/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ /////////////////////////////////////////////////////////////////////////////// // // // plGBufferGroup Class Header // // Cyan, Inc. // // // //// Version History ////////////////////////////////////////////////////////// // // // 2.21.2001 mcn - Created. // // // /////////////////////////////////////////////////////////////////////////////// #ifndef _plGBufferGroup_h #define _plGBufferGroup_h #include "hsTemplates.h" #include "hsGeometry3.h" #include "hsColorRGBA.h" //// plGBufferTriangle Struct Definition ////////////////////////////////////// // // Represents a single triangle inside a plGBufferGroup, which consists of // three indices (the indices of the three vertices) and a 3-D point // representing the center of the triangle. class plGBufferTriangle { public: uint16_t fIndex1, fIndex2, fIndex3, fSpanIndex; hsPoint3 fCenter; void Read( hsStream *s ); void Write( hsStream *s ); }; //// plGBufferCell and plGBufferColor Definitions ///////////////////////////// class plGBufferCell { public: uint32_t fVtxStart; // In bytes uint32_t fColorStart; // In bytes uint32_t fLength; plGBufferCell( uint32_t vStart, uint32_t cStart, uint32_t len ) { fVtxStart = vStart; fColorStart = cStart; fLength = len; } plGBufferCell() {} void Read( hsStream *s ); void Write( hsStream *s ); }; class plGBufferColor { public: uint32_t fDiffuse, fSpecular; }; //// plGBufferGroup Class Definition ////////////////////////////////////////// // // Represents a list of vertex and index buffers in a nice package. class hsStream; class hsResMgr; class plPipeline; class hsGDeviceRef; class plGeometrySpan; class plGBufferGroup { protected: uint8_t fFormat; uint8_t fStride; uint8_t fLiteStride; uint8_t fNumSkinWeights; uint32_t fNumVerts; uint32_t fNumIndices; bool fVertsVolatile; bool fIdxVolatile; int fLOD; std::vector fVertexBufferRefs; std::vector fIndexBufferRefs; std::vector fVertBuffSizes; std::vector fIdxBuffCounts; std::vector fColorBuffCounts; std::vector fVertBuffStorage; std::vector fIdxBuffStorage; std::vector fVertBuffStarts; std::vector fVertBuffEnds; std::vector fIdxBuffStarts; std::vector fIdxBuffEnds; std::vector fColorBuffStorage; std::vector> fCells; virtual void ISendStorageToBuffers( plPipeline *pipe, bool adjustForNvidiaLighting ); uint8_t ICalcVertexSize( uint8_t &liteStride ); uint8_t* IVertBuffStorage(int iBuff, int iVtx) const { return fVertBuffStorage[iBuff] + iVtx*fStride; } uint32_t IMakeCell( uint32_t vbIndex, uint8_t flags, uint32_t vStart, uint32_t cStart, uint32_t len, uint32_t *offset ); void IGetStartVtxPointer( uint32_t vbIndex, uint32_t cell, uint32_t offset, uint8_t *&tempPtr, plGBufferColor *&cPtr ); public: static const uint32_t kMaxNumVertsPerBuffer; static const uint32_t kMaxNumIndicesPerBuffer; enum Formats { kUVCountMask = 0x0f, // Problem is, we need enough bits to store the max #, which means // we really want ( max # << 1 ) - 1 kSkinNoWeights = 0x00, // 0000000 kSkin1Weight = 0x10, // 0010000 kSkin2Weights = 0x20, // 0100000 kSkin3Weights = 0x30, // 0110000 kSkinWeightMask = 0x30, // 0110000 kSkinIndices = 0x40, // 1000000 kEncoded = 0x80 }; enum { kReserveInterleaved = 0x01, kReserveVerts = 0x02, kReserveColors = 0x04, kReserveSeparated = 0x08, kReserveIsolate = 0x10 }; plGBufferGroup(uint8_t format, bool vertsVolatile, bool idxVolatile, int LOD = 0); ~plGBufferGroup(); uint8_t GetNumUVs( void ) const { return ( fFormat & kUVCountMask ); } uint8_t GetNumWeights() const { return (fFormat & kSkinWeightMask) >> 4; } static uint8_t CalcNumUVs( uint8_t format ) { return ( format & kUVCountMask ); } static uint8_t UVCountToFormat( uint8_t numUVs ) { return numUVs & kUVCountMask; } void DirtyVertexBuffer(size_t i); void DirtyIndexBuffer(size_t i); bool VertexReady(size_t i) const { return (i < fVertexBufferRefs.size()) && fVertexBufferRefs[i]; } bool IndexReady(size_t i) const { return (i < fIndexBufferRefs.size()) && fIndexBufferRefs[i]; } uint8_t GetVertexSize( void ) const { return fStride; } uint8_t GetVertexLiteStride( void ) const { return fLiteStride; } uint8_t GetVertexFormat( void ) const { return fFormat; } uint32_t GetMemUsage( void ) const { return ( fNumVerts * GetVertexSize() ) + ( fNumIndices * sizeof( uint16_t ) ); } uint32_t GetNumVerts( void ) const { return fNumVerts; } uint32_t GetNumIndices( void ) const { return fNumIndices; } uint32_t GetNumPrimaryVertsLeft( void ) const; uint32_t GetNumVertsLeft( uint32_t idx ) const; uint32_t GetVertBufferSize(uint32_t idx) const { return fVertBuffSizes[idx]; } uint32_t GetVertBufferCount(uint32_t idx) const; uint32_t GetIndexBufferCount(uint32_t idx) const { return fIdxBuffCounts[idx]; } uint32_t GetVertStartFromCell(uint32_t idx, uint32_t cell, uint32_t offset) const; // These should only be called by the pipeline, because only it knows when it's safe. // If the data is volatile, these are no-ops void PurgeVertBuffer(uint32_t idx); void PurgeIndexBuffer(uint32_t idx); /////////////////////////////////////////////////////////////////////////////// // The following group of functions is an advanced optimization, and a pretty // specialized one at that. It just limits the amount of data that will get // uploaded to video. If you don't know you are limited by bandwidth to the // board, or you just don't know what your are doing, don't mess with them. // If you never touch them, everything will work. If you set them correcly, // things may work faster. If you set them incorrectly, be sure to save // all files before running. // All of these are indices, not bytes. from the beginning of the buffer. uint32_t GetVertBufferStart(uint32_t idx) const { return fVertBuffStarts[idx]; } uint32_t GetVertBufferEnd(uint32_t idx) const { return fVertBuffEnds[idx] >= 0 ? uint32_t(fVertBuffEnds[idx]) : GetVertBufferCount(idx); } uint32_t GetIndexBufferStart(uint32_t idx) const { return fIdxBuffStarts[idx]; } uint32_t GetIndexBufferEnd(uint32_t idx) const { return fIdxBuffEnds[idx] >= 0 ? uint32_t(fIdxBuffEnds[idx]) : GetIndexBufferCount(idx); } void SetVertBufferStart(uint32_t idx, uint32_t s) { fVertBuffStarts[idx] = s; } void SetVertBufferEnd(uint32_t idx, uint32_t e) { fVertBuffEnds[idx] = e; } void SetIndexBufferStart(uint32_t idx, uint32_t s) { fIdxBuffStarts[idx] = s; } void SetIndexBufferEnd(uint32_t idx, uint32_t e) { fIdxBuffEnds[idx] = e; } /////////////////////////////////////////////////////////////////////////////// uint32_t GetNumVertexBuffers( void ) const { return fVertBuffStorage.size(); } uint32_t GetNumIndexBuffers( void ) const { return fIdxBuffStorage.size(); } uint8_t *GetVertBufferData( uint32_t idx ) { return fVertBuffStorage[ idx ]; } uint16_t *GetIndexBufferData( uint32_t idx ) { return fIdxBuffStorage[ idx ]; } plGBufferColor *GetColorBufferData( size_t idx ) { return fColorBuffStorage[ idx ]; } hsGDeviceRef *GetVertexBufferRef( uint32_t i ); hsGDeviceRef *GetIndexBufferRef( uint32_t i ); size_t GetNumCells( size_t idx ) const { return fCells[ idx ].size(); } plGBufferCell *GetCell( size_t idx, size_t cell ) { return &(fCells[ idx ][ cell ]); } void SetVertexBufferRef( uint32_t index, hsGDeviceRef *vb ); void SetIndexBufferRef( uint32_t index, hsGDeviceRef *ib ); virtual void Read( hsStream* s ); virtual void Write( hsStream* s ); // Accessor functions hsPoint3 &Position( int iBuff, uint32_t cell, int iVtx ); hsVector3 &Normal( int iBuff, uint32_t cell, int iVtx ); uint32_t &Color( int iBuff, uint32_t cell, int iVtx ); uint32_t &Specular( int iBuff, uint32_t cell, int iVtx ); hsPoint3 &UV( int iBuff, uint32_t cell, int iVtx, int channel ); uint32_t Format() const { return fFormat; } // Take temp accumulators and actually build buffer data from them void TidyUp( void ); // Delete the buffer data storage void CleanUp( void ); // Take buffer data and convert it to device-specific buffers void PrepForRendering( plPipeline *pipe, bool adjustForNvidiaLighting ); // Reserves space in a vertex buffer bool ReserveVertStorage( uint32_t numVerts, uint32_t *vbIndex, uint32_t *cell, uint32_t *offset, uint8_t flags ); // Append vertex data to the first available storage buffer void AppendToVertStorage( plGeometrySpan *srcSpan, uint32_t *vbIndex, uint32_t *cell, uint32_t *offset ); void AppendToVertAndColorStorage( plGeometrySpan *srcSpan, uint32_t *vbIndex, uint32_t *cell, uint32_t *offset ); void AppendToColorStorage( plGeometrySpan *srcSpan, uint32_t *vbIndex, uint32_t *cell, uint32_t *offset, uint32_t origCell ); // Reserves space in an index buffer bool ReserveIndexStorage( uint32_t numIndices, uint32_t *ibIndex, uint32_t *ibStart, uint16_t **dataPtr = nil ); // Append index data to the first available storage buffer void AppendToIndexStorage( uint32_t numIndices, uint16_t *data, uint32_t addToAll, uint32_t *ibIndex, uint32_t *ibStart ); /// Dynamic functions (addition/deletion of raw data) void DeleteVertsFromStorage( uint32_t which, uint32_t start, uint32_t length ); void AdjustIndicesInStorage( uint32_t which, uint16_t threshhold, int16_t delta ); void DeleteIndicesFromStorage( uint32_t which, uint32_t start, uint32_t length ); // Returns an array of plGBufferTriangles representing the span of indices specified plGBufferTriangle *ConvertToTriList( int16_t spanIndex, uint32_t whichIdx, uint32_t whichVtx, uint32_t whichCell, uint32_t start, uint32_t numTriangles ); // Stuffs the indices from an array of plGBufferTriangles into the index storage void StuffFromTriList( uint32_t which, uint32_t start, uint32_t numTriangles, uint16_t *data ); void StuffTri( uint32_t iBuff, uint32_t iTri, uint16_t idx0, uint16_t idx1, uint16_t idx2 ); // Stuff the data from a geometry span into vertex storage void StuffToVertStorage( plGeometrySpan *srcSpan, uint32_t vbIndex, uint32_t cell, uint32_t offset, uint8_t flags ); // Are our verts volatile? bool AreVertsVolatile() const { return fVertsVolatile; } bool AreIdxVolatile() const { return fIdxVolatile; } int GetLOD() const { return fLOD; } }; #endif // _plGBufferGroup_h