPipeline::IGetNextAvRT()
{
return fAvRTPool[fAvNextFreeRT++];
}
void plDXPipeline::IFreeAvRT(plRenderTarget* tex)
{
UInt32 index = fAvRTPool.Find(tex);
if (index != fAvRTPool.kMissingIndex)
{
hsAssert(index < fAvNextFreeRT, "Freeing an avatar RT that's already free?");
fAvRTPool[index] = fAvRTPool[fAvNextFreeRT - 1];
fAvRTPool[fAvNextFreeRT - 1] = tex;
fAvNextFreeRT--;
}
}
struct plAVTexVert
{
float fPos[3];
float fUv[2];
};
void plDXPipeline::IPreprocessAvatarTextures()
{
plProfile_Set(AvRTPoolUsed, fClothingOutfits.GetCount());
plProfile_Set(AvRTPoolCount, fAvRTPool.GetCount());
plProfile_Set(AvRTPoolRes, fAvRTWidth);
plProfile_Set(AvRTShrinkTime, UInt32(hsTimer::GetSysSeconds() - fAvRTShrinkValidSince));
IClearClothingOutfits(&fPrevClothingOutfits); // Frees anyone used last frame that we don't need this frame
const UInt32 kVFormat = D3DFVF_XYZ | D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE2(0);
if (fClothingOutfits.GetCount() == 0)
return;
plMipmap *itemBufferTex = nil;
fForceMatHandle = true;
ISetShaders(nil, nil); // Has a side effect of futzing with our cull settings...
// Even though we're going to use DrawPrimitiveUP, we explicitly set the current VB ref to nil,
// otherwise we might try and use the same VB ref later, think it hasn't changed, and
// not update our FVF.
hsRefCnt_SafeUnRef(fSettings.fCurrVertexBuffRef);
fSettings.fCurrVertexBuffRef = nil;
fD3DDevice->SetStreamSource(0, NULL, 0, 0);
fD3DDevice->SetFVF(fSettings.fCurrFVFFormat = kVFormat);
fD3DDevice->SetTransform(D3DTS_VIEW, &d3dIdentityMatrix);
fD3DDevice->SetTransform(D3DTS_WORLD, &d3dIdentityMatrix);
fD3DDevice->SetTransform(D3DTS_PROJECTION, &d3dIdentityMatrix);
fD3DDevice->SetRenderState(D3DRS_CULLMODE, fCurrCullMode = D3DCULL_NONE);
fD3DDevice->SetRenderState(D3DRS_VERTEXBLEND, D3DVBF_DISABLE);
fD3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
fD3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
fLayerState[0].fZFlags &= ~hsGMatState::kZMask;
fLayerState[0].fZFlags |= hsGMatState::kZNoZWrite | hsGMatState::kZNoZRead;
if (fLayerUVWSrcs[0] != 0)
{
fD3DDevice->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX, 0);
fLayerUVWSrcs[0] = 0;
}
fD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
fD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
fLayerState[0].fClampFlags = hsGMatState::kClampTexture;
if (D3DTTFF_DISABLE != fLayerXformFlags[0])
{
fLayerXformFlags[0] = D3DTTFF_DISABLE;
fD3DDevice->SetTextureStageState(0, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_DISABLE);
}
fD3DDevice->SetRenderState(D3DRS_SPECULARENABLE, FALSE);
fLayerState[0].fShadeFlags &= ~hsGMatState::kShadeSpecular;
fD3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE);
fCurrFog.fEnvPtr = nil;
fD3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR);
fD3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_TEXTURE);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_MODULATE);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR);
fD3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_TEXTURE);
fD3DDevice->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_ALWAYS);
fLayerState[0].fBlendFlags = UInt32(-1);
fD3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
fD3DDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
fLayerState[1].fBlendFlags = UInt32(-1);
inlEnsureLightingOff();
int oIdx;
for (oIdx = 0; oIdx < fClothingOutfits.GetCount(); oIdx++)
{
plClothingOutfit *co = fClothingOutfits[oIdx];
if (co->fBase == nil || co->fBase->fBaseTexture == nil)
continue;
plRenderTarget *rt = plRenderTarget::ConvertNoRef(co->fTargetLayer->GetTexture());
if (rt != nil && co->fDirtyItems.Empty())
{
// we've still got our valid RT from last frame and we have nothing to do.
continue;
}
if (rt == nil)
{
rt = IGetNextAvRT();
co->fTargetLayer->SetTexture(rt);
}
PushRenderTarget(rt);
D3DVIEWPORT9 vp = {0, 0, rt->GetWidth(), rt->GetHeight(), 0.f, 1.f};
WEAK_ERROR_CHECK(fD3DDevice->SetViewport(&vp));
hsScalar uOff = 0.5f / rt->GetWidth();
hsScalar vOff = 0.5f / rt->GetHeight();
// Copy over the base
fD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
fD3DDevice->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE | D3DCOLORWRITEENABLE_ALPHA);
fD3DDevice->SetRenderState(D3DRS_TEXTUREFACTOR, 0xffffffff);
fLayerState[0].fBlendFlags = UInt32(-1);
IDrawClothingQuad(-1.f, -1.f, 2.f, 2.f, uOff, vOff, co->fBase->fBaseTexture);
plClothingLayout *layout = plClothingMgr::GetClothingMgr()->GetLayout(co->fBase->fLayoutName);
int i, j, k;
for (i = 0; i < co->fItems.GetCount(); i++)
{
plClothingItem *item = co->fItems[i];
//if (!co->fDirtyItems.IsBitSet(item->fTileset))
// continue; // Not dirty, don't update
for (j = 0; j < item->fElements.GetCount(); j++)
{
for (k = 0; k < plClothingElement::kLayerMax; k++)
{
if (item->fTextures[j][k] == nil)
continue;
itemBufferTex = item->fTextures[j][k];
hsColorRGBA tint = co->GetItemTint(item, k);
if (k >= plClothingElement::kLayerSkinBlend1 && k <= plClothingElement::kLayerSkinLast)
tint.a = co->fSkinBlends[k - plClothingElement::kLayerSkinBlend1];
if (k == plClothingElement::kLayerBase)
{
fD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
fD3DDevice->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE | D3DCOLORWRITEENABLE_ALPHA);
}
else
{
fD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
fD3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
fD3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
fD3DDevice->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE);
}
fD3DDevice->SetRenderState(D3DRS_TEXTUREFACTOR, tint.ToARGB32());
fLayerState[0].fBlendFlags = UInt32(-1);
hsScalar screenW = (hsScalar)item->fElements[j]->fWidth / layout->fOrigWidth * 2.f;
hsScalar screenH = (hsScalar)item->fElements[j]->fHeight / layout->fOrigWidth * 2.f;
hsScalar screenX = (hsScalar)item->fElements[j]->fXPos / layout->fOrigWidth * 2.f - 1.f;
hsScalar screenY = (1.f - (hsScalar)item->fElements[j]->fYPos / layout->fOrigWidth) * 2.f - 1.f - screenH;
IDrawClothingQuad(screenX, screenY, screenW, screenH, uOff, vOff, itemBufferTex);
}
}
}
PopRenderTarget();
co->fDirtyItems.Clear();
}
// Nothing else sets this render state, so let's just set it back to the default to be safe
fD3DDevice->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE | D3DCOLORWRITEENABLE_ALPHA);
fView.fXformResetFlags = fView.kResetAll;
fClothingOutfits.Swap(fPrevClothingOutfits);
}
void plDXPipeline::IDrawClothingQuad(hsScalar x, hsScalar y, hsScalar w, hsScalar h,
hsScalar uOff, hsScalar vOff, plMipmap *tex)
{
const UInt32 kVSize = sizeof(plAVTexVert);
plDXTextureRef* ref = (plDXTextureRef*)tex->GetDeviceRef();
if (!ref || ref->IsDirty())
{
MakeTextureRef(nil, tex);
ref = (plDXTextureRef*)tex->GetDeviceRef();
}
if (!ref->fD3DTexture)
{
if (ref->fData)
IReloadTexture(ref);
}
hsRefCnt_SafeAssign( fLayerRef[0], ref );
fD3DDevice->SetTexture(0, ref->fD3DTexture);
plAVTexVert ptr[4];
plAVTexVert vert;
vert.fPos[0] = x;
vert.fPos[1] = y;
vert.fPos[2] = 0.5f;
vert.fUv[0] = uOff;
vert.fUv[1] = 1.f + vOff;
// P0
ptr[2] = vert;
// P1
ptr[0] = vert;
ptr[0].fPos[0] += w;
ptr[0].fUv[0] += 1.f;
// P2
ptr[1] = vert;
ptr[1].fPos[0] += w;
ptr[1].fUv[0] += 1.f;
ptr[1].fPos[1] += h;
ptr[1].fUv[1] -= 1.f;
// P3
ptr[3] = vert;
ptr[3].fPos[1] += h;
ptr[3].fUv[1] -= 1.f;
#ifdef HS_DEBUGGING
DWORD nPass;
fSettings.fDXError = fD3DDevice->ValidateDevice(&nPass);
if( fSettings.fDXError != D3D_OK )
IGetD3DError();
#endif // HS_DEBUGGING
fD3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, ptr, kVSize);
}
///////////////////////////////////////////////////////////////////////////////
// Test hackery as R&D for water
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// End Test hackery as R&D for water
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//// Functions from Other Classes That Need to Be Here to Compile Right ///////
///////////////////////////////////////////////////////////////////////////////
plPipeline *plPipelineCreate::ICreateDXPipeline( hsWinRef hWnd, const hsG3DDeviceModeRecord *devMode )
{
plDXPipeline *pipe = TRACKED_NEW plDXPipeline( hWnd, devMode );
// Taken out 8.1.2001 mcn - If we have an error, still return so the client can grab the string
// if( pipe->GetErrorString() != nil )
// {
// delete pipe;
// pipe = nil;
// }
return pipe;
}